Achieving High Levels of Instruction-Level Parallelism
with Reduced Har dware Complexity

Michadl S. Schlansker, B. Ramakrishna Rau, Scott Mahlke, Vinod K athail,
Richard Johnson, Sadun Anik, Santosh G. Abraham

Computer Research Center

HPL-96-120
November 1994

{ schlansk, rau, mahlke, kathail, rjohnson, anik, abraham} @hplabs.hp.com

instruction-level
paraleism,

VLIW processors,
superscalar processors,
overlapped execution,
out-of-order execution,
specul ative execution,
branch prediction,
instruction scheduling,
compile-time speculation,
predicated execution,
data speculation,

HPL PlayDoh

Instruction-level parallel processing (ILP) has established
itself asthe only viable approach for achieving the goal of
providing continuously increasing performance without
having to fundamentally re-write the application. ILP
processors differ in their strategies for deciding exactly
when, and on which functional unit, an operation should
be executed. The alternatives lie somewhere on a spectrum
depending on the extent to which these decisions are made
by the compiler rather than by the hardware and on the
manner in which information regarding paralelism is
communicated by the compiler to the hardware via the
program. HPL PlayDoh is a research architecture that has
been defined to support research in ILP, with a bias
towards VLIW processing. The overal objective of this
research effort isto develop asuite of architectural features
and compiler techniques that will enable a second-
generation of VLIW processors to achieve high levels of
ILP, across both scientific and non-scientific
computations, but with hardware that is smple compared
to out-of-order superscalar processors. The basic approach
is to provide the program (compiler) more control over
capabilities that, in superscalar processors, are typicaly
microarchitectural (i.e., controlled by the hardware) by
raising them to the architectural level.

1 Introduction

Over the past two and a half decades, the computer industry has grown accustomed to, and
has come to take for granted, the spectacular rate of increase of microprocessor
performance, dl of this without requiring a fundamental rewriting of the program in a
parrallel form, using a different algorithm or language, and often without even recompiling
the program. The benefits of this have been enormous. Computer users have been able to
avall of faster and faster computers while still having access to applications representing
billions of dollars worth of investment—an unlikely, if not impossible, occurrence were it
not for the fact that the software does not have to be continually re-written to take advantage
of the faster, more recent computers. Continuing this trend, of ever-increasing levels of
performance without re-writing the applications, is the problem statement that represents
the subject of this paper.

Higher levels of performance benefit from improvements in semiconductor technology
which permit shorter gate delays and higher levels of integration, both of which enable the
construction of faster computer systems. Further speedups must come, primarily, from the
use of some form of paralelism. The best known style of parald processing consists of
partitioning an application into multiple sub-tasks which are executed in parallel on multiple
processors. A certain amount of speedup can be achieved on loop-intensive applications by
having a paralldlizing compiler perform this partitioning. However, in general, the
application must be manually restructured, typicaly using a different agorithm, and
sometimes requiring re-expression in a parale language, before enough pardleism is
exposed, first, to outweigh the communication and synchronization overhead that is
inherent to parallel processing and, second, to provide enough additiona speedup to make
it all worthwhile.

Another strategy known as instruction-level parallel (ILP) processing is a set of
processor and compiler design techniques that speed up execution by causing individua
machine operations, such as memory loads and stores, integer additions and floating point
multiplications, to execute in parallel. The operations involved are norma RISC-style
operations, and the system is handed a single program written with a sequential processor
in mind. Thus an important feature of these techniques is that like circuit speed
improvements, but unlike traditional multiprocessor paralelism and massively pardléd
processing, they are largely transparent to users. In the long run, it is clear that the
multiprocessor style of paralel processing will be an important technology for the main

stream computer industry. For the present, instruction-level pardlel processing has
established itsddf as the only viable approach for achieving the goa of providing
continuously increasing performance without having to fundamentally re-write the
application. It isworth noting that these two styles of paralel processing are not mutually
exclusive; the most effective multiprocessor systems will probably be built using the most
effective ILP processors.

If ILP is to be achieved, the compiler and the runtime hardware must, between them,
perform the following functions:

* the dependences between operations must be determined,

« the operations, that are independent of any operation that has not as yet completed,
must be determined, and

* these independent operations must be scheduled to execute a some particular time, on
some specific functional unit, and must be assigned a register into which the result may
be deposited.

ILP processors differ in their strategies for deciding exactly when, and on which functional
unit, an operation should be executed. The aternatives lie somewhere on a spectrum
depending on the extent to which these decisions are made by the compiler rather than by
the hardware and on the manner in which information regarding pardlelism is
communicated by the compiler to the hardware via the program.

A computer architecture is a contract between the class of programs that are written for the
architecture and the set of processor implementations of that architecture. Usually this
contract is concerned with the ingtruction format and the interpretation of the bits that
congtitute an instruction, but in the case of ILP architectures it extends to information
embedded in the program pertaining to the available parallelism between the instructions or
operations in the program. The two most important types of ILP processors differ in this
respect.

e Superscalar processors [33] are ILP processor implementations for sequentia
architectures—architectures for which the program is not expected to convey and, in
fact, cannot convey any explicit information regarding parallelism. Since the program
contains no explicit information regarding the dependences between the instructions, if
instruction-level paralelism is to be employed, the dependences that exis must be
determined by the hardware, which must then make the scheduling decisions as well.

* Very Long Instruction Word (VLIW) processors [14, 53] are examples of
architectures for which the program provides information as to which operations are
independent of one another. The compiler identifies the parallelism in the program and
communicates it to the hardware by specifying which operations are independent of one
another. This information is of direct vaue to the hardware, since it knows with no
further checking which operations it can execute in the same cycle. Since, for any given
operation, the number of independent operations is far greater than the number of
dependent ones, it is impractica to specify al independences. Instead, for each
operation, independences with only a subset of dl independent operations (those
operationsthat the compiler thinks are the best candidates to execute concurrently) are
specified. These are packaged together asasingle VLIW instruction.

In the context of this taxonomy, vector processors [68, 69, 28, 55] are best thought of as
processors for a sequential, CISC (complex instruction set computer) architecture. The
complex instructions are the vector instructions which do possess a stylized form of
instruction-level paralelism interna to each vector instruction. However, attempting to
execute multiple instructions in parallel, whether scalar or vector, incurs al of the same
problems that are faced by a superscalar processor. Because of their stylized approach to
paradlelism, vector processors are less genera in their ability to exploit al forms of
instruction-level parallelism. Vector instructions are only relevant to the innermost |oops of
a program. Furthermore, these loops cannot contain non-trivial recurrences or complex
control flow. Be that as it may, vector processors have enjoyed great commercia success
over the past decade.

1.1 Superscalar processors
1.1.1 Overlapped execution and out-of-order execution

In a fully sequential processor, each instruction is issued after the previous one has
completed. Not only doesthisfail to achieve the issuance of multiple instructions per cycle,
but it even falls short of achieving an issue rate of a single instruction per cycle, except in
the unlikely circumstance that every instruction completes execution in asingle cycle.

The first step in increasing the issue rate is to attempt to issue an instruction every cycle,
even if prior instructions have not completed. The related techniques of pipelining and
overlapped execution, which have been employed since the late 1950s, serve this purpose
[20, 7, 9]. Traditionally, overlapped execution refers to the paralelism that results from
multiple active instructions, each in a different one of the phases of instruction fetch,

decode, operand fetch, and execute whereas pipelining is used in the context of functional
units, such as multipliers and floating-point adders, which are able to start subsequent
operations before earlier ones have completed execution [12, 37]. (A potential source of
confusion isthat, in the context of RISC processors, overlapped execution and pipelining,
especialy when the integer ALU is pipeined, have been referred to as pipeining and
superpipelining, respectively [35].)

If the semantics of the program are to be preserved, instruction issue must pause if the
instruction that is about to be issued is dependent upon a previous instruction that has not
as yet completed execution. To accomplish this, with each instruction that the processor
issues, it must check whether the instruction's operands (registers or memory locations that
the instruction uses or modifies) coincide with the operands of any other instruction that
has been issued but has not yet completed.

If thisisthe case, instruction issue must be delayed until the instructions, upon which this
instruction is dependent, have completed execution. These dependences must be monitored
to determine the point in time a which this situation disappears. When that happens, the
instruction is independent of all other uncompleted instructions and can be allowed to begin
executing a any time thereafter. Also, once an ingtruction is independent of dl other
instructions in flight, the hardware must decide exactly when and on which available
functional unit to execute the instruction. The Control Data CDC 6600 employed a
mechanism, called the scoreboard, to perform these functions [63].

The next step towards achieving the goal of an ingtruction per cycle is out-of-order
execution. Instead of stalling instruction issue as soon as an instruction is encountered that
is dependent upon one that is in flight, the dependent instruction is set aside to await the
completion of the instructions upon which it is dependent. Once these instructions have
completed, the waiting one can begin execution. In the meantime, the processor may issue
and begin execution of subsequent instructions which prove to be independent of dl
sequentially preceeding instructionsin flight.

Issued instructions that are waiting on the completion of prior instructions do so because
they are flow or output dependent upon those prior instructions. Although there is no
option but to wait on the completion of instructions upon which the waiting one is flow
dependent, waiting is unnecessary on encountering an output dependence if register
renaming is performed. The Tomasulo algorithm [66] is the classical scheme for register

renaming and out-of-order execution and has served as the model for subsequent variations
[70, 31, 32, 61].

A further step towards the goal of an instruction per cycle, and another instance of out-of-
order execution, is to perform memory references out-of-order. Utilizing techniques that
are analogous to the scoreboard and Tomasulo's algorithm, loads and stores can be
submitted to memory out-of-order once their addresses are known and are found to be
distinct from the addresses of any preceeding, unsubmitted stores[1, 33].

1.1.2 Speculative execution

Conditional branches pose amajor obstacle to ILP. Even if the above measures have been
successful in attaining the rate of an instruction per cycle, the branch, when it is
encountered can lead to many lost cycles during which no instruction isissued because it is
not clear which path to take after the branch. Two pendtiesareincurred at this point. First,
at the time that the branch is decoded, due to out-of-order execution, the instruction that
computes the branch condition might be waiting on the completion of a long chain of flow
dependence predecessors. Until the branch condition is disambiguated, no further
instruction can be issued. (One could view this as the penalty that was deferred by
employing out-of-order execution; many of the issue cycles that we avoided wasting, by
using out-of-order execution, are wasted, in a concentrated fashion, at the time of the
branch.) Second, even if the branch condition were known, but if it specified that the
branch was to be taken, the instructions along this path would have to be fetched, during
which time no instructions could be issued. Asaresult of these two penalties, the objective
of aninstruction per cycleis seriously compromised.

Three mechanisms must be invoked to overcome the conditiona branch problem. First, the
processor must make a guess as to which way the flow of control will go once the branch
condition is known. Second, instructions along the predicted path must start being
prefetched, i.e., fetched speculatively, and early enough so that they are available to be
issued right after the branch is issued. Third, the processor must issue and execute these
instructions speculatively (i.e., before the branch condition has been resolved) so that, a
least in the case when the branch prediction is correct, the goal of an instruction per cycle
continues to be achieved.

Of course, if the branch prediction turns out to be incorrect, al of these instructions that
were prefetched, issued and executed speculatively, are wasted, and the complete branch
penalty is experienced. Furthermore, an additional time penalty must be incurred to restore

the processor state before going down the correct path. In view of this, it is important that
an extremely accurate branch prediction scheme be used to guide the prefetch and
speculative execution and, in response, various satic [29, 30, 41] and dynamic [59, 39,
45, 71] schemes of varying levels of sophistication and practicality have been suggested.
Dynamic schemes gather execution statistics of one form or another while the program is
running and, consequently, are specific to that one program while executing a particular
input data set. Static schemes accumulate statistics for a given program over many training
runs using a set of hopefully representative input data sets. These datistics are used
whenever that program is executed, regardless of the current input data set. As might be
expected, dynamic schemes tend to be more accurate, but require relatively expensive
hardware. However, static schemes appear to be capable of approaching the accuracy of
dynamic schemes[72, 27], but at the expense of code size expansion.

Even if abranch is correctly predicted to be taken, a penalty is incurred unless the fetching
of the target path for the branch is started in the cycle following the initiation of the
instruction fetch of the conditional branch, i.e., well before the branch instruction has been
fetched and decoded. The technique employed is to use a branch target buffer (BTB)
[39] which is a cache that stores branch target addresses which are paired with an
associative tag which is the address of the corresponding conditional branch. As each
instruction address is issued to the instruction cache to be fetched, it is aso presented to the
BTB. A matching entry indicates that the instruction, whose fetch is currently being
initiated, isa conditional branch which has recently been taken, and the associated branch
target addressis used to start fetching the target path instead of continuing fetching the fall-
through path.

Speculative execution, too, can be viewed as a specia form of out-of-order execution in
which the instructions following a conditional branch are allowed to execute before the
branch has completed. Without it, the benefits of out-of-order execution are restricted to the
basic block boundaries and, in light of the generally small size of basic blocks, the pipeline
latencies of floating-point and load operations, and the inter-operation dependences, little
instruction-level pardlelism will be found, typically. It is important, therefore, that
operations from multiple basic blocks be executed concurrently if an ILP machine is to be
fully utilized. Dynamic schemes for specul ative execution must provide ways to:

* terminate unnecessary specul ative computation once the branch has been resolved,

« undo the effects of the speculatively executed operations which should not have been
executed, or prevent these effectsin the first place,

* ensure that no exceptions are reported until it is known that the excepting operation
should, in fact, have been executed, and

* preserve enough execution state at each speculative branch point to enable execution to
resume down the correct path in the event it turns out that speculative execution
proceeded down the wrong path.

Of the various schemes that have been proposed to meet the above requirements, the
register update unit [61] stands out as one that is, a the very least conceptualy, the
simplest and most elegant.

1.1.3 Superscalar execution

The fina mechanism to increase the number of instructions executed per cycle is termed
superscalar execution. The goa of a superscalar processor is to issue multiple,
independent instructions in paralel even though the hardware is handed a sequentia
program. One of the most problematic aspects of so doing is that of determining the
dependences between the instructions that one wishes to issue simultaneously. Specificaly,
it iscorrect to issue an instruction only if it is independent of al the other instructions that
are being issued concurrently but which would have been executed earlier in a sequentia
execution of the program.

The second challenge for superscalar processors is paralel resource dlocation for the
independent instructions that are to be issued in parallel. Although the instructions have
been proven to be independent, they might have conflicting resource needs, e.g., there may
be more integer instructions that can be issued in paralléel than there are integer ALU's upon
which to execute them. Even if there are sufficient resources for al of the instructions, care
must be taken to ensure that multiple instructions do not attempt to use the same resource.
When there are multiple resources of the type needed by a particular instruction, the specific
resource that gets alocated to it depends on whether the sequentially preceding, but
concurrently issued, instructions need aresource of that same kind and, if so, which ones
get alocated to them.

1.1.4 The hardware complexity of out-of-order, superscalar processors

Superscalar execution, especially a high levels of ILP, poses the processor designer with
some difficult chalenges. Since the semantics of the program and, in particular, the
essentia dependences are specified by the sequentia ordering of the instructions, the

source and destination registers for each instruction that is a candidate for issue must be
compared with those for al of the sequentialy preceding instructions which aso are
candidates for issue. Thisisrequired so that one can determine, in paralel, which of those
instructions may, in fact, be issued without violating any dependences. If one attempts to
issue N dyadic instructions per cycle, one needs 5N(N-1)/2 comparators to check for al
possible flow, output and anti-dependences. Parallel resource alocation can be even more
expensive, since the resource alocated to each instruction depends on which of the
sequentially preceding, but concurrently issued, instructions need a resource of that same
kind and, of those that do, which specific resources get alocated to them. Here, we are
faced with an inherently sequential decision process which we wish to perform in parallél.
The trade-off is between a potentially lengthened cycle time and increased logic complexity.

Even without superscalar execution, a significant amount of complexity is implicit in a
processor performing out-of-order execution. As we saw earlier, successful out-of-order
execution requires support for register renaming and dynamic branch prediction, a branch
target buffer, and a register update unit to support recovery from speculation past a mis-
predicted branch. All these mechanisms have significant complexity. An excellent reference
on superscalar processor design and its complexity isthe book by Johnson [33].

1.2 First-generation VLIW

VLIW processors evolved in an atempt to achieve high levels of ILP without the
aforementioned hardware complexity. When discussing VLIW processors, it is important
to distinguish between an instruction and an operation. An operation is a unit of
computation, such as an addition, memory load or branch, which would be referred to as
an ingtruction in the context of asequential architecture. A (paralel) VLIW instruction is
the set of operations that are intended to be issued simultaneously. The archetypa VLIW is
distinguished by two features: MultiOp instructions which each specify the concurrent
issue of multiple operations, and operations with architecturally visible execution latencies,
which we refer to as non-unit assumed latencies (NUAL).

1.2.1 Compile-time scheduling

With aVLIW processor, most of the measures that were taken by the superscalar processor
a run-time to achieve ILP, are performed by the compiler. Conceptually, the compiler
emulates what a superscalar processor, with the same execution hardware, would do a
run-time. The compiler takes the sequentia internal representation of the program, analyzes
the dependences between the operations, performs register renaming, if needed, to
eliminate anti- and ouput dependences, delays the scheduled initiation time of operations
that are dependent upon othersto atime when they will have completed, schedules the out-
of-order execution of other operations that are independent, and performs the allocation of
the requisite functional units, buses, and registers to the operations as specified by a
machine description database. However, it is important to re-emphasize that al of this is
being done at compile-time and requires no hardware support. Consequently, it is not only
realigtic to think of building VLIW processors which have very high levels of ILP, but
such processors have, in fact, been built successfully [11, 14, 38, 48, 6].

It is the task of the compiler to decide which operations should go into each instruction.
Once a program has been scheduled, al operations that are supposed to begin a the same
time are packaged into a single VLIW instruction. Thus, the hardware need make no
decisions as to which operation to issue concurrently. The position of each operation within
the instruction specifies the functiona unit on which that operation is to execute and, so,
the hardware need make no decisions regarding resource alocation. A VLIW program is a
direct trandliteration of a desired record of execution, one that is feasible in the context of
the given execution hardware.

1.2.2 Compile-time speculation

As noted, run-time speculation is expensive in the hardware needed to support it. The
aternative isto perform speculative code motion at compile-time. The compiler for a VLIW
machine specifies that an operation be executed speculatively by performing speculative
code motion, that is, scheduling an operation before the branch that determines that it
should, in fact, be executed. At run-time, the VLIW processor executes these speculative
operations in the exact order specified by the program just as it does for non-speculative
operations. These operations will end up being executed before the branches that they
originally were supposed to follow; hence, they are executed speculatively in relation to the
original sequential code that the scheduler received. Such code motion is fundamenta to
global scheduling schemes such as trace scheduling [23] and superblock scheduling [30].

When the compiler decides to schedule operations for speculative execution, it ensures that
they do not overwrite any of the state of the computation that is needed to assure correct
resultsif it turns out that that operation ought not to have been executed. This is achieved
by writing the results of the speculative operations into different destination registers, i.e.,
performing register renaming at compile-time.

The hardware support needed is much less demanding. First, a mechanism is needed to
ensure that exceptions caused by speculatively scheduled operations are reported if and
only if the flow of control is such that they would have been executed in the non-
speculative version of the code and, second, additional architecturaly visible registers are
needed to hold the speculative execution state. The former issue was partly addressed in the
first-generation of VLIW processors[14].

Just as a superscalar processor must predict which way branches will go to be able to
perform speculative execution successsfully, so must a VLIW compiler predict the branch
direction so that it can schedule operations speculatively from the more likely path
following the branch. Furthermore, since the prediction is being performed a compile-
time, dynamic branch prediction is not an option. Instead, profiling runs are used to gather
the appropriate statistics and to embed the prediction, a compile-time, into the program.
Branch statistics gathered using one set of data have been shown to be applicable to
subsequent runs with different data [24]. Although static prediction can be useful for
guiding both static and dynamic speculation, it is not apparent how dynamic prediction can
assist static speculative code motion.

The VLIW compiler must perform many of the same functions that a superscalar processor
performsat run-time to support speculative execution, but it does so a compile-time and,
consequently, incurs less hardware penalty.

10

1.2.3 Shortcomings of first-generation VLIWs

Most of the VLIW features discussed above were incorporated into the first-generation of
VLIW processors [14, 6], which were technically successful and extremely cost-effective
for the workloads for which they were designed, viz. scientific computing. However, these
products were perceived as having certain serious shortcomings in the context of branch-
intensive applications, the so-called "genera-purpose” codes. First, the fact that dl
scheduling and alocation decisions are made by the compiler and not by hardware means
that a program is good only for the specific machine for which is was compiled. If the
number of functional units or the execution latencies change from one machine to the next,
the code can be just plain incorrect. This has led to the conventiona wisdom that VLIW
processors cannot exhibit object code compatibility across a family of machines. Second,
even in the context of a single processor, the presence of non-deterministic latencies, as is
the case with loads that can experience either a hit or a miss latency, are problematic for a
compiler that is attempting to make scheduling decisions when it is unclear, a compile-
time, what the latency will be at run-time. Lastly, as a consequence of the fact that first-
generation VLIW processors were designed for the scientific computing market, the
somewhat unjustified conclusion has been reached that VLIW processors cannot be
successful at "general-purpose”’ computing.

1.3. HPL PlayDoh

HPL PlayDoh [36] is a research architecture that has been defined to support research in
ILP, with a bias towards VLIW processing. The overall objective of this research effort is
to develop a suite of architectural features and compiler techniques that will enable a
second-generation of VLIW processors to achieve high levels of ILP across both scientific
computations as well as non-scientific computations, i.e., true general-purpose capability.
The central thrusts of this effort are:

* to support high levelsof ILP, i.e., the ability to issue over eight useful operations per

cycle

* to support “scalar computations’ as well as numeric computations, i.e., an emphasis on
architectural featuresthat help reduce the critical path through computations that have a
high frequency of conditional branches and pointer-based memory accesses,

* to retain hardware smplicity and short cycle times even at high levels of ILP, which
trandates into a bias away from schemes that need hardware to make complex decisions
at run-time;

11

« gpecificaly, to provide architectural features that eiminate the need for (dynamic)
multiple instruction issue and out-of-order execution;

* to provide the program (compiler) more control over capabilities that are typically
microarchitectura (i.e., controlled by the hardware) by raising them to the architectural
leve;

« to focus on containing the increase in code size due to the presence of no-ops within
VLIW ingtructions and as aresult of the tendency of ILP compilersto replicate code.

Table 1.1. Play Doh features and the dynamic capabilities they are intended to replace.

PlayDoh Feature Dynamic Capability Replaced

MultiOp instructions Multiple instruction issue/
dynamic parallel dependence analysis

Static resource allocation / Dynamic parallel resource allocation
explicit specification of resource allocation

Static scheduling Out-of -order execution

Static register renaming / rotating registers | Dynamic register renaming

Static branch prediction Dynamic branch prediction
Predicated execution

Prepare-to-branch instruction Branch target buffer
Speculative code motion / Speculative execution

speculative opcodes/ exception tags
Predicated execution

Static disambiguation / static scheduling Out-of-order memory referencing

Statistical disambiguation / data speculation

Intherest of this article, we review those key features of PlayDoh that advance the goals
articulated above. PlayDoh is best viewed as a coherent collection of features for achieving
high levels of ILP with reduced hardware complexity. It is not intended to represent our
concept of the right second-generation VLIW architecture. PlayDoh's features are ones that

12

we believe are valuable and that we think ought to be incorporated into the second
generation of VLIW products. Still, many of them have not been thoroughly evaluated as
yet and, asis always the case in research, we recognize that in the case of certain features,
we might just turn out to be wrong!

PlayDoh's features are intended to offer a viable approach to achieving high levels of ILP
for second-generation while minimizing the amount of dynamic analysis, alocation and
out-of-order execution. The correspondence of PlayDoh's architectural features to the
dynamic microarhitectural capabilitiesin a superscalar, out-of-order processor is presented
in Table 1.1. Some of PlayDoh's features also have benefits that go beyond the
replacement of the dynamic capabilities of superscalar processors. Many of these benefits
could be availed of, fully or partialy, by an in-order superscalar processor were it to extend
its architecture to include PlayDoh's features.

Therest of thisarticle is devoted to a detailed discussion of these features. Section 2 treats
the two defining aspects of a VLIW processor: its MultiOp instruction format and its non-
unit assumed latencies. Section 3 presents the important aspects of PlayDoh's architectural
support for predicated execution and their diverse uses and benefits. Section 4 discusses
those features that support the software pipelining (specificaly, the modulo scheduling) of
innermost loops. Section 5 presents the unusual features of PlayDoh's branch architecture.
Section 6 discusses the architectural support needed to enable control speculation, i.e., the
compile-time motion of code above conditional branches, in order to make run-time
speculative execution superfluous. Section 7 treats data speculation, which is the compile-
time movement of aload above a store, upon which it could be dependent, when it is
known that, in fact, the two operations are rarely to the same memory location. Section 8
discusses those features that assist a static scheduler in coping with the non-deterministic
latencies of loads in the presence of a cache, and which give the compiler some degree of
control over the staging of data through the cache hierarchy.

2 Uniquely VLIW features

PlayDoh supports VLIW style parallelism by exposing architecturaly visible paralelism to
the compiler in two basic forms. PlayDoh issues multiple independent operations within a
single VLIW instruction and PlayDoh allows non-unit assumed latencies. Since PlayDoh
paralelismis architecturally exposed, the compiler needs an accurate semantic model of the
processor to generate correct code. The semantic model must define alowed sets of
independent operations which may be s multaneously issued within asingle instruction and

13

must also describe the latencies of operations which, if violated, produce incorrect code.
Definitions for the execution behavior of VLIW instructions with non-unit assumed
|atencies are described in more detail below.

2.1 Multiple Operation Instruction |Issue

VLIW processors exploit wide issue paraldism in a style very smilar to horizonta
microprogramming. PlayDoh exposes the parallel issue of multiple operations to compilers
in a form caled MultiOp. Multiple operations can be collected into a single MultiOp
instruction when a compiler can show that no data dependence or resource usage conflict
has been violated. All operations within a single MultiOp instruction can be executed
simultaneoudly without checking for dependence or resource violations. MultiOp can
provide four major benefits:

* it can simplify the alignment of operations from the instruction cache into the instruction
buffer;

* it can smplify the distribution of operations from the instruction buffer to function
units,

it can smplify or eiminate the checking for dependences among simultaneous or
overlapped operations;;

e it can smplify or even eiminate the run-time alocation of resources among
simultaneous or overlapped operations.

2.1.1 Instruction alignment and dispersal

Consider Figure 2.1. which illustrates a MultiOp instruction pipeline. An instruction cache
supplies MultiOp instructions to be fetched, decoded, and executed. After fetch, a MultiOp
instruction must be held in the MultiOp instruction buffer for decode and execution.
Instructions are usualy right justified within the instruction buffer in order to smplify the
subsequent process of transmitting operations to function units. With a conventional
superscalar processor, instruction aignment is not guaranteed within the cache and
instructions must be aligned prior to storage in the instruction buffer. In the ssimplest VLIW
processors, instruction alignment is guaranteed within a cache which is exactly one VLIW
instruction wide. In this case transmission to the instruction buffer is done without any
shifting as the instruction emerges from the cache.

14

Instruction
Cache

Instruction Alignment

¥

MultiOp

. Instruction

/ Operatlon Dlspersal Buffer
I | | | | M | | B | Operation
‘ L ‘ ‘ Decoders
I F M | B | Execution
Pipelines

Figure 2.1. MultiOp Instruction Pipeline

The process of moving operations from their location in the instruction buffer to the
location where operation decode and execute occurs is caled "operation dispersal”. In a
fully general superscalar architecture which allows operations to lie in arbitrary positions
within each instruction, operation dispersal can be very complex and requires expensive
multiplexing. In the smplest VLIW processors, operations can flow straight through from
the instruction buffer to execution units where final decode occurs. Due to the positional
encoding used in such VLIW processors, MultiOp ingtruction decode can also easily
tolerate operations that occupy different numbers of bits in the MultiOp instruction while
requiring no alignment or shifting of operations. A one to one correspondence is
established between each operation's position across the width of the instruction buffer and
the functional unit where final decode and execute occurs.

As issue width is scaled up for paralel execution, instruction dispersal can become very
complex. A superscalar processor typicaly executes a sequence of operations with no
constraints on order. When heterogeneous function units are provided which are capable of
executing only a subset of al operations, pre-decode and shifting is required to disperse
operations to capable functiona units. The cost of this shifting in terms of hardware
complexity and time can be substantial. Even when all operations are of fixed width, a path
may be required from multiple positions within the MultiOp instruction to each of the
heterogeneous function units.

15

When the width of operations vary, dispersal is even more difficult. An operation to be
issued must be identified by its origin in the instruction buffer. The operation is issued by
routing it, from its origin, through a shifter to an appropriate function unit for further
decode and execution. A variety of shift amounts are needed to tolerate an operation's
origin after previoudly issuing a sequence of operations of varying width. The number of
operation origins for each function unit is strongly influenced by the variety of allowed
operation widths for preceding operations. This can lead to an explosive growth in number
of shift paths and dispersal hardware complexity.

As a side benefit, the use of positional encoding in MultiOp instructions alows distinct
operations to use the same opcode (bit encoding) if they are not in the same position within
the MultiOp instruction. The superscalar model cannot exploit positional encoding because
each operation can follow any previous operation eliminating positional significance.

2.1.2 Dependence semantics

Superscalar processors typically allow independent operations to be executed in an arbitrary
order. Dependence checking is used to prevent the overlapped issue of dependent
operations. The input to a dependence checker consists of issue requests from a set of
unissued candidate operations. Dependence checking takes into account both source and
destination operand references for all candidate operations as well as any constraints
imposed by operations which are ill executing. The dependence checker identifies
independent operations which can issue within the current cycle. Operations are issued and
the state of the dependence checker is updated to correctly reflect constraints imposed by
unfinished operations in the next cycle. A new set of candidates for operation issue are
identified and the process repeats.

Dependence checking hardware can require complex circuitry which is difficult to pipeline.
Dependence checking is particularly complex in implementations which issue many
operations requiring the analysis of a large number of operand references on every cycle.
Further, for processors with substantial issue width and latency, the enforcement of
constraints imposed by alarge number of unfinished operations is quite complex. MultiOp
instruction issue uses compile time checking of dependences to eiminae hardware
dependence checks. The burden of dependence checking is shifted to the compiler and
complex circuitry can be eliminated.

16

2.1.3 Problems with the MultiOp format

MultiOp format advantages are accompanied by a key disadvantage. The MultiOp encoding
requires noops in the object program. When, for example, only floating point operations
are issued on the simple VLIW processor in Figure 2.1, noops are issued on the integer,
memory, and branch units. These noops waste space within the instruction cache and main
memory. VLIW processors have been engineered to provide a compromise between the
complex circuitry of full superscalar dispersal and the wasted space needed for the noops
required by simple MultiOp. Both the Multiflow [14] and the Cydrome [53, 6] processors
provided MultiOp ingtruction formats which more efficiently encode noops while
preserving many of the benefits of MultiOp hardware simplicity.

Simple VLIW processors, directly expose their issue width and latencies to a compiler.
While this can smplify the processor hardware, it also complicates the architectural
specifications as seen by compilers. The parald architecture is exposed to the compiler
using a processor mode which provides an abstract description of the processor. With
concurrent issue, the architecture must specify the result of simultaneous actions such as
simultaneous writes to the same register. The architecture may specify that simultaneous
writesare:

* illega (will abort the program),
» undefined (not guaranteeing any result), or

* legal (writes can be prioritized, guaranteeing a unique result).

The parallelism exposed by MultiOp instruction issue can alow programsto exploit explicit
paralelism. The explicit use of pardlelism can be illustrated using an exchange copy
consisting of two operations r1=r2 and r2=rl scheduled within the same MultiOp
instruction. Using parallel semantics, asingle MultiOp instruction can readily exchange two
values using these two operations. The two operations must execute in parale and cannot
execute sequentially because each operation is anti-dependent on the other. This exchange
would require at least three operations and at least three registers on any processor with a
purely sequential execution model.

In many cases, compatibility across a family of processors must be supported by
architectures which expose issue width and function unit latencies. Compatibility requires
that each implementation run programs compiled for al family members. High performance
requires that distinct codes are compiled for distinct processor implementations. The best

17

performance is achieved when code is optimized and scheduled for an implementation
using a processor model which describes key implementation parameters such as the
number of function units and their latencies. Each implementation must support foreign
codes generated using processor models distinct from the native highest performance
processor model.

2.1.4 Compatibility with respect to the number of functional units

MultiOp processors of varying width can provide compatibility across a family of
implementations. In one scheme, anarrow processor interprets a MultiOp instruction for a
wider processor semi-sequentialy from left to right, issuing a portion of the MultiOp
instruction each cycle. However, semi-sequential interpretation does not always produce
correct results. Exchange copy provides an example where concurrent operations are
mutualy anti-dependent (each has an anti-dependence to the other). Non-concurrent
execution of the exchange copy violates anti-dependence and produces incorrect results.

Semi-sequential execution correctly simulates simultaneous execution if results are buffered
until dl operations in the same instruction have sampled their inputs. However, the
additiona buffering and multiplexing within processor data paths can be costly in cycle
time or latency. MultiOp architectures may exclude bi-directional dependences in order to
smplify compatibility. The compiler ensures that alowed dependences (e.g. anti-
dependences) within a MultiOp instruction are from left to right. MultiOp instructions can
now beinterpreted in parallel, but they can aso be readily interpreted semi-sequentially or
sequentially from left to right without required buffering.

2.2 Non-unit assumed latencies

VLIW processors expose architecturally visible latencies via execution semantics that we
cdl non-unit assumed latencies (NUAL). In this section, we define NUAL and
discuss the advantages and disadvantages of NUAL over the more common sequentia
execution model. Techniques for handling exceptions, supporting non-deterministic
variationsin latency and compatibility across families of machines are aso discussed in the
context of NUAL.

18

2.2.1 NUAL semantics

Explicit parallelism in both the MultiOp and NUAL forms are expressed in terms of virtua
schedule time. The virtua schedule time defines operation timing assumptions which the
compiler can use to generate correct code. Virtua schedule time assumes that one MultiOp
instruction issues every virtual cycle. On VLIW processors, most virtual cycles complete in
asinglereal time cycle. Virtuad schedule time is not, however, identica to actua schedule
time. Unusual events such as I/O interrupts, page faults, and cache faults may cause
discrepancies between virtua and actual time. These events are not precisely determined a
the time the compiler schedules the code and thus force a departure from the compiled
virtual schedule.

RISC and superscalar processors usually provide a sequential program interface which
does not expose visible latency. In the program's virtual schedule time, measured in units
of instructions, the assumed latency of every operation (or, in this case, instruction) is one.
This permits each instruction to use the result of a previous instruction as one of its input
operands. If, in reality, the previous operation has a latency greater than one, and is directly
followed by a dependent operation, the processor must ensure that the correct value is,
nevertheless, carried from the first operation to the second operation. Register interlocks,
can resolve any apparent latency violation by stalling the execution of dependent operations
[33]. Such execution semantics are referred to as unit assumed latencies (UAL).

VLIW processors expose architecturally visible latencies via execution semantics that we
call non-unit assumed latencies (NUAL). With, NUAL visible latencies are no longer
congtrained to be one. NUAL alows the dependence checking responsibility to be
eliminated from hardware and instead performed by a compiler which ensures that assumed
latencies are satisfied. As we will discuss later, multiple definitions for NUAL semantics
differ in the strictness with which the assumed latencies are enforced.

v2=opl(vl) lat=3 1
latency ’r pL(vl)

s v5=op3(v4) lat=1 2 .
for opl MultiOp
v6=0p4(v5) 3 Instruction
b Sequence
v3=0p2(v2) 4

Figure 2.2. Virtual schedule

19

Consider the schedule for a MultiOp instruction sequence shown in Figure 2.2. In this
example, operation op2 depends on the result of operation opl and must be issued within
an instruction which issues after the expiration of the opl latency. The opl latency starts
with the issue of opl and expires three cycles later. If this latency is not honored, then
NUAL semantics specify that the value of v2 which isinput to op2 is not the one computed
by opl but, rather, the previous value of v2.

We cdl the strictest form of a NUAL operation an "equals" (EQ) operation. The EQ
operation samples input operands and stores result operands at precise virtua schedule
times. For example, an EQ operation can be defined to sample input operands precisely a
issue time and deliver results precisely at latency. The EQ mode can also support input
operand sampling at times later than issue, as well as differing latencies for each input and
output operand. This might occur in a multiply-add operation of the form (a*b)+c which
completes the product of a and b before sampling ¢ and performing a fina sum. An EQ
operation offers the highest degree of determinacy to the compiler and provides the greatest
opportunity for the compiler to exploit NUAL.

NUAL can enhance the efficiency of register use and the efficiency of the program schedule
by more precisely specifying the duration of valuesin registers. The example of Figure 2.2
isused to demonstrate the use of EQ operation semantics to reduce register requirements.
Assume that operands v1...v6 name virtud registers which must be bound to physica
registers for execution. Consider v2 and v5 which carry values from opl to op2 and op3 to
op4 respectively. If opl were unit latency, the operand lifetime carried by v5 would overlap
the operand lifetime carried by v2. A common physical register could not be used a to
carry both values. If opl has EQ semantics with latency 3, opl will not deliver its result
until the end of its latency period. This guarantees that op4 reads v5 prior to opl writing
v2. The v2 and v5 lifetimes do not conflict and can be alocated to a common physical
register.

NUAL offersa key hardware advantages in reducing requirements for dependence check,
but, this feature is not without cost. If programs never branched, then compiler generated
static schedules and the actual execution history might precisely match. However, branches
can disrupt static schedules by creating dynamic program behavior. The compiler must
ensure that dependences are satisfied on al control flow paths leading to each operation.
Consider an operation inside a basic block a a merge point in the program's control flow
graph. The operation may be dependent upon operations within multiple preceding basic
blocks. If preceding blocks are already scheduled, the static scheduler must accommodate

20

al dependences to the operation within the current block. After cdculating the earliest
schedule time for each dependence, the scheduler maximizes the value over al dependences
to find the earliest schedule time for the operation. As a result, this might be a sub-optimal
schedule for al but one path through the current block.

This problem is especially difficult at program locations where the static scheduler has little
knowledge of the program history. Consider, for example, an externa procedure compiled
without inter-procedural information. The basic block reached upon entry to the procedure
may make conservative assumptions regarding operand dependences originating within the
calling program without seeing the calling program schedule.

2.2.2 Handling exceptions with NUAL

A NUAL processor must support dynamic adjustments to the schedule as required by
unexpected events. Page faults, cache faults, clock interrupts and other events require that a
processor deviate from its virtual schedule time. The implementation must preserve the
sedlected MultiOp NUAL semantic model in the face of any asynchronous events.
Compatibility across afamily of processors represents another factor in causing processors
to deviate from the virtual schedule. In particular, to achieve higher performance, computer
designers may wish to adjust not only to the clock cycle time but also to the issue width and
operation latencies. These changes may disrupt the precise correspondence with the virtual
schedul e used when the code was previously compiled.

Consider a MultiOp NUAL processor which handles interrupts. Assume that when an
interrupt is processed the virtual schedule is cut so that when the interrupt handler is
entered, the nth instruction in the schedule has completed while the (n+1)th instruction has
not yet begun. We call this process " cutting the schedule” which separates a top portion of
the schedule from a bottom portion by inserting a large time delay a the cut. When an EQ
operation spans the cut, NUAL semantics may be violated if that operation is alowed to go
to completion and write its result into the destination register. From the viewpoint of other
operations below the cut, this operation finishes early, at avirtual time corresponding to the
cut, and EQ semantics are violated.

In Figure 2.2, assume that virtual registers vr2 and vr5 are both bound to the same physical
register taking advantage of opl's EQ semantics. If an interrupt occurs between MultiOp
instructions 1 and 2, it may force opl to early completion. If opl goes to completion early,
op2 does not execute with correct virtual operand v2. Instead, op3 overwrites v5 (which is
bound to the same register as v2) before v2 is used. The problem is solved by draining the

21

state of the opl functiona unit pipeline into a buffer which we cal the "snapshot buffer”.
The snapshot buffer holds the exact status of the function unit pipeline a the moment the
interrupt occurred. This prevents operands from exiting the function unit pipeline and
destroying operands within registers. If the state of the function unit pipeline is precisaly
restored after interrupts, then execution can resume without violating EQ semantics.

An ILP compiler must accurately model timing constraints which ensure that operations are
correctly executed. For example, we might wish to describing the timing constraints
between operations opl and op2 after register alocation to support any required re-
scheduling after alocation. Since virtual registers v2 and v5 are bound to a common
physical register, we have an output dependence from the first operation which writes this
register to the second operation which writes the same register. Operation op3 (with latency
one) writes virtua register v5 at the end of cycle two. Operation opl (with latency 3) writes
to virtual register v2 at the end of cycle three. Here, we have an output dependence from
op3 to opl.

Constraints on instruction issue are due to dependences caused by either the sampling or
write back of operands (e.g. output dependences are due to operand write back from two
operations). In the example above, we can say that opl must write its result at least one
cycle after op3. However, to provide auniform view of scheduling constraints, we always
describe execution congtraints between two operations from their issue cycles. When the
write back constraint istranslated to an issue constraint, we say that a delay of -1 cycleis
allowed from the issue time of op3 to the issue time of opl. That is, as long as opl is
issued one cycle before op3 or later, the writes to the shared register occur in an order
consistent with the existing schedule. This illustrates that NUAL with EQ semantics can
allow negative delays between the issue times of an operation and its dependent operations.

NUAL operations with EQ semantics are more difficult to support when the schedule is cut
by an interrupt. This problem is addressed using "less than or equals’ (LEQ) operation
semantics. A NUAL operation with LEQ semantics is an operation whose latency is
constrained to be between one and its assumed latency. Codes scheduled using LEQ
operations can be readily cut without a snapshot buffer because schedule cutting yields
effective latencies which lie within LEQ schedule constraints. However, from a compiler
viewpoint, EQ operation semantics a a given latency is architecturally superior because it
provides superior code from the standpoints of optimization, scheduling, and register
allocation than LEQ semantics at the same latency. Thisis true because, EQ semantics falls
within the constraints of a LEQ processor, and provides more determinism to the compiler.

22

However, the benefits of EQ semantics may not justify snapshot buffer hardware
complexity.

Note that negative delays between the issue times of dependent operations cannot be
supported with LEQ scheduling constraints. When a negative delay separates the issue of
two operations, it asserts that the dependent operation may actualy issue before the
operation upon which it depends. However, LEQ semantics allows the first operation to
complete before the second. Thus a dependent operation completes prior to the issue of an
operation upon which it depends. From this contradiction, we can see that LEQ semantics
will never result in negative delay constraints separating operation issue.

LEQ operation semantics eliminates the need for a function unit snapshot. However, the
resulting loss in schedule determinism often unnecessarily penaizes architected
performance. Consider the example of two identica operations opl and op2 executing in
sequence on a common function unit both targeting register r1. For example, we may wish
to write and then conditionally overwrite rl before a subsequent use of rl. If op2 issues
within the latency period of opl but after opl, then LEQ semantics requires an undefined
result. LEQ semantics would alow opl to take its full latency while op2 may execute
within only asingle cycle causing a possible fina value of the result to be opl. However,
this occurs only when operations were inserted into the function unit in issue order and
they emerged from the pipelinein reversed order. If the unit is FIFO, this cannot occur and
the final value of rl is unambiguously defined as the result of op2.

This gives rise the definition of the "order preserving” relation which is defined over
operations with LEQ NUAL semantics. Order preserving operations alow overlapped
writes to a common register to produce clearly defined results. Operation A is order
preserving with operation B if it can be guaranteed that when A is issued before B, then A
completes before B. Typicaly, not al operations are order preserving. For example,
consider the case where operation A has long latency and issues on function unit one while
operation B has short latency and issues on function unit two; A is not order preserving
with B unless complex hardware enforces order.

2.2.3 Compatibility with respect to latency

The smplest NUAL processors do not need hardware interlocks to ensure that
dependences satisfy latencies. When assumed latencies and actud hardware latencies
match, no interlocks are necessary. When hardware latencies exceed assumed latencies,
interlocks can, be incorporated into NUAL processors to support compatibility. Each

23

operation has an assumed latency during which dependence checking is unnecessary. After
the assumed latency expires, the processor can use dependence checking to continue
issuing independent operations while stalling any dependent operation in a superscalar like
manner.

Latency stalling is a technique which can be used by NUAL architectures with LEQ
operations semantics to provide compatibility across implementations of differing latency
without using register interlocks. With latency stalling, if an operation is scheduled with
virtua latency vl, and executed on afunction unit with physical latency pl, then MAX(0,pl-
vl) stall cycles are inserted during the latency period for the operation. This ensures that the
result operand for the operation exits the function unit pipeline prior to any use of the result
after the virtua latency period. The key advantage of latency stdling is that it provides
compatibility using simplified hardware which does not examine al source and target
operands over awide collection of operations.

Latency stalling implementations need to guarantee correctness but should insert the fewest
number of stalls. In particular, when adtal is required on behaf on multiple concurrent
operations, stalls can often be shared. That is, a single stall cycle can guarantee the
correctness of more than one operation. This is accomplished by delaying the insertion of
stall cycles needed for each operation until the last possible moment. Other operations may
cause intervening stalls which eliminate or partialy eiminate the stall requirement for the
given operation.

vlat=1 vlat=2 vlat=3

Function unit pipeline stall J_ _L
(4 stage) shifter

Stall

Next

Cycle

Figure 2.3. Latency stalling circuit

vvy

The latency stalling circuit for a four deep function unit pipeline shown in Figure 2.3
illustrates the hardware smplicity of implementing latency stalling. The circuit maintains
proper state so as to stall as late as possible and only when necessary to guarantee
correctness. Each square represents a 1-bit register with arrows describing shift paths
among registers. Each cycle is either a normal cycle which issues a new instruction and

24

advances both the virtual schedule time aswell as physical time, or astall cycle which does
not issue a new instruction and advances only physical time. On a normal cycle, shifting is
to theleft if possible or down. On astall cycle, shifting is to the right if possible or down.
When a1 enters the stall shifter, one or more stall cycles are required as determined by the
result of the OR gate. If, for example, the stall shifter is entered at the top, three stall cycles
ensue.

Stalls are forced when a 1-bit is shifted into the appropriate input and reaches the sl
shifter. On each stal cycle or when no operation is scheduled on the unit, Os are injected
into al inputs. When an operation is scheduled, a 1 may be injected into the appropriate
input while Os are injected into al other inputs. The selected input depends on the
operation's virtual latency. If an operation is scheduled with virtual latency four or larger,
Os are placed on al inputs. Here, the physical pipeline length isless than the virtual pipeline
length and stalling can never be necessary.

Aninput is provided for each virtual latency (1,2, and 3) corresponding to (vlat=1, vlat=2,
and vlat=3). Operations scheduled at each of these latencies may cause a stall. However,
each stall cycle can alleviate pending stall cycles for other operations. Consider an operation
which is scheduled at latency three with no intervening stalls, a 1 shifts to the bottom of the
vlat=3 column and into the stall shifter a the bottom causing one stall cycle after three
cycles . However, if an intervening stall occurs from another operation, then a right shift
eliminates the pending stall.

2.2.4 Specification of the assumed latency

NUAL processors require some way to specify the assumed latencies. The smplest
specification, used historically for VLIW processors, defines a unique static latency for
each operation code. This approach works when there is no need to change assumed
latencies. However, for architectures which provide compatibility across implementations
with differing latency, the scheme must be enhanced to allow varying latency specifications
on a per program basis. A simple enhancement defines fixed latencies for each
implementation. Each object program identifies the implementation that it was compiled for
and atable of latencies corresponding to each implementation is consulted to determine the
actua latency for each operation.

It is sometimes useful to allow varying the assumed latencies within a single program for a
single implementation. This is especialy useful when the function unit pipeline has non-
deterministic latency. For example, load operations on the critical path may use a short load

25

latency to expedite the critica path while, loads which are off the critica path may use
longer latencies to better overlap cache misses with further processing. A fully flexible
scheme provides a field to independently specify the latency of each operation. However,
latency fields contribute to increased code size. Another approach defines a latency register
for each operation type. Latency registers are initiadlized prior to running a program and
used by the hardware (e.g. latency stalling circuitry) to enforce assumed latencies. The
contents within latency registers can be changed while the program is running, but the
change affects al operations of the same type. The Cydra 5 used this mechanism to allow
the assumed latency of load operations to be changed under program control [6].

3 Predicated Execution

3.1 Introduction

Predicated execution (also known as guarded execution) refers to the conditiona
execution of operations based on a boolean-valued source operand, called a predicate. If the
predicate input is 1, the predicated operation is executed normally, just like an unpredicated
operation. If the predicate input is O, the predicated operation is squashed; i.e., it does not
affect the architectural state in any way. In particular, the squashed operation does not
modify any destination register or memory location, it does not signal any exceptions and,
if it is a branch operation, it does not branch. Predicated execution is a method for
enforcing the requirements of program control-flow, in a different way than that provided
by branch operations. Predicated execution is often a more efficient method for controlling
execution than branching, and it also provides much more freedom in code motion than
would exist otherwise.

A primary use of predicated execution is to eiminate many of the conditional branches
present in aprogram, using a technique commonly referred to as if-conver sion. During
if-conversion, each operation within aregion of interest is guarded by a predicate computed
so asto betrueif and only if flow of control would have reached that operation [4, 47, 40,
18]. Oncethis is done, the branch operations in that region become redundant and can be
removed without atering the behavior of the program. The predicate used to guard
operations in a basic block is computed by generating code which evaluates a boolean
expression equivaent to the branch conditions within the region that originaly determine
execution of that block. If-conversion not only reduces the impact of branch latencies, it
has the benefit that guarded operations can be moved freely across branch boundaries. If-
conversion is used in software-pipelining of loops with conditionas [49, 51] and in

26

hyperblock scheduling [44]. Predicates may also be used to fill branch delay slots more
effectively than would be possible otherwise.

C™MP

-

Branch \/\

(@) (b)

Figure 3.1. Code motion enabled by using predicated execution.
(&) Motion above branch. (b) Motion below merge.

In general, predicated execution provides a non-speculative approach to exploiting
instruction-level parallelisn. Figure 3.1 illustrates two common uses of predicated
execution to alow greater code motion flexibility. Without predication, these motions are
unsafe and require specia treatment. More specifically, for an unpredicated operation to
move above a branch, the operation must execute speculatively. Speculation may require
theinsertion of sentinel operations in the home block to detect exceptions when execution
takesthat path. (See Section 6.) If the speculated operation writes to a register that is live
on the other path, the destination variable and subsequent uses must be renamed. Since
stores and |oads that are "maybe dependent” upon earlier stores cannot be speculated, their
motion is normally restricted. Furthermore, unpredicated operations cannot be moved
below a merge point. On the other hand, properly predicated operations can move freely
across block boundaries without the need to speculate, rename, or insert compensation
blocks.

27

?

PTB PTB

COMPARE . COMPARE
Speculative
BRANCH BRANCH

—

~~

ol

N Predicated

I

J
N

\\

LY

} + \ ~

Figure 3.2. Relationship between speculation and predication.

Figure 3.2 illustrates the ranges of motion provided by speculation and predication. For
upward motion across a branch, both speculative and predicated operations are free to
move. However, predication can be used even in cases where speculation is not possible,
such as when moving stores above a branch. On the other hand, predicated operations
remain trapped below the compare operation that sets the guarding predicate, whereas
Specul ative operations may move freely above both the branch and the compare operation.
Motion below amerge point is normally unsafe, and specul ative execution does not address
thisissue. Predicated operations may move freely below the merge, although the lifetime of
the guarding predicate is lengthened.

3.2 Architectural Support for Predicated Execution in PlayDoh

Support for predicated execution provided in PlayDoh is an enhanced version of the
predication provided by the Cydra 5 processor [17, 53, 6]. Predication alows the use of a
boolean data operand to guard an operation. For example, the generic operation "rl =
op(r2,r3) if p1" executes of plis true and is nullified if pl is false. Omitting the predicate

28

specifier for an operation is equivalent to executing the operation using the constant
predicate true.

3.2.1 PlayDoh predicate setting opcode repertoire

PlayDoh introduces a family of compare-to-predicatel operations, which are used to

compute guarding predicates for operations. A compare operation has the following format:
pl,p2 = CMPP.<cond>.<D1-action>.<D2-action>(r1,r2) if p3

The compare is interpreted from left to right as: "pl" - first destination predicate; "p2" -
second destination predicate; "CMPP' - compare op-code; <cond> - the compare condition
which is to be evaluated; <D1-action> - first destination action; <D2-action> - second
destination action; "(rl,r2)" - data inputs to be tested; and "p3" - predicate input. A data
input can be either aregister or aliteral. A single-target compare is specified by omitting the
second destination predicate operand and the second destination action specifier.

The dlowed compare conditions are the same as those provided by the HP PA-RISC
architecture. These include "=", "<", "<=", and other tests on data which yidd a
conventional boolean result. The boolean result of a comparison is cdled its compare
result. The compare result is used in combination with the predicate input and destination
action to determine the destination predicate value.

Table 3.1. Behavior of compare-to-predicate operations.

Predicate | Compare On result On complement of result
input result UN| CN | ON | AN [UC | CC | OC [AC

0 0 0 - | - | - 0 I R

0 1 0 - - - 0 - - -

1 0 0 0 -- 0 1 1 1 --

1 1 1 1 1 -- 0 0 -- 0

1 The suffix "to-predicate” is intended to indicate that the destination of the compare operation is a 1-bit predicate
register and not a 32-bit or 64-hit general-purpose register.

29

The possible actions on each destination predicate are denoted as follows: unconditionally
set (UN or UC), conditionally set (CN or CC), wired-or (ON or OC), or wired-and (AN or
AC). The first character (U, C, O or A) determines the action performed on the
corresponding destination predicate; the second character (N or C) indicates whether the
compare condition is used in "norma mode" (N), or "complemented mode" (C). When an
action executes in complemented mode, the compare result value is complemented before
performing the action on the destination predicate.

Table 3.1 defines the action performed under each of the allowed destination action
specifiers. The result of an action is specified for al four combinations of predicate input
and compare result. Each cell describes the result corresponding to the input combination
indicated by the row, and action indicated by the column. The cdll specifies one of three
actions on the destination predicate register: set to zero ("0"), set to one ("1"), or
unmodified ("-").

The names of destination action specifiersreflect their behavior. In Table 3.1, we see that
with the unconditional actions (UN or UC), a compare-to-predicate operation always
writes avalue to its destination predicate. In this case, the predicate input acts as an input
operand rather than as a guarding predicate, and the compare-to-predicate operation is never
squashed. The value written to the destination predicate register is smply the conjunction
of the predicate input and the compare result (or its complement, if the action is UC). On
the other hand, cmpp operations using the conditional actions (CN or CC) behave truly
in a predicated manner. In this case, a cmpp operation writesto its destination register only
if the predicate input is 1, and leaves the destination register unchanged if the predicate
input is 0. The value written is the compare result (if CN is specified) or its complement (if
CC is specified).

Thewired-or action is named for the familiar circuit technique of computing a high fan-in
OR by directly connecting the outputs of (suitably modified) devices, instead of computing
the OR of those outputs using an OR gate. In the compare-to-predicate operation, the
wired-or action specifiesthat the operation write a 1 to its destination predicate only if the
predicate input is 1 (i.e. the operation is not squashed) and the compare result is asserted (1
if ON, ése 0 for OC). Since a wired-or cmpp operation either leaves its destination
predicate unchanged or writes only the value 1, multiple wired-or cmpp operations that
target the same destination predicate can execute in paralel. That is, the parald write
semantics are well-defined since the multiple values being written are guaranteed to be the
same (namely 1). By initidizing a predicate register p to O, the digunction of any number

30

of compare conditions can be computed in paralel using wired-or cmpp operations al
writing to p. The value of p will be 1 if and only if one or more of the compare operations
executes with its compare result asserted. Thewired-and action is similar, but is used to
compute the conjunction of any number of compare conditions. The motivation and uses
for each kind of compare-to-predicate action will be described next.

3.2.2 Usage of compare-to-predicate operations

Compare-to-predicate operations were designed primarily to address the compiler
requirements in three important areas, all of which are related to the broad issue of how to
efficiently model the control-flow of a program.

1.

Predicated execution: In this area, there are two techniques of interest: if-
conversion [4, 17, 47, 44] and predicated code motion. If-conversion uses
compare operations in the U, C, and O classes. Operations in the U class are
suitable only for the if-conversion of "structured" code, i.e., if-then-else control
structures which are either concatenated or nested within one another. They are
actudly the best choice in that case, since they don't require extra operations to
initialize predicates. The O and C classes are used to handle "unstructured” code.
Choosing between O and C class operations for if-conversion involves making a
trade-off between the number of operations required and scheduling freedom. The
C class cmpp operations do not require predicates to be initidized to 0, however
there can be output dependences between C style cmpp operations targeting a
common predicate destination. The use of O class operations gives much more
freedom in scheduling; there are no output dependences to honor even though
multiple operations target the same register. Table 3.2 summarizes these trade-offs.
The compiler requirements for predicated code motion are similar to those for if-
conversion.

Table 3.2. Pros and cons of using UN, CN and ON classes in if-conversion.

Operation Handles Initialization of | False output
class " Unstructured" code the predicate | dependences
UN No No No
CN Yes No Yes
ON Yes Yes No

31

2. Height reduction of control-dependences. Techniques in this area typicaly
require the efficient computation of boolean conjunction or digunction of multiple
branch conditionsin as parallel afashion as possible; the O and A classes provide
the needed functionality.

3. Efficient computation of complex branch conditions: Many cases of
complex branch conditions can be computed efficiently by reducing them to a
combination of boolean reductions. Again, the O and A classes of operations
provide a means for fast evaluation of these reductions.

3.3 Unconditional Compare-to-Predicate Operations

The UN and UC compare-to-predicate operations can be used to permit more genera code
motion, but their main use is in if-conversion. If-conversion is a technique for replacing
branching control flow with predicated execution, so that an acyclic control flow region is
converted into a straight-line sequence of predicated operations. This process eiminates
hard-to-predict branches, thereby reducing branch mispredict and latency costs [43].
Moreover, the if-converted code provides a larger block of code to the scheduler. In this
section, we describe if-conversion of structured control flow regions, which requires only
unconditional compare-to-predicate operations.

3.3.1 If-conversion of structured code

Figure 3.3(a) shows an example control flow graph in which predicated execution can be
used to exploit greater amounts of ILP. In this example, we have two min functions which
are independent and therefore could be executed in parallel. Such a sequence is common --
it results from unrolling a loop and renaming variables. To exploit ILP in this code, we
must either have support for multiple independent processes (multithreading), apply code
replication techniques, or use predicated execution. Code replication quickly becomes
problematic, because the code size in this example grows exponentialy with the number of
min functions being executed in parallel. Moreover, some method is needed to quickly
branch to the correct code block; predicated execution avoids both of these problems.

If-converted code for this example is shown in Figure 3.3(b). In the resulting predicated
code, branches have been diminated and independent operations can execute in parald.
For such structured regions, if-conversion requires only the unconditiona class of
compare-to-predicate operations. Note that the compare operations can execute in paralld,

32

and then al four predicated assignments can execute in paralel, since only one from each
min function will write its value, while the others will be squashed.

This example aso illustrates a potential liability of predicated execution. Although
predication provides new opportunities for exploiting ILP, it creates new challenges for
compilation: in order to exploit the parallelism exposed by predication, a compiler must be
able to recognize that no dependences exist between the digoint assignments having the
same destination register. These compiler challenges are discussed briefly at the end of this
section.

fa<b pl = cmpp.w.<.UN.UC (a, b)
A p2 = cmpp.w.>=.UN.UC (a, b)
— S gl = cmpp.w.<.UN.UC (a, b)
if d<e g2 = cmpp.w.>=.UN.UC (a, b)
f=d f-e c=a ifpl
ﬁ c=b ifp2
f=d ifqgl
f=ze ifg2
(a) (b)

Figure 3.3. Example of if-convertion of structured control flow graph.
(a) Structured control flow graph. (b) If-converted code.

3.3.2 Two-target compare-to-predicate, normal & complement modes

Compare-to-predicate operations with two destinations provide a means to optimize certain
common uses of these operations. For example, if-conversion of structured code regions
typically associates two predicates with each branch, one for the then-clause and one for the
else-clause. In these cases, the use of dual-destination operations reduces the number of
predicate-setting operations by half. For operations with two destinations, it becomes
important to make complementary actions available in the opcode repertoire (e.g., UN and

33

UC) so that the action on one destination can be controlled by the result of the comparison
and the action on the other by the complement of the result. For example, the UN-UC
combination together with a two-target compare-to-predicate operation is used to halve the
number of comparisons required in the example of Figure 3.3(b).

3.4 Conditional Compare-to-Predicate Operations

Unlike structured if-then-else control flow regions, in which every basic block has
precisely one branch upon which it is control dependent, unstructured control flow regions
are characterized by blocks having multiple control dependence predecessors. When if-
converting such regions, the predicate corresponding to an unstructured merge block will
have multiple compare operations which potentially set its predicate, one per control
dependence predecessor. These compare operations must execute conditionaly (since the
block in question is executed if any one of its control dependence predecessors executes
and setsits predicate), and therefore the unconditional compare operation is not adequate.

For example, consider a block B which follows an unstructured merge of control flow; i.e.
B is control dependent on multiple branch conditions C1, .., Ck. During if-conversion, a
predicate p will be associated with block B, and the proper value for p in order to guard
operations from block B isthe OR of conditions C1, .., Ck. In if-conversion of structured
code, we smply replaced each branch with an unconditional compare-to-predicate
operation. Thisapproach fails for structured code, because multiple cmpp operations will
be inserted, all of which target predicate p. In the resulting code, these unconditional cmpp
operations will appear in some order; the final vaue of p will be determined only by the last
of these cmpp operations, since each one always writes a value. This illustrates the
necessity of conditionally executing compare-to-predicate operations in order to compute
the OR of the multiple conditions C1, .., Ck needed to handle unstructured control flow.

One solution to this problem isto use conditional cmpp operations that write to predicate p
in place of each branch upon which block B is control dependent [22, 47]. In the resulting
predicated code, two conditional compare-to-predicate operations are ordered with respect
to one another if the branch corresponding to one of them was control dependent, directly
or indirectly, upon the branch corresponding to the other. Consequently, the fina value of
p iscorrectly determined: in the origina control flow, the last branch in a chain of control
dependent branches leading to block B would have transferred control to B; in the
predicated code, the corresponding conditional cmpp is the last one that writes to p, and it

isthe value written by that conditional cmpp that determines whether operations guarded by
p execute or are squashed.

3.5 Wired-OR Compare-to-Predicate Operations

In this section, we describe another solution, using wired-OR compare-to-predicate
operations. The advantage of this solution is that the output dependences between the
multiple compare-to-predicate operations, that can exist if conditiona cmpp operations are
used, are eliminated.

3.5.1 If-conversion of unstructured code

Figure 3.4(a) shows a control flow region containing an unstructured merge block (block
D). Operationsin block D execute if either of the predecessor blocks, B or C, executes and
then branches to D. In terms of predicates, operations in blocks A, B, C and D are
predicated upon predicates p, g, r and s, respectively. Predicate s is conceptualy computed

as follows.
s=OR(gqMl(i<m), r*(x>y))

The predicated code is shown in Figure 3.4(b).

A if p

q, r=. if p

s=0 if p

o B if g
s = cmpp.w.<.0C (i,m) ifq

C if r

s = cmpp.w.>.0ON (X,y) if r
D if s

(b)

Figure 3.4. Example of if-convertion of an unstructured control flow graph.
(a) Unstructured control flow graph. (b) If-converted code.

The code works as follows. The predicate register s is initidized to 0. Each compare
operation writesthe value 1 if the (norma or complemented) compare result is true and if

35

its predicate input (q or r, respectively) is true. Otherwise, it leaves the predicate s
unchanged. In other words, if one or both of the wired-or compare-to-predicate operations
is not squashed, and evaluatesto 1, then register sis set to 1; otherwise it retains the initial
value 0. This correctly evaluates the boolean expression. The conditional update of the
destination predicate is essential for correct if-conversion of unstructured code; PlayDoh
also defines simultaneous-write semantics (described next) to support efficient parale
computation of the guarding predicate.

3.5.2 Simultaneous writes to registers

Most architectures don't permit multiple operations to write into a register a the same time;
the result is defined to be indeterminate. PlayDoh permits multiple operations to write into a
register a the same time; the result is well-defined in special cases. The semantics of
simultaneous writes to a register are as follows. When multiple operations write the same
value at the same time, that value is written to the register. However, if multiple operations
write different values at the same time, the result stored in the register isindeterminate.

Because the wired-or compare operations al conditionally write the value 1 and otherwise
do not write avalue, the results are always well-defined. The most important point to note
isthat in this case, there are no output dependences between the compare operations even
though they dl write to the same register. Therefore, the compare operations can be
scheduled in any order, and can even execute concurrently. In Figure 3.4(b), operations
from blocks B and C, including the wired-or compare-to-predicate operations, can execute
inparallé.

3.6 Wired-AND Compare-to-Predicate Operations

The wired-AND action is smilar to the wired-OR action, and it is used to compute
efficiently high fan-in AND operations as follows:

* theresult predicateisinitialized to value 1;

« any number of compare operations execute, each of which usesthe AN or AC action to
conditionally set theresult to O;

« after all compares have executed, the correct conjunction is available as the result.

The wired-AND compares can execute in any order or in paralel since each conditionaly
clears the result if the compare condition is false. When multiple compares execute in the

36

same cycle, the multiported register file insures that whenever more than one wired-AND
compares simultaneoudly clearsthe result, the result isin fact cleared.

3.6.1 Control height reduction

In this section, we illustrate the use of wired-AND compare-to-predicate operations in
reducing the height of a control dependence chain. Figure 3.5(a) shows a typicd stuation
where control height can be reduced. Using branch frequency information, a dominant
execution trace is selected, forming a superblock; the superblock is a single-entry multiple-
exit sequence of basic blocks intended to be scheduled asa single unit [30]. Unfortunately,
instruction-level paralelism is limited in this example, and store operations are trapped
below branches, limiting the scope of code motion. Because branching off-trace is
unlikely, we would like to expedite the fall-through path.

In Figure 3.5(b), we have used boolean AND operations to compute guarding predicates
for operations on the fal-through path. Predicates pl, p2, p3, and p4 fully guard
operations below the corresponding branches; i.e. predicated operations are independent of
all previous branches. There is redundancy in the computation of these predicates due to the
height reduction of the boolean compuration for each predicate. In the resulting code,
predicates are available early through boolean height reduction, stores may move as early as
permitted by data dependences, aiasing memory operations move up with stores, and
operations move up as early as permitted by their data dependences and live-out constraints
at the side-exits. Because operations have greater freedom of motion, resource contention is
smoothed over the entire superblock. Often, the low probability branches can al move off-
trace, once an additional branch on condition ~p4 is introduced to branch out to a
compensation block holding the origina branches.

3.7 Features That are Made Less Exotic

The use of predicated execution reduces the dependence on other architectura and
microarchitectural features for achieving high performance. In particular, the branch
architecture and the dependence on speculative execution are affected.

37

el
Vva= I v2=1d
cmp vl V3f Id
pl=and (~v1)
p2=and (~v1,~v2)
stvl p3=and (~v1,~v2,~v3)
x1=v1l p4=and (~v1,~v2,~v3,~v4)
cmp v2 svl ifpl
+\\ x1=vl if pl
stv2 if p2
st v2 x2=v2 if p2
X2=v?2 stv3 if p3
cmp v3 x3=v3 if p3
+\\ branch ~p4
stv3 +\
x3=v3
cmp v4 \\:
(a) (b)

Figure 3.5. Example of control height reduction using wired-and cmpp operations.
(a) Superblock with on-trace branches. (b) Height-reduced code.

3.7.1 Branch architecture

If-conversion replaces explicit branches in acyclic control flow with predicated execution.
Because branches are eliminated, the branch misprediction rate generally decreases [43].
There are two reasons for this. First, hard-to-predict branches are often the ones diminated
through if-conversion -- highly biased branches need not be if-converted, since trace
selection or superblock formation works well in this case. As branches are eiminated,
dynamic prediction may improve for the remaining branches, since they no longer compete
with the eliminated branches for dynamic prediction resources, such as entriesin the branch
target buffer.

As we have seen, predicated execution allows greater scope for code motion. Predicated
operations can fill branch delay dots more often, thereby reducing branch penalty even for
correctly predicted branches.

38

To reduce the prefetch penalty due to I-cache misses, one can do multipath instruction
prefetch in the absence of predicated execution. This places a heavy demand on the prefetch
unit. For instance, with a sequence of if-then-else clauses, even though flow of control
repeatedly reconverges, the instruction text that is prefetched grows exponentialy with the
number of branches, becauseit is hard to avoid prefetching the same operations when they
are reached via different control flow paths. In predicated code, the branches and merges
are eliminated, and so redundant prefetching is not an issue.

Finally, when exploiting instruction-level paralelism between control-independent code
regions, predication reduces the need for high branch bandwidth, multiple branches per
cycle, prioritized branching, multiway branching, or tree branches that guard intermediate
operations.

3.7.2 Speculative execution

There isacost associated with speculative execution, whether static or dynamic. Predicated
execution lessens the impact by providing a non-speculative aternative when performing
code motion. The dternative to predicated execution is to issue branches as early as
possible, which increases the code size and the number of small compensation blocks. (As
branches are moved up across operations, the operations are duplicated below each exit of
the branch. If a branch exit flows directly to a merge point, a compensation block is
introduced.) Compensation blocks are undesirable because they are often small and have
little ILP. Small compensation blocks also put extreme demands on branch hardware.

3.8 Compiler issues

As we have seen in this section, predicated execution offers many opportunities for
exploiting increased amounts of instruction-level paralelism. However, in our experience,
adding genera compiler support for predicated code is a mgor chalenge. Here, we
describe briefly some of the required compiler support for predicated execution.

3.8.1 Opportunities

| f-conversion algorithms. Existing algorithms [47, 40, 18] for if-conversion diminate
al internal branching within a single-entry single-exit acyclic control flow region. The
IMPACT agorithm handles arestricted case of multi-exit region, which after if-conversion
is termed a hyperblock, where "side" exits are allowed, provided that the region has a
single post-dominating final exit when these side exits are ignored [44]. By conceptually

39

ignoring side exits during if-conversion, the current agorithms do not fully eiminate
control dependences within the if-converted region; operations below side exits remain
control dependent on dominating branches.

We are currently investigating a new approach to if-conversion of multi-exit regions in
which dl predicates within the region are fully resolved. In this case, the side-exit fall-
through conditions are incorporated into the guarding predicates of subsequent (dominated)
operations, so that al control dependences are eliminated within the if-converted region
[56].

Predicate promotion. Up to this point, we have discussed predicated execution as an
aternative to speculative execution. Operations are either fully guarded by a predicate or
they execute unconditionally (but potentially speculatively) when control flow reaches
them. In practice, we find cases where a guarding predicate p can be relaxed, or promoted,
to another predicate q such that the operation executes speculatively but not
unconditionally. That is, q is true whenever p is true (but not vice versa). A common
situation where this arises is from if-converson of nested if-then-else statements.
Promotion is analogous to hoisting an operation from a deeply nested if-then statement to
an outer scope. The mativation isthat the relaxed predicate may be available earlier than the
non-speculative guarding predicate. The normal concerns about overwriting live values and
detecting exceptions apply.

Critical-path reduction. Just as predicated execution is an important tool for exploiting
ILP, it isaso useful for exposing additional ILP through height-reduction of computations
on the critical path. Height-reduction transformations can take many forms, but the central
theme is to reorganize computations so that the longest dependence path through a
computation is shortened. This criticd path may contain flow, anti, or output data
dependences, or it may contain control dependences. Variable renaming is a smple
example of height reduction, where output and anti dependences are removed, thereby
exposing paraldism between previousy sequentialized (but independent with respect to
vaue flow) computations. A more traditiona example is the reassociation of a linear
recurrence into a logarithmic-height tree computation, as can be done with an unrolled
reduce-to-scalar loop. Predicate promotion, described above, is another example of height
reduction, where a flow dependence is relocated from a critical-path compare-to-predicate
operation to one of lesser height, resulting in speculation of the guarded operations.
Predication is aso useful for height reducing boolean expressions, by using the wired-OR
and wired-AND operations. These reduced-height expressions may be data expressions,

40

guarding predicatesin if-converted unstructured code, or they may be fully-resolved branch
conditions which lie on the critical path of some computation [56].

New twists on conventional optimizations. Predicated execution generalizes code
motion and gives an aternative to control flow for determining execution. Conventional
optimizations such as common subexpression elimination, partial redundancy elimination,
and partial dead code elimination can exploit this new degree of freedom. Traditionally,
these algorithms relocate operations in order to diminate redundancies. With predication,
operations can be guarded as well as moved. The best choice will probably require an
understanding of resource usage, register pressure, and critical path length.

3.8.2 Challenges

Predicate analysis. Conventiona compiler analysis techniques produce incorrect or
overly-conservative results when applied to predicated code. To aggressivly target
machines with predicated execution, a compiler must understand run-time relationships
between predicates and incorporate this information into data flow analysis and
optimization. For example, in register alocation, temporaly overlapping live ranges are
said to interfere, and their corresponding variables are assigned to different physical
registers. In predicated code, temporal overlap of live rangesis necessary but not sufficient
to cause interference, since overlapping live ranges may be predicated upon digoint
predicates. That is, in any execution, it may be the case that only one of the two variables is
ever written or read. By understanding the digointness between guarding predicates, a
predicate-sensitive register allocator can use fewer registers in alocating predicated code
[21, 34].

Predicate-cognizant data flow analysis. In genera, many phases of analysis may
require understanding the semantics of predicated execution. By extending data flow
analysis to handle predicated code, dl modules that make use of data flow anaysis (e.g.
optimizations) can operate on predicated code.

Pervasive impact on compiler design. In our experience, adding compiler support
for predicated execution affects the overall design of the compiler. Predicated code may be
introduced quite early in the compilation process, through inlining of hand-coded intrinsics,
if-conversion, schematic transformations, modulo-scheduling, height-reduction, or
optimization. Clearly it isdesirable that predicated code be treated as effectively and easily
as conventional code. Without such a facility, predication will be avoided rather than
aggressively pursued.

41

4 Architectural support for innermost loops

It is generally understood that there is inadequate instruction-level paralelism (ILP)
between the operations within asingle basic block and that higher levels of parallelism can
only result from exploiting the ILP between successive basic blocks [65, 26, 54, 46, 10,
67]. In the case of innermost loops, the successive basic blocks are the successive
iterations of the loop. One method that has been used to exploit such inter-iteration
parallelism has been to unroll the body of the loop some number of times and to overlap the
execution of the multiple copies of the loop body [25]. Although this does yield an
improvement in performance, the back-edge of the unrolled loop acts as a barrier to
paralelism. Software pipelining, in general, and modulo scheduling, specifically, are
scheduling techniques which attempt to achieve the performance benefits of completely
unrolling the loop without actually doing so.

One iteration
of the source

!

A I
Number of T > Prolog
stages=3 | B | A
<
l cle|a c|B|A
> Kernel
C B
<
C
> Epilog
7z
(a) (b)

Figure 4.1: (a) Record of execution for amodulo scheduled loop. (b) Kernel-only code

schema

Modulo scheduling engineers the schedule for aloop so that successive iteration of the loop

are issued a a constant interval, cdled the initiation

interval

(1. Typicaly, the

initiation interval islessthan the time that it takes to execute a single iteration. As aresult,

42

the execution of an iteration can be overlapped with that of other iterations. This
overlapped, paralel execution of the loop iterations can yield a significant increase in
performance. Figure 4.1(a) shows the record of execution for amodulo scheduled DO loop
in aschematic form. The figure shows the execution of 4 source iterations of the loop. The
schedule for an iteration can be divided into stages consisting of 11 cycles each. The number
of stages in an iteration is termed the stage count (SC). In the figure, the schedule for
each iteration contains three stages, represented by A, B and C. The execution of the loop
consists of three distinct phases: ramp-up, steady-state and ramp-down. The ramp-up
phase "fills the pipdine’ by initiating a new source iteration every Il cycles. The steady-
state phase represents that part of the execution during which an iteration completes and a
new iteration is initiated every 11 cycles. The ramp-down phase "drains the pipeline’. It
completesthe iterations that have been initiated, but initiates no new iterations.

The code to achieve this can be partitioned into three parts. The prologue is the code that
is executed during the ramp-up phase. The ker nel is the loop that when executed yields the
repeating part of the record of execution in Figure 4.1(a). The epilogue is the code that is
executed during the ramp-down phase. In Figure 4.1(a), indicated on the right hand side of
the figure isthe code that is being executed at each point in time.

Architectural support for modulo scheduling (e.g., as in PlayDoh or the Cydra 5) enables
generation of high performance, compact code for modulo scheduled loops. For example,
the kernel codeis sufficient to generate the record of execution shown in Figure 4.1(a) on
processors with support for modulo scheduling. This is cdled the kernel-only code
schemafor counted loops [52]. Figure 4.1(b) shows the kernel-only code for the example.
The advantages of this schemainclude its small code size and ease of engineering. A single
piece of code equivalent in sizeto the original loop is sufficient to execute the entire modulo
scheduled loop. In contrast, other code schemas require complex code replication to
achieve the same effect [52].

The support for modulo scheduling includes rotating register files, specialized loop control
operations, predicated execution and support for compile-time speculative code motion. For
brevity, we focus on modulo scheduling of counted loops and describe the use of many of
these features in the kernel-only code schema. A detailed description of modulo scheduling
of while-loops can be found elsewhere [64, 52].

43

4.1 Rotating register file to address overlapped life-times

A fundamental problem in generating modulo schedules is to prevent successive lifetimes
for aloop-variant virtua register from being assigned to the same physical register. The
successive lifetimes correspond to the successive definitions of the loop-variant virtual
register in successive iterations.

Consider the example in Figure 4.1. Suppose the loop contains two operations, a load and
an add, which are scheduled in the stages A and C, respectively. Figure 4.2 shows the
execution of the two consecutive iterations of the loop. The execution of the stage A in
iteration i will load a value in vrl. The lifetime of this value extends to the cycle in which
add is scheduled in the stage C. However, 11 cycleslater the load operation will be executed
again on behaf of the next iteration and will overwrite the value in vrl while it is still live,
thereby yielding an incorrect result. An approach to address this problem is to provide
some form of register renaming so that successive definitions of vrl actualy use distinct
registers. The rotating register file provides such a capability.

Iteration i [teration i+1

vrl = Load(vr2);

vrl = Load(vr2);

vr3 = Add(vrl, 4);

vr3 = Add(vrl, 4);

Figure 4.2: Exampleto illustrate overlapped lifetimes

Registers in a conventional register file are addressed using an absolute address, e.g.,
register number 32. In contrast, registers in a rotating file are addressed using a base plus
offset model. The register number specified in an instruction, either as a source or atarget,
is added to the rotating register base (RRB) to derive the physical register number in
the file. The addition is a modulo sum with the number of physical register in the file as the

modulus. Thus,
physical register address = (RRB + instruction-specified address) mod file size

Specia branch operations which are used in modulo scheduling decrement RRB each time
anew iteration starts, thereby giving each loop iteration adistinct physical register from that
used by the previous iteration.

Iteration i Iteration i+1 Physical registers accessed by
operations
rrl5 = Load(vr2); (0 + 15) mod 64 =15
rr15 = Load(vr2); |(0-1+ 15) mod 64 =14
vr3 = Add(rrl7, 4); » (0-2+ 17) mod 64 =15
vr3 = Add(rr17, 4);|(0 -3 + 17) mod 64 =14

Figure 4.3: Use of rotating registers to handle overlapped lifetimes

Consider the example in Figure 4.2 again. Assume that vrl is allocated to arotating register
file. Figure 4.3 shows how the use of rotating registers addresses the problem of
overlapped life-times. The first two columns show the execution of the two consecutive
iterations of the loop. The third column shows the actual register that is accessed assuming
that RRB is set to 0 at the beginning of the it iteration and that the rotati ng register file
contains 64 physical registers. The load operation specifies rrl5 as its target. In the ith
iteration it writes to the physical register number 15. At the end of the stage, a specia
branch operation executes which decrements RRB. As a consequence, the load operation in
the next iteration writes to physical register 14, though it still specifies rrl5 as the target.
Thus, the distinct life-times originating in different iterations are given distinct registers.
Since RRB is decremented at the end of each stage, proper producer-consumer relationship
must be maintained by specifying appropriate offsets. For example, the add operation
specifiesrrl7, and not rrl5, as the source operand in order to access the value produced by
the load, since the add operation is scheduled two stages later than the load operation, and
RRB is decremented twice between the two operations. Thus, the add operation in iteration
i reads physical register 15, which iswritten by the load operation in iteration i. Similarly,
the add operationin iteration i+1 reads physical register 14, the one written by the load in
that iteration.

A rotating register fileis quite smilar in concept to vector registers. Instead of moving the
pointer every cycle as in the case of vector registers, it is decremented once per kernel

45

iteration, and instead of having multiple vector registers, they are al pooled into one
circular register file.

Rotating register files provide dynamic register renaming but under the control of the
compiler. Their availability in the architecture allows the compiler to generate compact code
for modulo scheduled loops in the form of the kernel-only code. Rau, et al. [52] discuss
code schemas that don't rely on rotating registers, al of which require unrolling of the
kernel to correctly handle overlapped lifetimes. It is important to note that conventiona
hardware renaming schemes are inadequate and cannot be used in place of rotating register
files. In amodulo scheduled loop, successive definitions of avariable (seevrlin the above
example) are encountered before the uses of the prior definitions. Thus, it is impossible
even to write correct kernel-only code with the conventional model of register usage.

From the perspective of micro-architecture, rotating registers add a modulo sum in the
register access path. The modulo sum can be implemented as an adder of the appropriate
size given by the number of registersin the file. Itsimpact on pipeline depth or cycletimeis
hard to quantify without a detailed pipeline design for a given cycle time. From the
perspective of the compiler, rotating registers both smplify and complicate the task.
Generating kernel-only code is smpler to engineer than other code schemas that require
complex code replications. On the other hand, the compiler has to alocate rotating
registers. Rotating register dlocation is somewhat different from the traditional alocation
and it is easy to engineer it as a separate module. The traditional allocator must be enhanced
to understand rotating register alocation a the entries to, and the exits from, modulo
scheduled loops.

4.2 Use of predicated execution

Predicated execution is used for two distinct purposes in the modulo scheduling of |oops.
First, it is used to handle loops that have control-flow within the body. Explicit control-
flow can be replaced by predicated code in such loops by using if-conversion. This
simplifies code generation for loops with control-flow since the body of the loop no longer
contains any branches; as far as the modulo scheduler is concerned, it is a single basic
block. (Predicated execution and its use in if-conversion were discussed in Section 3.)
Second, predicated execution is essential for the kernd-only code schema to work as
described below. Consider the record of execution in Figure 4.1(a). Each stage during the
ramp-up or ramp-down phaseis a subset of the kernel-only code shown in Figure 4.1(b).

46

Thus, the prologue and epilogue can be swept out by executing the kernel with the
appropriate operations disabled by predicated execution.

Source Predicate
Iteration Registers | LC | ESC
-2|-1]o|1|2]|3[4]5]| p2plpo
0 01 3 2
C|B]|A 0 0 1 3 2
C|[BJ|A 011 2 2
C|B|A 111 1 2
C|BJ|A 111 0 2
C|B|A 1 10 0 1
C[BJ]A|] 1 00 0 0
0 0O 0 -1

Figure 4.4: Prologue and epilogue generation using predicated execution. Shaded iterations
are spurious iterations.

Figure 4.4 shows the dynamic creation of prologue and epilogue computation using
predicated execution. All operations from the ith stage are logically grouped together by
predicating them on the same predicate, specifically, the rotating predicate register specified
by the predicate specifier i relative to the RRB. In this example, operations in stages A, B
and C are predicated on rotating predicate registers p0, pl and p2, respectively. The code
outside the loop sets the staging predicate, pO, for the first stage to 1 and sets the predicates
for al other stagesto 0. As aconsequence, only operations in stage A executein the first |1
cycles; operations in other stages are nullified. (Nullified operations are shown as shaded
boxes in the figure)) The execution of the branch operation a the end of Il cycles
decrements RRB, which has the effect of shifting the staging predicates, i.e., the predicates
that used to be referenced as pO, pl and p2, are now referenced as pl, p2 and p3,
respectively. In addition, the branch operation sets the staging predicate pO for the first
stage, the effect of which is to initiate a new source iteration. This continues until al the
source iterations have been issued. Note that once p0, p1 and p2 are dl 1, theloop is in the

47

steady-state phase. Once the last source iteration has been initiated, the branch operation
thereafter sets the staging predicate p0 to O in order to disable al operations in stage A. On
each subsequent iteration of the kernel, one additional staging predicate becomes 0. This
continues until dl the staging predicates are 0, a which point the last source iteration has
completed. The manner in which these phase transitions are triggered is discussed in
Section 4.3.

4.3 Branch operations for modulo scheduled loops

As pointed out in the last two sections, the kernel-only code schema for counted loops
relies on specia branch operations. In PlayDoh, there are a number of such operations,
genericdly cadled the BRF family of operations. In this section, we summarize the
semantics of these operation using BRF.B.B.F (called brtop in the Cydra 5). The reader is
referred to the PlayDoh architecture specification [36] for more details about other
operations, including the ones to support while-loops, and for the exact semantics of these
operations.

Branch operations for counted loops use two architecturaly visible registers—the loop
counter (L C) and the epilogue stage counter (ESC). Prior to entry into the loop, LC
is initidized to one less than the trip count of the loop, and ESC is initidlized to one less
than the number of stages, i.e. SC-1, which is the number of additiona kernd iterations
needed to drain the pipeline once the last source iteration has been initiated. The way that
the BRF.B.B.F operation behavesis as follows. While LC is not zero, the loop is in either
the prologue or the kernel phase. In this case, the branch operation decrements LC,
decrements RRB, setsthe predicate p0 to 1, and branches to the beginning of the loop. If
L C is 0 when the branch operation isissued, the loop is either about to enter, or is dready
in, the epilogue phase. In this case, the operation decrements ESC, decrements RRB, sets
pO to 0, and branches to the top of the loop. If both LC and ESC are 0, the execution of the
loop isover. In this case, the branch operation falls through to the code after the loop.

5 Branch ar chitecture

5.1 Simultaneous and ovelapped branches

The exposure of MultiOp and NUAL parallelism has important implications for the
definition of branch operations. The simplest MultiOp instructions issue simultaneous
operations without dependence checking for both arithmetic and branch operations.
Operations within an instruction containing a taken branch execute irrespective of their

48

position relative to the branch. Here, even a unit latency branch has a branch shadow
consisting of the operations "after the branch™ (i.e., to the "right" of the branch) but within
the same MultiOp instruction. Operations positioned after the branch in the instruction text
but within this shadow execute irrespective of the branch condition. When the branch
latency is increased beyond one, the branch shadow also includes one or more complete
MultiOp instructions which execute unconditionally prior to the completion of the branch
operation at the branch latency.

A more traditiona definition of branch semantics where each branch dismisses dl
operations after the branch is not as attractive when used with MultiOp instructions.
MultiOp instruction encodings are often non-uniform alowing only specific operations
within specific positions within the instruction. The traditional branch definition leads to
unappealing architectures where, for example, an integer operation which awayslies to the
left of abranchina MultiOp is not guarded by the branch while a floating point operation
which is to the right of the branch is guarded by the branch. Such inconsistencies are
eliminated when either al operations or none of the operations are guarded by a branch
within the current MultiOp.

PlayDoh defines semantics for simultaneous and overlapped branches using a definition
which is both compatible with MultiOp execution semantics, and requires the least
hardware to implement. PlayDoh specifies that if two branches take simultaneoudy then the
branch target is undefined. Here MultiOp branch operations are treated like MultiOp data
operations. when two operations write the same register (in this case, the program counter)
on the same cycle they produce an undefined resullt.

An dternative strategy is to define a priority between the multiple branches in a MultiOp
instruction [14]. When concurrent branches are prioritized each branch dismisses dl
branches having lower priority. However, prioritized branches are dependent branches
requiring the flow of signals between multiple branches within a single cycle. Further,
when branches have latency greater than one, priority must be extended to dismiss dl
branches within the branch shadow.

PlayDoh treats branches differently from other operationsin one respect: branch operations
with LEQ semantics are not allowed. A LEQ branch might (or might not) execute each of
the operations within its shadow. This makes the effective use of a branch shadow
difficult. Branches with EQ semantics are more useful alowing the branch shadow to be

49

filled with operations which execute irrespective of the branch condition. PlayDoh,
therefore, only provides branches with EQ semantics.

It can be very complex to schedule NUAL EQ branches where, a taken branch executes in
the shadow of a taken branch. A discontinuity in scheduling semantics arises when a
subsequent branch is moved from outside the shadow of a preceding branch into the
shadow and both branches take. When the subsequent branch is outside the shadow, the
first branch dismisses the second. When the subsequent branch moves into the shadow, the
final branch target reached is not that of the first taken branch but instead that of the
subsequent taken branch within the shadow. It is very complex to develop program
schedules which benefit from these complex interactions among overlapped pipelined
branches.

Predicates can be used to simplify the interaction of simultaneous or overlapping MultiOp
NUAL branches. In particular, multiple branch predicates can be computed with a
guarantee that only one is true. This in turn can guarantee that multiple overlapped
predicated branches do not take. Mutually exclusve branches can be scheduled
simultaneously or in an overlapped fashion without introducing any of the significant
complexities arising from pipelined branches. Methods for calculating predicates providing
thisform of exclusion have been introduced [57].

5.2 "Unbundled" branch architecture

Many traditiona branch operations are really compound operations. PlayDoh decomposes
branch semantics into component operations (in a fashion similar to the Pipes architecture
[73]) alowing component operations to issue separately. The PlayDoh branch components
ae

1) A prepare-to-branch operation has two inputs which provide the branch target
address aswell as a static branch hint. The result operand targets a register in the
branch target register (BTR) file.

2) A compare operation computes the branch condition targeting a result in the
predicate file.

3) A branch operation specifies two inputs: a predicate which determines the branch
condition and the BTR operand which corresponds to a branch which has been
previously prepared.

50

These operations must be scheduled so that the branch is prepared and the branch condition
computed before executing the actual branch.

The decomposition of branches provides additional efficiency within the branch unit
pipeline. For example, the prepare to branch may be issued prior to the actua branch
operation. This allows the instruction unit to prefetch text at the target of the branch prior to
the issue of the actua branch operation. Similarly, the compare operation may aso be
issued well before the actua branch. This separates the latency of the compare from the
branch thus reducing the branch latency.

Further, the separation of branches into components allows branch optimization a a more
fine-grained level. A common example isthe optimization of aloop closing branch where,
the address of the branch target is loop invariant and may be prepared outside of the loop.
While the branch condition must be tested on each loop iteration, branch preparation occurs
once. Thisalows fewer operations within the loop body and a more timely calculation of
the loop branch target address.

6 Control Speculation

A magor impediment to exploiting ILP is the control dependences imposed by branch
operations. An operation is control dependent on a branch if the branch determines whether
control flow will actually reach the operation. As a result, the branch determines whether
the operation will be executed at run-time. For example, with a conventiona if-then-else
statement in C, all operationsin the "then" clause are control dependent on the if-statement
evaluating to true. Correspondingly, al operations in the "else" clause are control
dependent on the if-statement evaluating to false. Thus, the operations in the "then" and
"else" clauses may not be executed until the condition is evaluated. Control dependences
impose this kind of ordering constraint on operations with respect to a branch to ensure that
operations are executed at the proper times. As a result, the number of independent
operations available each cycle is limited by the presence of control dependences. This
problem becomes extremely serious for non-numeric applications which contain a high
frequency of branches. For these applications, very little ILP may be extracted due to the
large number of control dependences.

Control speculation refers to the process of executing operations before one or more of
their control dependences are satisfied. In this manner, operations are executed before it is
certain their execution is required. Static control speculation support allows the compiler to
ignore control dependences, thereby speculating the operations. The purpose of datic

51

control speculation is to increase the ILP that the compiler exposes in an application. A
compiler can utilize static control speculation to increase ILP in severa ways. First, it
allows the compiler to employ an aggressive globa scheduling algorithm to move
operations across basic block boundaries. The ability to overlap the execution of operations
from many different basic blocks enhancesthe ILP that the compiler can expose by alarge
amount. Second, long latency operations, such as memory loads, can be initiated early to
overlap their execution with useful computation. Finaly, instructions which start long
dependence chains can be executed early to reduce the length of critical dependence chains.

In discussing control speculation, it is useful to define the notion of the execution
condition for an operation to be the same as the predicate for that operation, in the
original, unspeculated version of the code, except that it need not be explicitly computed; it
isimplicit in the values of the set of branch conditions which, together, either guide flow of
control to that operation or away from it. Thus the execution condition for an operation
determines whether or not that operation gets executed in the original program, prior to any
control speculation.

In order to correctly perform static control speculation, several obstacles must be
overcome. These problems occur because speculative operations are executed more often
than is required for proper program execution. Therefore, the side effects of speculative
operations require specia handling to ensure correctness and good performance. In
particular, the side effects of speculative operations must be reflected in the processor state
when their execution is indeed required. However, their side effects must be suppressed
for execution instances that were not required. The problem is made more difficult by the
fact that the execution condition of an operation may not be known for many cycles after
the operation completes. Thus, there is this period of unknown execution status for control
speculative operations which must be handled. To assist with the discussion in this section,
the terms necessary speculative operation (NSO) and unnecessary speculative operation
(USO) will be used to refer to an execution instance of a speculative operation which is
required and is not required by the origina program semantics, respectively.

The two main obstacles that must be addressed for speculative operations are the results
that are produced and any exceptions that are generated. First, the results produced by
USOs (architecture registers and memory system updates) must not corrupt the input
operands of subsequent NSOs and nonspeculative operations. As far as the execution of
subsequent operations is concerned, a USO should appear to not produce any results. The
second obstacle is ensuring proper exception handling for speculative operations.

52

Exceptions that occur for USOs must be ignored, whereas exceptions for NSOs must be
signaled and handled in the appropriate manner.

Potential control speculative operations may be categorized at compile time as either safe or
unsafe. Safe speculative operations are those operations that the compiler can guarantee will
produce no undesirable side effects when unnecessarily executed. The compiler can aso
perform transformations to make more operations safe, such as compile-time renaming or
data structure padding. For example by renaming the destination register of an operation to
a new temporary register, the compiler can guarantee that the operation will not corrupt a
source operand of a subsequent operation. The other category of potential control
speculative operations is unsafe. Unsafe speculative operations are dl those remaining
operations that the compiler cannot classify as safe. For unsafe operations, static control
speculation cannot be performed without underlying support provided in the architecture.
Architecture support generally alleviates either or both of the side effect obstacles to some
extent and allows a larger fraction of operations to be candidates for control speculation.
The remainder of this section describes the support that is provided in the PlayDoh
architecture for static control speculation.

6.1 Static control speculation in PlayDoh

In the PlayDoh architecture, the support focuses on overcoming the exception handling
obstacle to enable control speculation of unsafe operations. The philosophy behind this
approach isthat it isgenerally believed that the result generation obstacle can be efficiently
overcome by conventional compilers via renaming transformations. However, it is very
difficult to prove operations such as, loads or floating-point adds, will not cause an
exception when they are unnecessarily executed. As a result, many potential speculative
operations must be classified as unsafe by the compiler because of potentia exceptions.
The architecture support provided in PlayDoh allows potentially excepting operations to be
safely speculated by the compiler.

The basic idea of the PlayDoh speculation model is delayed exception handling. Exceptions
for control speculative operations are recorded in a structure a the time of occurrence, but
no immediate action is taken to report or handle the exception. Rather, exception processing
is postponed to a later time when the execution condition of the operation is known. At that
point, the speculative exception can be properly processed or discarded. This form of
delayed exception handling is accomplished by symbolicaly providing a check for each
potentialy excepting instruction which is speculated. The check may be an explicit or

53

implicit operation. It isthe responsibility of the check to flag any exceptions that are caused
by the speculative operation. The check is placed in the speculative operation's original
basic block, or home block, so the exception is only flagged if the excepting operation
would have been executed in the original program. For the cases where execution does not
reach the speculative operation's home block, the check is never executed, thereby correctly
ignoring the specul ative exception.

The PlayDoh architecture provides two major extensions of the mechanisms provided in the
Multiflow machines [14] to support delayed exception handling for control speculative
operations [19, 16, 36, 42]. First, each architecture register is extended to contain an
additional field called the exception tag. The exception tag indicates that the register value
is not correct because the operation responsible for creating the value, or some flow
dependence predecessor of it, excepted. The second extension is an additiona bit for each
opcode to differentiate speculative and nonspeculative versions of al opcodes that can be
speculated. For purposes of this discussion, the extensions are referred to as the E bit and
S hit, respectively. The E and S bits are used to determine the execution semantics for
operations in PlayDoh. Table 6.1 summarizes the semantics of control speculative and
nonspecul ative operations.

Table 6.1: PlayDoh execution semantics to support static control speculation.

Operation’s| E bits of | Operation || Destin- Other actions Signal
S bit source generates || ation's exception
registers an E bit if enabled
exception
1 Ofor al No 0 Update destination register with No
(Speculative) sources the result
Yes 1 Record PC and other state No
information for exception
reporting
1 for oneor Don't care 1 Record that an exception was No
more condition propagated if necessary
sources
0 (Non- Ofor all No 0 Update destination register with No
speculative) sources the result
Yes 0 - Yes
1 for one or Don't care 0 - Yes
more condition
sources

6.1.1 Execution of a control speculative operation

Control speculative operations execute normally when the E bits of dl their source
operands are reset and the operation does not generate an exception itself. For the normal
case, the speculative operation performs two actions: the result of the operation is written to
the destination register and the destination register's E bit is cleared. For the other execution
scenarios, specia actions are required to deal with the exception conditions. The first case
is that the speculative operation has al of its source operands' E bits reset, but causes an
exception itself. The exception is recorded by setting the E bit of the operation's destination
register. Additionally the program counter (PC) and any other state information, necessary
for the later processing of the exception, isrecorded. The actua mechanism used to record
the exception is discussed further in Section 6.3. The second case is that the speculative
operation has one or more of its source operands' E bits set. For this case, the speculative
operation propagates a pending exception down the chain of dependent operations. As a
result, the operation itself is not executed, but rather sets its destination E bit and records
the exception propagation. The exception propagation information is just some additional
data that may be required by the exception handling mechanism to reconstruct the chain of
dependent operations.

6.1.2 Execution of a nonspeculative operation

Nonspeculative operations execute in a conventional manner when the E bits of al their
source operands are reset. For this case, the operation computes its result, and writes that
into the destination register. Additionally, the destination register's E bit is cleared. If an
exception occurs for such an operation, traditional exception processing is used. The
exception isimmediately signaled and the handler is invoked. The case where the E bit of
one or more source operands is set for a nonspeculative operation occurs when a pending
speculative exception requires processing. The exception is therefore signaled using the
recorded state information. If multiple source registers have their E bit set, the exception
corresponding to the first operand is reported. Again, the destination register's E bit is
cleared for this case. Therefore, any nonspecul ative operations which are flow dependence
successors of speculative operations behave as a check in the PlayDoh architecture, and an
explicit check operation is unnecessary.

A limitation of the PlayDoh static control speculation support is that potentially excepting
operations which do not write their resultsinto a destination register may not be speculated.

55

Therefore, the model does not alow unsafe stores to be speculative. In general, stores
were not viewed as important candidates for control speculation in the PlayDoh
architecture. Stores most commonly occur a the end of computation chains, so little is
gained by increasing the scheduling freedom for stores. Note that those stores that the
compiler determines are safe operations may be speculated when profitable just as with any
operation type.

The compiler has severa important responsibilities in the PlayDoh control speculation
model. Although, the specific requirements vary based on the mechanism used to record
and handle speculative exceptions (see Section 6.3), the generalized compiler support is
discussed here. First, the compiler must ensure that a check is present for every potentially
excepting operation which is speculated. The check must directly or indirectly source the
speculative operation's destination register, and it must be located in the speculative
operation's home block. Second, the compiler must correctly mark all operations which are
control speculative by setting the S bit. The execution semantics, as previously described,
are dependent on the value of the S bit. Finally, the compiler must preserve any program
variables which are required by the exception handling mechanism to recover from a
speculative exception. For most schemes, the program variables that require preservation
are the source operands in the chain of operations starting from a speculative operation and
leading to its check.

6.2 Static control speculation example

The satic control speculation support provided in PlayDoh is best illustrated with an
example. Throughout this section, the example presented in Figure 6.1 will be used. Figure
6.1(a) shows the C source code for the example loop which traverses a linked list,
conditionally incrementing the variable "sum". The corresponding assembly code for a
simplified version of the PlayDoh architecture is given in Figure 6.1(b). In Figure 6.1(b),
the loop body is unrolled twice and register renaming is applied to remove as many data
dependences as possible. There are a total of 18 operations in the unrolled loop body: 6
loads, 4 adds, 4 comparisons, and 4 branches. The assembly mnemonics are of the form:
opcode, destination, sourcel, source2. For example, opl loads the contents of "r1+0" into
"r5".

56

while (ptr !'= NLL) { L1: (opl) I r5, rl1, O
count ++; (op2) add r2, r2, 1
if (ptr->data !'= NULL) (op3) cnp_eq re, r5 0
sum += ptr->wei ght; (op4) br ct re, L3
ptr = ptr->next; L2: (opb) I r7z, ri, 4
} (op6) add r3, r3, r7
L3: (op7) I ri1, r1, 8
(op8) cnp_eq rg, r1, 0
(op9) br ct rg8, L7
L4: (opl0) | r15, r11, O
(op11) add r2, r2, 1
(op12) cnp_eq ri6, ri5, 0
(op13) br ct rle, L6
L5: (opl4) | rl7z, rl11, 4
(op15) add r3, r3, rl7
L6: (opl6) | rl, rl11, 8
(op17) cnp_ne rig, r1, O
(op18) br ct rls, L1
L7:
(a) (b)

Figure 6.1: Example code segment, (a) C source code, (b) assembly code after unrolling
the loop twice and register renaming.

Applying a global scheduling technique, such as trace scheduling [23], to the assembly
code exposes the available ILP to the processor. For this example, the underlying
processor architecture is assumed to have "adequate" resources, except that a most one
branch may be issued each cycle. Also, it isassumed that load operations have a two cycle
latency, and al other operations have a one cycle latency. The resulting schedule without
any architecture support for control speculation isshown in Figure 6.2(a). For this model,
the compiler is only allowed to speculate those operations which are safe. The resulting
schedule in Figure 6.2(a) is extremely sparse, teking a total of 14 cycles. The mgor
difficulty with this example is the inability to speculate the load operations, namely op5,
0p10, opl4, and opl6. The compiler is not capable of proving these load operations will

57

never cause an exception because of the possibility of walking off the end of the linked list
and outside the program’s virtual address space. Therefore, the loads must be classified as
unsafe. Also, these loads start the critical dependence chain for each basic block in the
loop. The inability to speculate these loads in order to overlap their execution with prior
operations leads to the seria schedule.

cycle operations issued cycle operations issued
0: opl, op2, op7 0: opl, op2, op5(S), op7
1 1:
2 op3, op8 2: op3, op8, oplo(S), opla(S), opl6(S)
3 op4 3 op4
4: op5 4. op6(Q, opl2(S), opl7(9)
5: 5: op9
6: op6, op9 6: opll, opl3(Q
7: opl0, opll, opl6 7: opl5(Q
8: 8: opl8(Q
9: opl2, opl7
10: opl3
11: oplad
12:
13: opl5, opl8
(a) (b)

Figure 6.2: Resulting schedules for example code segment, (@) without any support for
control speculation, (b) with PlayDoh control speculation support.

With the support for control speculation provided in PlayDoh, the code motion restrictions
for the critical loads are removed. The resulting schedule is shown in Figure 6.2(b). With
control speculation support, the schedule length is reduced from 14 to 9 cycles. The
scheduler speculates all of the problem loads to reduce the length of the critical dependence
chains. In addition to speculating the critical 1oads, the compiler also speculates two of the
comparison operations which use the results of the loads, namely op12 and opl7. All the
control speculative operations are marked witha"S" in Figure 6.2(b). In order to facilitate
delayed exception handling in PlayDoh, each potentialy excepting operation which is

58

speculated requires a check located in the operation's home block. The operations which
serve as checks are marked with a"C" in the figure. As previoudly discussed, a check is a
nonspeculative operation that is the direct or indirect flow dependence successor of a
potentially excepting, control speculative operation. For example, opl3 serves as the check
for op10 because it indirectly usesr15 viaopl2.

Toillustrate the proper detection of speculative exceptions, consider an execution scenario
for the code in Figure 6.2(b) where op10 causes an exception. In cycle 2, op10 causes an
exception. Using the semantics in Table 6.1, the exception tag of oplO’'s destination
register, r15, is set and the necessary exception handling information is recorded. The next
important event occurs when opl2 is executed because it uses the result of opl0. Since
opl2 is speculative and the exception tag of one of its source operands is set, opl2
propagates the exception by setting the exception tag of its destination register, r16. The
execution condition of opl0 is ill unknown, thus the speculative exception may not be
signaled at this point. In the next cycle, the branch (op9), which determines the execution
condition of op10, isexecuted. A taken branch means that control |eaves the loop body, so
0p10 was unnecessarily executed. For this case, the check operation is never executed, and
the pending speculative exception is correctly ignored. When the branch fals through,
control remains in the loop and, op10 does indeed require to be executed. For this case, the
exception must be signaled. The exception is properly detected when opl3 is executed.
Since opl3 is nonspeculative and the exception tag of its source operand, rl6, is set, an
exception is signaled and the exception handler is invoked. The issues associated with
processing specul ative exceptions are discussed in the next section.

6.3 Exception handling issues

Exception handling in a broad sense refers to the steps the computer system goes through
when an exception is detected. For purposes of this discussion, exceptions are limited to
operating system generated and handled exceptions. Based on how exceptions are handled,
they may be placed into two categories. nonrecoverable and recoverable. Nonrecoverable
exceptions result if the program violates some semantic of the system. Common examples
of nonrecoverable exceptions are loading from an illega address or dividing by zero. For
these exceptions, program execution is aborted. The other category of exceptions are
recoverable exceptions. These exceptions only interrupt program execution for repair, and
program execution resumes after exception repair is complete. The user is typicaly not
aware these exceptions even occurred. Common examples of recoverable exceptions are
page faults and TLB misses.

59

With satic control speculation, the handling of both types of exceptions needs to be
addressed. Speculative nonrecoverable exceptions offer little freedom since they must be
handled in an exact manner to prevent spurious exceptions from terminating program
execution. These exceptions are handled by aborting program execution after the execution
condition of a speculative operation that excepted is known to be true. The other category
of exceptions, recoverable exceptions, offers more handling freedom for speculative
operations. Since these exceptions are not visible to the user, they may be handled
immediately or they may be delayed. The mgor tradeoff here is performance versus
complexity. Handling speculative exceptions at the time of occurrence will likely result in
repairing spurious exceptions caused by USOs. As aresult, performance is sacrificed by
handling unnecessary exceptions. Delaying recoverable exceptions removes the
performance overhead since only necessary exceptions will be repaired. However, since
the exception is delayed, operations which directly or indirectly use the result of the
excepting operation may have aready executed. Therefore, these operations must be re-
executed after the exception is repaired. This undoubtedly increases the complexity of
handling speculative recoverable exceptions. For purposes of this discussion, it will be
assumed that recoverable exceptions are delayed.

One effective exception handling approach for the PlayDoh model is to use recovery
blocks. A recovery block is a sequence of operations generated by the compiler that are
used in the treatment of an excepting speculative operation. Each check operation has a
recovery block associated with it. The recovery block will be entered whenever a check
detects a pending speculative exception. The recovery block contains the operations
necessary to regenerate the speculative exception. In addition, any operations which require
re-execution if the exception condition is repaired are contained in the recovery block. The
major advantage of using recovery blocks is that the execution condition of the excepting
Speculative operation is now known to be true. Therefore, the exception may be
regenerated as a honspeculative exception and conventional exception handling (whatever
would have been used in the original non-speculative version of the program) may be used.
For non-recoverable exceptions, the program is terminated after the speculative exception is
regenerated. For recoverable exceptions, the exception is regenerated, program state is
repaired by the system, and execution resumes in the recovery block to re-execute any
dependent operations which use the result of the excepting operation.

In the smplest recovery block scheme, each check has its own specialized recovery block.
The recovery block consists of al unsafe speculative operations for which the check detects
pending exceptions. In addition, the recovery block contains al of the speculative

60

operations which are the flow dependence successors of each of the unsafe speculative
operations that is aflow dependence predecessor of the check operation. At the end of the
recovery block, a return-from-interrupt (rti) operation is placed which returns execution
from the recovery block to the appropriate location. The mechanisms used for resuming
execution a the correct location of the rti operation are the same as those used for
accomplishing conventional interupt returns. For the example scheduled in Figure 6.2(b),
the recovery block for the check, op13, would consist of the following:

opl0' (copy of opl0)
opl2' (copy of opl2)
opl3' (copy of opl3)
rti (exit exception handling mode and reenter user code)

Considering the execution scenario of Figure 6.2(b) previousy discussed where opl0
excepts and requires re-execution, the recovery block is entered when opl3 is executed.
The exception tag of one of the source operands for opl3, r16, is set, therefore it transfers
control to the appropriate recovery block. In the recovery block, the operations are not
marked as speculative. As a result, when opl0' is executed, the exception condition is
regenerated. If the exception is nonrecoverable, program execution is aborted. Whereas, if
the exception is recoverable, the program state is repaired and execution continues. The
next operation, opl2', correctly re-executes a dependent operation that had previously been
executed. Next a copy of the check, op13', is re-executed to complete the set of operations
which use the result of op10. Finally, the rti operation is executed to exit the recovery block
and resume execution in the scheduled loop segment after op13.

The details of exception handling with recovery blocks in PlayDoh is beyond the scope of
this chapter. Issues, such as generating recovery blocks, combining recovery blocks,
transferring control to recovery blocks, and preserving source operands of al the
operations in the recovery blocks, are open problems. The interested reader is referred to
[5] for one approach to exception handling with recovery blocks. Other approaches to
exception handling for PlayDoh are also possible. Inline recovery has been proposed to
avoid the code expansion overhead of recovery block schemes [42]. The mgjor issue with
inline recovery isthe increased compiler complexity to accomplish the proper re-execution
during exception recovery. Alternatively, hybrid schemes may also be possible to balance
the effects of code expansion and compiler complexity.

61

6.4 Discussion

In this section, the support for static control speculation in the PlayDoh architecture has
been described. The purpose of static control speculation is to increase the compiler's
freedom to overlap operations. Compilers are typicaly limited by the control dependences
imposed by branches. Static control speculation allows the compiler to selectively ignore
control dependences and allow operations to move across branches. As a result, compilers
can employ aggressive globa scheduling techniques to expose higher levels of ILP.
Traditional superscalar processors do not use static control speculation. Rather, a
combination of dynamic scheduling and dynamic speculation is utilized to achieve operation
overlap across branches at run-time. Superscalar processors rely extensively on these
dynamic features to expose ILP. Static control speculation alows the compiler to
effectively take over many of the scheduling responsibilities for the processor. Therefore,
ILP processors can be built without complex hardware support for dynamic scheduling and
dynamic speculation.

The static control speculation model provided in PlayDoh offers two distinct advantages.
The biggest advantage is the ability to support generalized control speculation of unsafe
operations. With the PlayDoh model, the compiler is able to smultaneously speculate
operations along multiple paths of control. Additionally, the distance that an operation may
be speculated is not limited by the architecture. The combination of these features enables
the compiler to utilize powerful code motion and scheduling strategies. A second advantage
is the relatively smal hardware overhead to support static control speculation with proper
exception handling. Most dternative strategies sacrifice exception handling to enable
generalized control speculation [18, 41]. Other strategies that have been proposed to handle
speculative exceptions, require significant hardware overhead and/or impose limitations on
the distance an operation may be speculated [60, 8].

There are many open problems that need to be investigated in the area of static control
speculation. One of the most important areas is speculative exception handling. In Section
6.3, the recovery block model was briefly described. However, many of the tradeoffs and
detailed issues are not understood for recovery blocks or aternative exception handling
strategies. Future research is required in static control speculation to answer these
guestions.

62

7 Data Speculation

Potential dependences between load and store operations can prevent a compiler from
exploiting ILPin VLIW or superscalar architectures. Through static analysis of the address
expressions of memory operations, a compiler can attempt to disambiguate memory
references. If compile-time disambiguation is successful and indicates that two memory
operations reference distinct memory locations, the compiler can remove dependences
between the two operations. This results in more opportunities for code motion and
enhances ILP. Both the load operations and the computation dependent on the loads can
move above the independent store operations. On the other hand, if compile-time memory
disambiguation is unable to prove that the two memory accesses are to distinct memory
locations, the compiler must conservatively assume that the two references may be to the
same location. This results in a greater number of sequentialized memory accesses,
degrading the ILP of a program.

Superscalar architectures overcome this limitation by performing out-of-order execution of
memory accesses. Simple superscalar implementations expose a limited amount of ILP by
executing potentially dependent memory instructions concurrently and sequentializing
memory accesses when a conflict is detected. A memory access conflict occurs among
two or more memory accesses when they potentialy access the same memory location.
Aggressive implementations of superscalar architectures which employ out-of-order
execution can use more sophisticated hardware for run time memory disambiguation. By
comparing addresses of memory operations in flight, the hardware can determine which
load operations are independent of executing store operations and allow early execution of
load operations [33].

Dueto the limitations of compile time program analysis, run-time memory disambiguation
can be more accurate. If the code scheduled by a compiler is to reflect the record of
execution (ROE), then the compiler has to consider the worst case of al possible
constraints. In the case of memory dependences, the worst case constraints on memory
operation ordering can be highly sequential. The PlayDoh architecture provides a set of
primitives which permit a compiler to ignore selected memory dependences, while relying
on the hardware to check whether those ignored dependences have been violated a run-
time. This results in a schedule which corresponds to an optimistic ROE. In the cases
where the actual dependences differ from those assumed by the compiler, a performance
penalty is paid to honor these additional constraints. Because there is significant
perfomance penalty for ignoring memory dependences which occur frequently, a compiler

63

should be selective in choosing the subset of dependence condtraints to be ignored.
Techniques like memory dependence profiling can provide datisitical information to a
compiler to identify memory dependences which are not likely to occur during execution.
Thisresults in the compile time schedule very closely approximating the ROE.

The PlayDoh architecture supports two run-time memory disambiguation mechanisms.
First, memory ports are defined as a prioritized resource, i.e., in case there is a conflict
between memory operations in the same instruction, the memory operations are executed in
their left to right order. This mechanism achieves an effect smilar to the concurrent
memory operation issue capability of superscalar implementations, and takes a small step
towards some of the parallel dependence checking complexities of superscalar processors.
The difference, here, isthat the parallel dependence checking need only be done across the
memory operations, which are relatively few in number.

Second, the architecture exposes the hardware support for detection of memory access
conflicts to the compiler by providing opcodes which access the address comparison
hardware. This allows the compiler to decide which memory operations need to be
monitored for memory conflicts and then delegate to the run-time hardware the task of
determining if an address conflict occurs within a window of execution marked by these
specia operations, and react depending on the outcome. These mechanisms alow a
compiler to make optimistic assumptions concerning memory dependences. The compiler
can then aggressively schedule and optimize code for the most common case without
precise memory disambiguation information.

r3 = ADD(r1,r2)
S(al, r3)

rd4 = L(a2)

r5 = ADD(r1l,r4)

Figure 7.1: An example of memory dependency constrained schedule

7.1 Memory port priorities

Consider the sequential schedule of operations in Figure 7.1 where load operations have a
two cycle latency and other operations have unit latency.

When the compiler can not disambiguate the two addressesal and a2, it needsto schedule
the load operation one cycle after the store operation. The total time it takes to execute these
four operations is then five cycles. Using PlayDoh's support for prioritized memory ports,
the compiler can schedule the load operation in the same cycle as the store operation. Using
the left-to-right priority semantics, the load operation has to be scheduled to the right of the
store operation. The memory operations take effect as if they are executed in left to right
order in an instruction. As aresult, the tota schedule length for the same set of operations
isfour cycles as shown in Figure 7.2.

r3 = ADD(r1,r?2)
S(al, r3) rd4 = L(a2)
r5 = ADD(r1,r4)

Figure 7.2: Reducing schedule length using memory port priority

During program execution, memory access hardware can detect the existence of an address
conflict between the two memory operations and sequentialize the accesses. The address
comparison can be conservative. The performance implication is that, in the case where two
addresses al and a2 do not conflict, the instruction sequence executes in four cycles. In
the case there is a conflict, one or more extra cycles may be needed for sequentialized
memory access. Figure 7.3 illustrates the ROE in the case where memory accesses are
sequentialized. The shaded issue dots in this figure illustrate the wasted resources due to
the memory access conflict.

65

r3 = ADD(rl,r2)
S(al, r3)
rd4 = L(a2)
r5 = ADD(r1,r4)

Figure 7.3: lllustration of stall cyclesin ROE in case of memory address conflict

If memory address conflicts are known to be frequent, the compiler can accommodate this
by scheduling problematic operation pairsin different instructions so that the extra cycle(s)
added to the schedule can be overlapped with other computation. This results in a ROE
identical to the schedule.

7.2 Description of data speculative loads

Port prioritiesalow a compiler to reduce the latency of a potential memory dependence to
zero cycles. However, in cases where a potential memory dependence is not likely to occur
a run-time, it is desirable to speculatively execute a load operation before a store operation
that it may be dependent on. Superscalar processors with out of order execution capability
perform this type of re-ordering at run-time if the addresses of the store and load operations
are known and are found to be different. PlayDoh provides architectural support for run-
time memory disambiguation which enables compile time load speculation.

The architectural support provided in PlayDoh for run-time memory disambiguation is
similar to the memory conflict buffer proposed by Chen [13]. Silberman et. a. [58] aso
describe a smilar mechanism. The key idea is to decouple a load operation from its
dependences on store operations. This is achieved by replacing a load operation with two
operations, one load operation which is freed from its dependences and a check operation
which at runtime checksif any of the ignored dependences existed. If none of the ignored
dependences existed during the execution, the check is successful. In the case one or more

66

of the ignored dependences existed, the check fails and the machine state is updated to
reflect the program execution which honors the dependences.

Thismechanism is called “ data speculation”. A data speculative load operation executes like
aregular load operation except that the data deposited to its destination register may not be
correct. Execution of a corresponding check operation ensures that the data in the
destination register is correct.

PlayDoh provides two kinds of architectural support for data speculation of memory
operations. The first kind enables the compiler to move a load operation above multiple,
potentially aliased stores. The two operations provided are the LDS, data speculative load,
operation and the LDV, data verify load, operation. These operations are used as a pair
with identical source and destination fields. The LDV operation performs the check
operation described above. In the case the check is successful, LDV operation does
nothing. In the case of the check failsit ensuresthat the destination register contains correct
data by reloading it from memory. During this load operation, the program execution is
frozen and the pipelineis stalled.

The second kind of architectural support enables the compiler to move both a load
operations and the operations which are data dependent on it above potentially aiased
stores. The LDS operation once again performs the data speculative load operation. In the
case of an dias, the machine state that needs to be corrected is not limited to the destination
register of an LDS operation. In order to perform arbitrary state update PlayDoh provides a
BRDV, data verify branch, operation. The BRDV operation checks whether an alias has
occurred and, if that isthe case, branches to a block of code constructed by the compiler for
machine state fixup. This code would reexecute the load that was speculated and al the
computation that used the result of the load data speculatively.

The PlayDoh technical report [36] defines the semantics of these operations. The next two
sectionsillustrate the usage of LDSLDV and LDS/BRDV operation pairs to shorten critical
path length.

67

7.3 Data speculation examples

For both examples, we will use the code segment in Figure 7.1 where the store operation
may alias with the load operation.

7.3.1 LDS/LDV use example

Figure 7.4 shows the code generated for the example using an LDS/LDV operation pair.
The original load operation is replaced by an LDS and a corresponding LDV operation. The
LDS operation does not depend on the store operation and can move up in the schedule.
The LDV operation has the same scheduling constraints as the original load operation. The
LDS operation loads the data from memory location a2 into r 4. In the case where the
store does not alias with the load, the LDV operation does nothing. The add operation
which uses r 4 uses the value loaded by the LDS operation. Note that the use of r4 is
scheduled two cycles later than the LDS operation - the assumed load latency.

r3 = ADD(r1,r2) rd4 = LDS(a2)
S(al, r3) r4 = LDV(a2)
r5 = ADD(r1,r4)

Figure 7.4: Use of LDS/LDV operations to move aload above a store

Figure 7.5 displays the ROE for the case where the store operation aliases with the LDS
operation, as a consequence of which the data loaded into r 4 by the LDS operation is
incorrect. Due to the prioritization between memory operations the execution of the LDV
operation is delayed one cycle after the store since they are both to the same address. The
LDV operation detects the aliasing between the LDS and the store operation, and re-loads
the datafrom memory tor 4. Sincethe LDV operation is where the original load operation
used to be, i.e. after the store operation, the data loaded from memory has the correct
value. Since the load takes two cycles, an additiona stal cycle is interposed after the LDV
operation. When the load completes the ADD operation can execute with correct input data.

68

Note the large number of unavailable issue sots (shown greyed out in Figure 7.5) when
the LDS and the store alias, in comparison to the schedule in Figure 7.1 which, too, takes
five cycles. If the probability of al being equa to a2 is low, it is preferable to use the
schedule of Figure 7.4, otherwise the schedule of Figure 7.1 is better.

r3 = ADD(rl,r2) r4 = LDS(a2)
S(al, r3)
rd4 = LDV(a2)
r5 = ADD(r1l,r4)

Figure 7.5: lllustration of stall cyclesfor datareload in case of amemory access conflict

S S LDS
0

Y

L
2

Y

ADD ADD
(a) (b)

Figure 7.6. (4) Origina dependence graph. (b) Dependence graph after data speculation.

Figure 7.6(a) illustrates the dependences of the original code. There is a potentia flow
dependence from the store to the load operation and there is a flow dependence from the

69

load operation to add operation. Using prioritized memory operations, the store to load
dependence latency can be zero cycles. The load to add latency is the latency of the load
operation.

Figure 7.6(b) illustrates the dependences of the code with the LDS/LDV pair. The LDSis
not dependent on the store operation. This alows early scheduling of the LDS operation to
accommodate the memory access latency. In the previous figure, the load to add latency
was a contributor to the schedule length. Using data speculation, the load latency can be
overlapped with other computation. In Figure 7.6(b), the load to add latency is replaced by
the LDV to add latency. Sincethe LDV operation can be implemented to have aslittleas a
one cycle assumed latency, the add operation can be scheduled in the cycle following the
store operation which, in the statistically likely case, results in a shortened length for the
path through the store operation.

r4 = LDS(a?2)
r3 = ADD(r1,r2) r5 = ADD(r1,r4)
S(al, r3)
BRDV(r 4)

Operations to check speculative exceptions

(a)

ra

L(a2)

rs ADD(r1,r4) RTI

(b)

Figure 7.7 (a) Use of LDS/BRDV to move aload and its use above a store
(b) Fixup code to restore machine state from a memory access conflict.

70

7.3.2 LDS/BRDV use

The LDSLDV pair of operations allow the motion of load operations across potentialy
aliasing stores, thereby reducing schedule length. However, the computation that is
dependent on an LDS operation is still trapped under the potentially aliasing stores. The
LDS/BRDV permitsthe compiler to move not only a potentially conflicting load operation
above a store, but also any computation that uses the result of the speculative load. In the
case where the LDS operation aliases with the store operations, the BRDV operation allows
the execution of fixup code which re-executes the load operation and the other computation
that was data speculatively executed. The purpose and the construction of the fixup code
for data speculation is very similar to the recovery block in the case of control speculation.
The fixup code contains al operations which are present in the program dice which starts
with the data speculated |oad operation and which moved above the BRDV.

Figure 7.7(a) shows the code generated for the example using the LDS/BRDV operation
pair. The origind load operation is replaced by an LDS and a corresponding BRDV
operation. The LDS operation does not depend on the store operation and can move up in
the schedule. The BRDV operation, like the LDV operation in the previous section, has the
same scheduling constraints as the origina load operation. The LDS operation loads the
data from memory location a2 into r 4. The add operation which uses r 4 is executed
speculatively, i.e. beforer 4 is known to contain the correct value. In the case where the
store does not dias with the load, both the valuesinr 4 and inr 5 are correct, hence the
BRDV operation does nothing.

When the BRDV operation detects an aias between the load and the store operation, it
causes an exception which results in control being transferred to the entry point, specified
by the BRDV operation, for the fixup code (Figure 7.7(b)). This block contains the
sequence of operations which recompute the correct machine state. In genera the fixup
code would contain all the operations dependent upon the LDS operation that have been
moved above the BRDV operation from below. Once the program state is restored, a return
from interrupt, RTI, operation can continue the execution of the program.

In the case where LDS/BRDV pair is used for data speculation, the exceptions generated by
data specul ative operations other than the LDS operation need specia attention. Since these
operations are executing with speculative operands, any exceptions that are generated by
them need to be considered speculative. The techniques discussed in Section 6, for delayed
processing of control speculative exceptions is applicable here. Any unsafe operation that

71

executes data speculatively needs to generate speculative exceptions which can be checked
after verification of computation by a BRDV operation. In the case where an dlias is
detected, the fixup code is executed. Any exception that occur is then handled in the fixup
code. In the case where no dias is detected, it is necessary to check for speculative
exceptions explicitly. A recovery block can then be utilized to recover from any exceptions
that are raised.

The fixup code for data speculation and the recovery block for handling speculative
exceptions are very similar. One important difference between them is that, the recovery
block does not contain the load operation which was executed data speculatively whereas
the fixup code does. Thisis because the input operands of an LDS operation which starts a
data speculative program dice are not speculative. Any exceptions raised by such an LDS
operation can be handled immediately.

There are a number of open problems in the area of data speculation. One important
problem isthe generation of fixup code for LDS/BRDV operations and the corresponding
recovery block generation for detection of speculative exceptions. Since data speculation
allows a compiler to move code around more freely, it is also likely that some data
specul ative operations move across conditional branches resulting in both control and data
speculative operations. Future research is required to address code generation issues
concerning interactions between control and data speculation.

8 Programmatic management of the data cache hierarchy

The memory hierarchy has a large and growing impact on overal performance. This
section describes architecturally visible levels of the memory hierarchy, motivates the need
for architectura mechanisms to control data movement in the memory hierarchy, and
describes the actual mechanisms available in the PlayDoh architecture.

8.1 Motivation

Data cache miss stalls account for a large and growing fraction of overall execution time,
especidly in large commercia database applications and in scientific/numeric applications
that work with extremely large arrays. Data cache stalls are proportiona to the latency of a
data cache miss and the number of misses in a program. The miss latency in processor
cycles is increasing as processor speed increases relative to that of main memory. The
number of misses (or equivalently, the miss ratio) is also increasing with larger data sets.
The miss ratio cannot be reduced sufficiently by increasing cache size because of cycle

72

time, size and cost constraints. Default hardware cache management strategies can
sometimes exacerbate miss ratios. For instance, a data stream with little tempora locality
can displace other data with better temporal locality. The increasing impact of cache misses
on overdl performance and the potentia for better performance using software strategies
motivates architectural mechanisms for cache management.

8.2 The architecture of PlayDoh's memory hierarchy

The architecturally visible levels of the PlayDoh architecture are asfollows: at the first-level
closest to the processor, there is a conventional first-level cache and a data prefetch (or
streaming) cache. At the next level, there is a conventiona second-level cache which is also
architecturaly visible. Beyond the second-level, there may be further levels of caching or
just main memory, but these levels are not architecturally distinct to the processor. The
exact structure of each cache depends upon the implementation and is not architecturaly
visible. The conventiona first- and second-level caches may be either a unified (instruction
and data) cache or separate instruction and data caches.

The data prefetch cache is used to prefetch large amounts of data having little or no
temporal locality while bypassing the conventional first-level cache. When such prefetching
is employed, the first-level cache does not have to replace other data potentially having
better tempora locdity. Typically, the data prefetch cacheis a fully-associative cache much
smaller in size than the first-level cache.

The PlayDoh architecture supports the standard set of |oad and store operations. For integer
values, the operation repertoire include byte, half-word and word operations at al levels of
the memory hierarchy. For floating-point values, the repertoire includes both single-
precision and double-precision operations, again at dl levels of the memory hierarchy. All
load and store operations have a predicate input that guards their execution. Load
operations can be issued speculatively, but there are no speculative stores. Memory
operations within an instruction are executed in an order that is consistent with ther
sequential |eft-to-right order of execution. The PlayDoh architecture also supports run-time
memory disambiguation through three related families of operations, called data speculative
load (LDS), data verify load (LDV), and data verify branch (BRDV), which were described
in more detail in Section 7.

The standard memory operations take a fully-resolved virtual memory address as an
argument. Post-increment operations are smilar to the standard load/store operations, but
they have the additiona capability to compute new addresses for subsequent load/store

73

operations. The new address is the sum of the accessed memory address and a
displacement, which can be either aliteral or a value stored in a GPR. The new address is
deposited in the specified destination register, which may or may not be identica to the
source address register. Pre-increment operations are not supported because they disrupt
the flow of operations through the memory pipeline.

8.3. Novel PlayDoh features

The PlayDoh architecture provides architectural mechanisms to explicitly control caches.
These mechanisms selectively override the usua simple default hardware policies. The
mechanisms are used when the compiler has sufficient knowledge of the program's
memory accessing behavior and when significant performance improvements are obtainable
through software control. If not, the default hardware policies apply.

8.3.1 Source cache (and latency) specifier

There are two specifiers associated with each |oad operation. Thefirst specifier, the latency
and source cache specifier, is used by the compiler to indicate its view of where the data is
likely to be found. Consequently, it aso implicitly specifies the load latency assumed by
the compiler. The available latency specifier choices are V1, C1, C2, C3 for the prefetch
cache, first-level cache, second-level cache and other levels of the memory hierarchy
respectively. Subsequently, we refer to aload with a C1 specifier as a short-latency load
and a C2 specifier as along-latency load.

Before describing the latency specifier further, we distinguish between a latency-stalled
machine and a use-stalled machine. In a latency-stalled machine, each load specifies a
latency and the processor stalls if the data is not avallable at the prescribed latency,
regardless of whether or not the data is, in fact, used immediately by an operation in the
instruction being issued (Section 2). In a use-stalled machine, the processor stalls on
coming to an instruction which uses data which has not yet returned from memory. In the
spectrum from superscalar to VLIW machines, latency-stalling is philosophically closer to
the VLIW end whereas use-stalling is closer to the supercalar end.

In alatency-stalled machine, the compiler is responsible for ensuring that a load operation
and its use operations are separated by at least the latency of the load. Otherwise, when the
use operation isissued before the load completes, the use operation may incorrectly use the
old value in the register being loaded. The choice of the latency specifier has important
performance implications. When aload is likely to miss in the first-level cache and when

74

sufficient paralelism exist to pad the slots between a long-latency load and its uses,
choosing along-latency load can eiminate potentia stalls. On the other hand, when a load
islikely to hitin the first-level cache, choosing a short-latency load can diminate potential
empty operation issue slots.

In a use-stalled machine, the processor is responsible for staling the machine to ensure
that a use gets the value that is being loaded. Therefore, in a use-stalled machine, the
latency specifier has abearing on neither correctness nor performance. However, as in the
latency-stalled machine, the compiler must control the separation between a load and its
uses to reduce stall cycles.

8.3.2 Target cache specifier

The second specifier, the target cache specifier, is used by the compiler to indicate its view
of the highest level to which the loaded data should be promoted for use by subsequent
memory operations. This specifier can take on the same values as the source cache
specifier: V1, C1, C2, C3. This specifier is used by the compiler to control the cache
contents and manage cache replacement.

A store operation can only have a target cache specifier. As with the load operations, it is
used by the compiler to specify the highest level in the cache hierarchy a which the stored
data should beinstalled to be available for use by subsequent memory operations.

Non-binding loads (conventionally referred to a prefetches) cause the specified promotion
of data in the memory hierarchy without atering the state of the register file. In a non-
binding load, the destination of the load is specified as register 0. (In PlayDoh, this is a
register which is hardwired to contain the value 0.) In order to distinguish between the two
first-level caches, we use the terms pretouch and prefetch, respectively, to refer to non-
binding loads that specify the target cache as C1 and V1. In contrast to regular loads,
prefetches and pretouches bring the data closer to the processor without tying up registers
and thereby increasing register pressure.

8.4 Usage and compiling
The source cache or latency specifiers are used by the compiler to schedule loads to reduce
cache miss stalls while containing any increase in schedule length, operation count, or

register pressure. The target cache specifiers are used by the compiler to reduce misses in
the first- and second-level caches by controlling the contents of the caches at various levels.

75

Specificaly, the compiler may route large data streams with little tempora locality through
the prefetch cache to prevent replacement of other data with greater temporal locality from
thefirst-level cache.

8.4.1 Hiding the load latency

Our analysis indicates that the behavior of individual load operations in integer as well as
floating-point benchmarks is favorable to compiler-directed cache management [3, 2].
Firstly, asmall number of load operations are responsible for a mgjority of the data cache
misses in a program. Thus, the number of load operations that have to scheduled with the
miss-latency are small, potentially mitigating the effect on schedule length. Secondly, loads
tend to have bi-modal behavior with most loads always hitting in the data cache while a
second set of loads tend to miss with an individual miss ratio much higher than the global
missratio. Typically, only a small fraction of accesses are accounted for by the remaining
loads with an intermediate miss ratio close to the globa miss ratio. This behavior is also
promising, because the costs of scheduling with the miss latency are incurred primarily by
those loads most likely to benefit from reduced stalls.

In compiler-directed miss-sensitive scheduling, the compiler schedules likely-to-miss
(missing) loads with the cache-miss latency and schedules other loads with the cache-hit
latency. Since the experimenta analysis indicates that loads tend to have a bi-modal
behavior, let us first consider the case where some loads are known to always miss the
cache and other loads aways hit the cache. In a latency-stalled machine, the compiler uses
the long-latency (C2) specifier for the missing loads and the short-latency (C1) specifier for
the other loads. As with other operations, the scheduler ensures that uses are scheduled
after the prescribed latency of the loads. In a use-stalled machine, the compiler may use the
C1 specifier for all loads, but ensure that uses of missing loads are scheduled after the miss
latency. Since a use-stalled processor does not stall till the use operation, the missing loads
do not cause stalls because their uses are scheduled a the miss latency. In a use-stalled
processor, the compiler implicitly specifies an arbitrary latency by appropriately scheduling
the uses of the load.

Now consider the problem of scheduling loads with an intermediate miss ratio for a
latency-stalled machine. The higher latency of along-latency load can increase the critical
path of a scheduling region and increase schedule length. Also, since the register targeted
by the load has to be reserved from the issue of the load till its use by a subsequent
operation, register lifetimes are lengthened. The choice between short-latency (C1) and

76

long-latency (C2) for these loads depends on the tradeoff between reduced stalls that result
from the use of a long-latency load versus the increased schedule length and register
pressure associated with long-latency loads. The benefit of reduced salls is directly
proportiona to the estimated miss ratio. Thus, the compiler considers dl these factors in
deciding on a suitable latency specifier. The factorsinvolved in choosing alatency for these
loadsis similar for use-stalled machines. Since the load latency isimplicitly specified by the
separation between a load and its first use, the compiler may choose any latency from the
short- to the long-latency. For instance, the compiler may determine the dack (or
scheduling freedom) associated with a load in choosing its latency. Thus, the compiler
attempts to choose the maximum possible latency without adversely affecting overall
schedule length.

Though our work indicates that miss-sensitive scheduling can be an effective compiler
technology, there are Hill issues left to be resolved. Firstly, missing loads need to be
identified prior to or during compilation. Though such loads can be identified in regular
matrix-based programs, there are only broad heuristics for integer applications. These
heuristics need to be refined further. Currently, we use cache profiling to identify such
loads. Secondly, it is not clear whether adequate parallelism and scheduling flexibility is
present to schedule missing loads with the cache-miss latency in integer applications.
Techniques to relax scheduling constraints associated with missing loads are being
developed. For instance, converting a long-latency load to a pretouch liberates it from
memory dependence constraints. The compiler may maintain auxiliary data structures to
predict load addresses in atimely manner. For instance, if alist is traversed severa times,
the compiler may maintain a forward pointer with each element that points to an element
further down the list that can be brought into the cache. In conclusion, though memory
behavior analysis has indicated that miss-sensitive scheduling is promising, there are ill
significant open issues to be resolved.

8.4.2 Controlling the cache hierarchy

The target cache specifiers are used to control the contents of the caches at various levels.
By excluding data streams with little tempora locaity form the highest levels of the
memory hierarchy, and by removing data streams from the appropriate level when it is last
used, software cache management strategies using the target cache specifiers can reduce
data traffic between levels of the memory hierarchy and thereby improve missratios.

77

Misses may be divided into four components. compulsory, capacity, mapping and
replacement. Replacement misses are the additional misses in a practical cache managed
using a replacement policy such as LRU over a smilar cache managed using the
unredizable OPT replacement policy. In a typical two-way set-associative cache,
replacement misses contribute approximately 20% of the misses on the SPEC benchmarks
[62]. Hence, there is the potentia to reduce miss ratios by up to 20% using target cache
specifiersto override the default LRU replacement strategy.

In order to further characterize the benefit of target-cache specification, we describe the
following profile-driven optimization [62]. A profiling run was used to determine the reuse
ratio of each load/store instruction. The reuse ratio is the number of times the data
referenced by aload/store instruction is reused whileit isresident in the data cache over the
execution count of that instruction. A threshold on the reuse ratio, can be used to labd
instructions with atarget specifier of C1 or C2. In the experiments conducted, instructions
were labeled either as high or low reuse. Data touched by low reuse instructions were
labeled with alower priority in the cache and the replacement policy preferentially removed
this data from the first-level cache. This scheme reduced miss ratios by an average of 8.6%
for the SPEC89 benchmarks on reasonable on-chip first-level cache configurations.

9. Conclusion

Over the past few years, it has become apparent that the choice between VLIW and
superscalar is afalse one. Nether approach, in its most extreme form, is desirable and
most machines of interest will amost surely lie somewhere on the continuum between the
two extreme versions of these approaches. However, there is areal distinction that can be
made between the philosophical positions of of the proponents of these two approaches
which is quite reminiscent of the differing positions taken by the RISC and the CISC
camps. Early VLIW processors evolved from a belief that high levels of ILP were best
achieved by making the expensive decisions a compile-time, thereby permitting the
hardware to be relatively ssmple. This is still the philosophical underpinning of PlayDoh.
Mogt of the architectural features in PlayDoh are there to facilitate the compiler making
decisions which would otherwise have to be made by the microarchitecture at run-time.

The two features that best distinguish a VLIW processor from any other kind of ILP
processor are MultiOp and NUAL. In this article, we have articulated the benefits of these
two features, their problems, and some possible solutions to those problems. In our
opinion, MultiOp is the only practical approach for issuing large (more than eight)

78

operations per cycle. We also believe that latency stalling, which implies NUAL, is
preferable to use stalling at high levels of ILP since the decision to stall can be made locally
by each processor. However, a conclusive arguement in favor of NUAL and latency
stalling requires analysis at the detailed circuit level.

Therest of the PlayDoh features could, in principle, be used in either VLIW or superscalar
processors, athough some of them are better motivated by, or are more synergistic with,
VLIW and its absence of run-time scheduling and dependence checking. For instance,
predicated execution poses difficulties for processors with interlocking or any form of
dynamic scheduling. The problem is that predicated execution squashes an operation if its
predicate is false and allows it to execute normaly otherwise. Thus, the vaue of the
predicate determines whether an operation modifies its destination register. All of the
dynamic scheduling approaches available to a UAL architecture require knowledge of
which register is modified by each operation. At the time of issuing an operation, if the
value of the predicate is unknown, instruction issue must be stalled.

Alternatively, instruction issue can proceed using the conservative assumption that the
predicate is true and that the destination register, therefore, has a pending write to it.
Subsequently, if the predicate turns out to be false, the invalid bit for the destination
register must be reset, but the resulting temporary and spurious flow and output
dependences will have compromised performance. Register renaming, cannot be used since
subsequent operations will be waiting for the tag corresponding to an operation that will
never execute. Latency stalling, which applies only to NUAL architectures, does not
depend upon knowledge of which operation is modifying which register. It merely focuses
on the discrepancy between the actual and the assumed latencies. Consequently, the
presence of predicated execution has no impact upon it.

Oneissue that we have not touched upon in this article is that of object code compatibility.
In view of the widespread perception that this is the Achilles hed of VLIW processors, a
couple of points are worth making. First, the run-time mechanisms for performing dynamic
scheduling, and thereby achieving object code compatibility, are now understood for VLIW
processors [50] as they have been for superscalar processors. So, this is a non-issue.
Second, dynamic scheduling is amost as expensive for VLIW processors as it is for
superscalar processors, the complexity of dynamic scheduling is primarily a function of the
number of operations that the processor attempts to issue per cycle, and less a function of
the nature of the ILP processor.

79

Third, the importance of the debate, over whether static scheduling or dynamic scheduling
is better, is greatly overestimated. In addition to scheduling, a high qudity ILP compiler
must perform anumber of optimizations and code transformations, such as if-conversion,
control speculation, data speculation and critica path reduction, al of which are quite
machine-specific and cannot be performed at run-time. Dynamic scheduling alone cannot
solve the problem of executing code that has been compiled for one ILP processor on
another processor and at performance levelsthat are comparable to those achieved with re-
compilation. In view of these considerations, the choice appears to be between achieving
object code compatibility viadynamic scheduling, but at low levels of ILP, or to attain high
levels of ILP, but to alter the notion of object code compatibility to include concepts such as
dynamic trandation [15].

References

1. (Specid issue on the System/360 Modd 91). IBM Journal of Research and
Development 11, 1 (January 1967).

2. S G. Abraham and B. R. Rau. Predicting Load Latencies Using Cache Profiling.
Technical Report HPL-94-110. Hewlett-Packard L aboratories, November 1994.

3. S. G. Abraham, et al. Predictability of load/store instruction latencies. Proc. 26th
Annud International Symposium on Microarchitecture (December 1993), 139-152.

4. J. R. Allen, K. Kennedy, C. Porterfield and J. Warren. Conversion of control
dependence to data dependence. Proc. Tenth Annual ACM Symposium on Principles
of Programming Languages (January 1983), 177-189.

5. D.Il. August, B. L. Detrich and S. A. Mahlke. Sentind Scheduling with Recovery
Blocks. Technica Report CRHC-95-05. Center for Reliable and High-Performance
Computing, University of Illinois at Urbana-Champaign, February 1995.

6. G.R.Beck, D. W. L. Yenand T. L. Anderson. The Cydra 5 mini-supercomputer:
architecture and implementation. The Journal of Supercomputing 7, 1/2 (May 1993),
143-180.

7. E. Bloch. The engineering design of the STRETCH computer. Proc. Eastern Joint
Computer Conference (1959), 48-59.

8. R. A. Bringmann, et al. Speculative execution exception recovery using write-back
suppression. Proc. 26th Annua International Symposium on Microarchitecture
(Austin, Texas, December 1993), 214-223.

9. W. Buchholz (Editor). Planning A Computer System: Project Stretch. (McGraw-Hill,
New York, 1962).

10. M. Butler, et al. Single instruction stream paralelism is greater than two. Proc.
Eighteenth Annual International Symposium on Computer Architecture (Toronto,
1991), 276-286.

80

11.

12.

13.

14.

15.

16.
17.

18.

19.

20.

21.

22.

23.

24,

25.

A. E. Charlesworth. An approach to scientific array processing: the architectural
design of the AP-120B/FPS-164 Family. Computer 14, 9 (1981), 18-27.

T. C. Chen. Paralelism, pipelining, and computer efficiency. Computer Design 10, 1
(January 1971), 69-74.

W. Y. Chen. Data Preload for Superscalar and VLIW Processors. Ph. D. Thesis.
Department of Electrical and Computer Engineering, University of Illinois a Urbana-
Champaign, 1993.

R. P. Colwell, et al. A VLIW architecture for a trace scheduling compiler. IEEE
Transactions on Computers C-37, 8 (August 1988), 967-979.

T.M. Conteand S. W. Sathaye. Dynamic rescheduling: a technique for object code
compatibility in VLIW architecture. Proc. 28th Annud International Symposium on
Microarchitecture (Ann Arbor, Michigan, November 1995), 208-218.

Cydrome. Internal memo. (1988).

J. C. Dehnert, P. Y.-T. Hsu and J. P. Bratt. Overlapped loop support in the Cydra 5.
Proc. Third International Conference on Architectural Support for Programming
Languages and Operating Systems (Boston, Mass., April 1989), 26-38.

J. C. Dehnet and R. A. Towle. Compiling for the Cydra 5. The Journal of
Supercomputing 7, 1/2 (May 1993), 181-228.

K. Ebcioglu. Some design ideas for a VLIW architecture for sequential-natured
software, in Paralel Processing (Proc. IFIP WG 10.3 Working Conference on
Paralld Processing, Pisa, Italy), M. Cosnard, M. H. Barton and M. Vanneschi
(Editor). (North Holland, Amsterdam, 1988), 3-21.

J. P. Eckert, J. C. Chu, A. B. Tonik and W. F. Schmitt. Design of UNIVAC-LARC
System: I. Proc. Eastern Joint Computer Conference (1959), 59-65.

A. E. Eichenberger and E. S. Davidson. Predicated register alocation. Proc. 28th
Annua _International Symposium _on_Microarchitecture (Ann Arbor, Michigan,
November 1995).

J. Ferrante, K. J. Ottenstein and J. D. Warren. The program dependence graph and
its use in optimization. ACM Transactions on Programming Languages and Systems
9, 3 (July 1987), 319-349.

J. A. Fisher. Trace scheduling: a technique for global microcode compaction. |1EEE
Transactions on Computers C-30, 7 (July 1981), 478-490.

J. A. Fisher and S. M. Freudenberger. Predicting conditional jump directions from
previous runs of a program. Proc. Fifth International Conference on Architectural
Support_for Programming Languages and Operating Systems (Boston, Mass.,
October 1992), 85-95.

J. A. Fisher, D. Landskov and B. D. Shriver. Microcode compaction: looking
backward and looking forward. Proc. 1981 National Computer Conference (1981),
95-102.

81

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

C. C. Foster and E. M. Riseman. Percolation of code to enhance paralld dispatching
and execution. |EEE Transactions on Computers C-21, 12 (December 1972), 1411-
1415.

N. Gloy, M. D. Smith and C. Young. Performance issues in correlated branch
prediction schemes. Proc. 28th Annual International Symposium on
Microarchitecture (Ann Arbor, Michigan, November 1995), 3-14.

R. G. Hintz and D. P. Tate. Control Data STAR-100 processor design. Proc.
COMPCON '72 (September 1972), 1-4.

W. W. Hwu, T. M. Conte and P. P. Chang. Comparing software and hardware
schemes for reducing the cost of branches. Proc. 16th Annual International
Symposium on Computer Architecture (May 1989), 224-233.

W. W. Hwu, et al. The superblock: an effective technique for VLIW and superscalar
compilation. The Journal of Supercomputing 7, 1/2 (May 1993), 229-248.

W. W. Hwu and Y. N. Patt. HPSm, a high performance redtricted data flow
architecture having minima functionaity. Proc. 13th Annual International
Symposium on Computer Architecture (Tokyo, Japan, June 1986), 297-306.

W. W. Hwu and Y. N. Patt. Checkpoint repair for out-of-order execution machines.
|EEE Transactions on Computers C-36, 12 (December 1987), 1496-1514.

M. Johnson. Superscalar Microprocessor Design. (Prentice-Hall, Englewood Cliffs,
New Jersey, 1991).

R. A. Johnson and M. S. Schlansker. Analyzing Predicated Code. Technical Report
HPL-96-?? Hewlett-Packard L aboratories, 1996.

N. P. Jouppi and D. Wall. Available instruction level paralelism for superscalar and
superpipelined machines. Proc. Third International Conference on Architectural
Support for Programming Languages and Operating Systems (April 1989), 272-282.

V. Kathail, M. Schlansker and B. R. Rau. HPL PlayDoh Architecture Specification:
Version 1.0. Technical Report HPL-93-80. Hewlett-Packard Laboratories, February
1993.

P. M. Kogge. The Architecture of Pipelined Computers. (McGraw-Hill, New Y ork,
1981).

J. Labrousse and G. A. Slavenburg. A 50 MHz microprocessor with a VLIW
architecture. Proc. ISSCC '90 (San Francisco, 1990), 44-45.

J. K. F. Leeand A. J. Smith. Branch prediction strategies and branch target buffer
design. Computer 17, 1 (January 1984), 6-22.

D. C. Lin. Compiler Support for Predicated Execution in Superscalar Processors.
M.S. Thesis. University of llinois at Urbana-Champaign, 1992.

P. G. Lowney, et al. The Multiflow trace scheduling compiler. The Journal of
Supercomputing 7, 1/2 (May 1993), 51-142.

82

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

S. A. Mahlke, et al. Sentinel scheduling: a model for compiler-controlled speculative
execution. ACM Transactions on Computer Systems 11, 4 (November 1993), 376-
408.

S. A. Mahlke, et al. Characterizing the impact of predicated execution on branch
prediction. Proc. 27th International Symposium on Microarchitecture (San Jose,
Cdifornia, November 1994), 217-227.

S. A. Mahlke, e al. Effective compiler support for predicated execution using the
hyperblock. Proc. 25th Annual International Symposium on Microarchitecture
(1992), 45-54.

S. McFarling and J. Hennessy. Reducing the cost of branches. Proc. Thirteenth
International Symposium on Computer Architecture (Tokyo, Japan, June 1986), 396-
403.

A. Nicolau and J. A. Fisher. Measuring the parallelism available for very long
instruction word architectures. |EEE Transactions on Computers C-33, 11
(November 1984), 968-976.

J. C. H. Park and M. S. Schlansker. On Predicated Execution. Technica Report
HPL-91-58. Hewlett Packard Laboratories, May 1991.

C. Peterson, J. Sutton and P. Wiley. iWarp: a 100-MOPS, LIW microprocessor for
multicomputers. |[EEE Micro 11, 3 (June 1991), 26.

B. R. Rau. Cydra 5 Directed Dataflow architecture. Proc. COMPCON '88 (San
Francisco, March 1988), 106-113.

B. R. Rau. Dynamicaly scheduled VLIW processors. Proc. 26th Annual
International Symposium on Microarchitecture (Austin, Texas, December 1993), 80-
92.

B. R. Rau. Iterative modulo scheduling. International Journal of Parallel Processing
24, 1 (February 1996), 3-64.

B. R. Rau, M. S. Schlansker and P. P. Tirumaai. Code generation schemas for
modulo scheduled loops. Proc. 25th Annua International Symposium on
Microarchitecture (Portland, Oregon, December 1992), 158-169.

B. R. Rau, D. W. L. Yen, W. Yen and R. A. Towle. The Cydra 5 departmental
supercomputer: design philosophies, decisons and trade-offs. Computer 22, 1
(January 1989), 12-35.

E. M. Riseman and C. C. Foster. The inhibition of potential paraleism by
conditional jumps. |IEEE Transactions on Computers C-21, 12 (December 1972),
1405-1411.

R. M. Russell. The CRAY-1 computer system. Communications of the ACM 21
(1978), 63-72.

M. S. Schlansker and V. Kathail. Critical path reduction for scalar programs. Proc.
28th Annual International Symposium on Microarchitecture (Ann Arbor, Michigan,

November 1995), 57-69.

83

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

M. S. Schlansker, V. Kathail and S. Anik. Pardldization of control recurrences for
ILP processors. International Journal of Parallel Processing 24, 1 (February 1996),
65-102.

G. M. Silberman and K. Ebcioglu. An architectural framework for supporting
heterogeneous instruction-set architectures. Computer 26, 6 (June 1993), 39-56.

J. E. Smith. A study of branch prediction strategies. Proc. Eighth Annua
[nternational Symposium on Computer Architecture (May 1981), 135-148.

M. D. Smith, M. Horowitz and M. Lam. Efficient superscalar performance through
boosting. Proc. Fifth International Conference on Architectural Support for
Programming Languages and Operating Systems (Boston, Massachussetts, October
1992), 248-259.

G. S. Sohi and S. Vaapayem. Ingtruction issue logic for high-performance,
interruptable pipelined processors. Proc. 14th Annual Symposium on Computer
Architecture (Pittsburgh, Pennsylvania, June 1987), 27-36.

R. A. Sugumar and S. G. Abraham. Multi-configuration Simulation Algorithms for
the Evaluation of Computer Architecture Designs. Technical Report CSE-TR-173-93.
Department of Electrical Engineering and Computer Science, University of Michigan,
August 1993.

J. E. Thornton. Parallel operation in the Control Data 6600. Proc. AFIPS Fall Joint
Computer Conference (1964), 33-40.

P. Tirumalai, M. Lee and M. S. Schlansker. Paralldlization of loops with exits on
pipelined architectures. Proc. Supercomputing '90 (November 1990), 200-212.

G. S Tjaden and M. J. Flynn. Detection and paralel execution of paralléel
instructions. |EEE Transactions on Computers C-19, 10 (October 1970), 889-895.

R. M. Tomasulo. An efficient algorithm for exploiting multiple arithmetic units. 1B
Journal of Research and Development 11, 1 (January 1967), 25-33.

D. W. Wall. Limits of instruction-level paralelism. Proc. Fourth International
Conference on Architectural Support for Programming Languages and Operating
Systems (April 1991), 176-188.

W. J. Watson. The Texas Instruments Advanced Scientific Computer. Proc.
COMPCON '72 (1972), 291-293.

W. J. Watson. The TI ASC -- a highly modular and flexible super computer
architecture. Proc. AFIPS Fall Joint Computer Conference (1972), 221-228.

S. Weissand J. E. Smith. Instruction issue logic for pipelined supercomputers. Proc.
11th Annual International Symposium on Computer Architecture (1984), 110-118.

T.Y.Yehand Y. N. Patt. Alternative implementations of two-level adaptive branch
prediction. Proc. Nineteenth International Symposium on Computer Architecture
(Gold Coast, Australia, May 1992), 124-134.

72.

73.

C. Young and M. Smith. Improving the accuracy of datic branch prediction using
branch correlation. Proc. 6th Annua International Conference on Architectural

Support for Programming L anguages and Operating Systems (October 1994).

H. C. Young and J. R. Goodman. A smulation study of architectura data queues

and prepare-to-branch instruction. Proc. |EEE International Conference on Computer
Design: VLS in Computers, ICCD'84 (Port Chester, New Y ork, 1984), 544-549.

85

