

CS-472: Design Technologies for Integrated Systems

Exercise Problem Set 9 Solution

Date: 21/11/2024

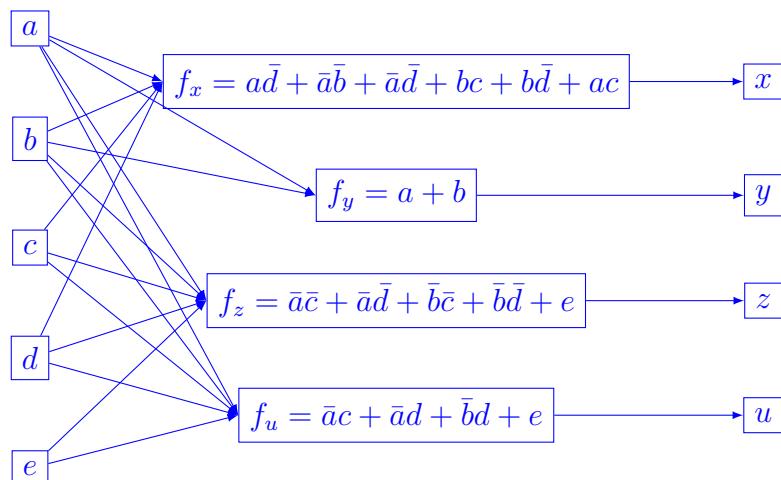
Topic: Algebraic methods (cf. slide set 11)

Problem 1

Consider the following relations among Boolean variables $a, b, c, d, e, x, y, z, u$:

$$\begin{aligned} x &= a\bar{d} + \bar{a}\bar{b} + \bar{a}\bar{d} + bc + b\bar{d} + ac \\ y &= a + b \\ z &= \bar{a}\bar{c} + \bar{a}\bar{d} + \bar{b}\bar{c} + \bar{b}\bar{d} + e \\ u &= \bar{a}\bar{c} + \bar{a}\bar{d} + \bar{b}\bar{d} + e \end{aligned}$$

(a) Draw the logic network, where inputs are $\{a, b, c, d, e\}$, outputs are $\{x, y, z, u\}$, and each node of the network can compute arbitrary function.



(b) Perform the algebraic division of f_x/f_y (f_x denotes the Boolean function of x in terms of a, b, c, d and e).

cf: Algorithm in textbook pp. 362.

Ans:

$$A = \{a\bar{d}, \bar{a}\bar{b}, \bar{a}\bar{d}, bc, b\bar{d}, ac\}$$

$$B = \{a, b\}$$

$$i = 1 : C_1^B = a. \quad D = \{a\bar{d}, ac\}, D_1 = \{\bar{d}, c\} = Q.$$

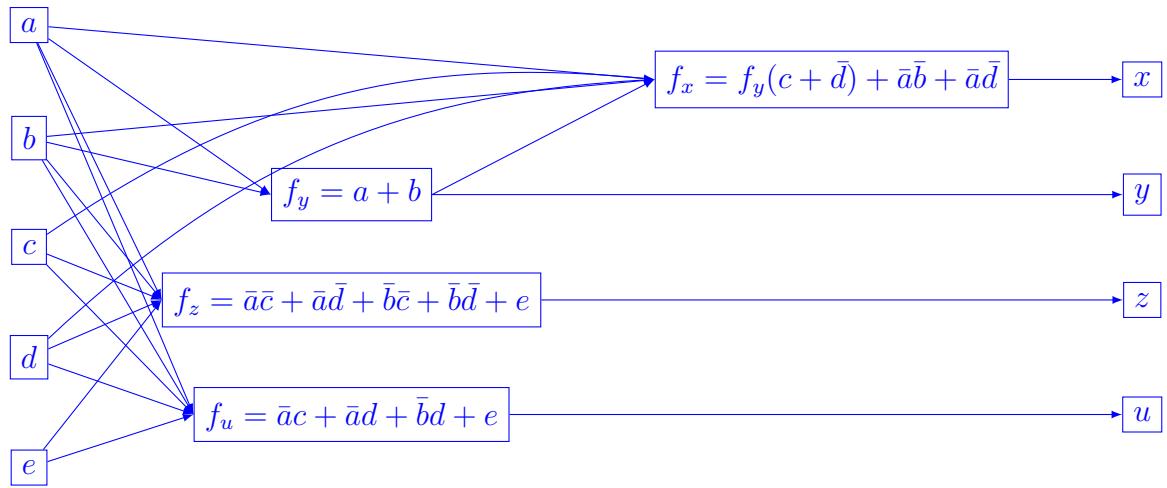
$$i = 2 : C_2^B = b. \quad D = \{bc, b\bar{d}\}, D_2 = \{c, \bar{d}\}, Q = \{c, \bar{d}\}$$

$$R = \{\bar{a}\bar{b}, \bar{a}\bar{d}\}$$

$$\therefore f_x = f_y(c + \bar{d}) + \bar{a}\bar{b} + \bar{a}\bar{d}$$

Note that in algebraic division, a and \bar{a} , etc., are treated as unrelated symbols.

(c) Substitute y in f_x and redraw the network.



Problem 2

For the following functions:

$$F = abc + abd + cd$$

$$G = \bar{b}d + a\bar{b} + \bar{b}c$$

(a) Compute all kernels and co-kernels of F and G .

cf: Algorithm in textbook pp. 369; slide 11 pp. 47.

$$\frac{\sup(F)}{j =} \begin{array}{|ccccc} \hline & a & b & c & d & \bar{d} \\ \hline 1 & 2 & 3 & 4 & 5 & \\ \hline \end{array}$$

KERNALS($F, 1$):

$i = 1$: $x_i = a$, $C = \{a, b\}$, $F/(ab) = c + d$, KERNALS($c + d, 2$) = $\{c + d\}$

$i = 2$: $x_i = b$, $C = \{a, b\}$, C has $x_k = a$ where $k < i$, skip

$i = 3$: $x_i = c$, $C = \{c\}$, $F/c = ab + \bar{d}$, KERNALS($ab + \bar{d}, 4$) = $\{ab + \bar{d}\}$

$i = 4$: $x_i = d$, CUBES(F, d) = $\{abd\}$, skip

$i = 5$: $x_i = \bar{d}$, CUBES(F, \bar{d}) = $\{c\bar{d}\}$, skip

F is cube-free, so F itself is also a kernel with co-kernel being 1.

Ans:

$$K(F) = \{c + d, ab + \bar{d}, abc + abd + c\bar{d}\}$$

$$CoK(F) = \{ab, c, 1\}$$

$$\frac{\sup(G)}{j =} \begin{array}{|cccc} \hline & \bar{b} & d & a & c \\ \hline 1 & 2 & 3 & 4 & \\ \hline \end{array}$$

KERNALS($G, 1$):

$i = 1$: $x_i = \bar{b}$, $C = \{\bar{b}\}$, $G/\bar{b} = d + a + c$, KERNALS($a + c + d, 2$) = $\{a + c + d\}$

$i = 2$: $x_i = d$, CUBES(G, d) = $\{\bar{b}d\}$, skip

$i = 3$: $x_i = a$, CUBES(G, a) = $\{a\bar{b}\}$, skip

$i = 4$: $x_i = c$, CUBES(G, c) = $\{\bar{b}c\}$, skip

G is not cube-free (\bar{b}), so G itself is not a kernel.

Ans:

$$K(G) = \{a + c + d\}$$

$$CoK(G) = \{\bar{b}\}$$

(b) Extract a multiple-cube sub-expression common to F and G .

cf: slide 11 pp. 53.

Let $x_c = c$, $x_d = d$, $x_{ab} = ab$, $x_{\bar{d}} = \bar{d}$, $x_{abc} = abc$, $x_{abd} = abd$, $x_{c\bar{d}} = c\bar{d}$, $x_a = a$.

$f_{aux} = fx_c x_d + fx_{ab} x_{\bar{d}} + fx_{abc} x_{abd} x_{c\bar{d}} + gx_a x_c x_d$

$CoK(f_{aux}) = x_c x_d$

Ans: Extract $c + d$ from F and G . Now $F = (c + d)ab + c\bar{d}$, $G = (c + d)\bar{b} + a\bar{b}$.