Advanced Computer
Architecture
Lab 1: MIPS-R10000

LAP

Outline

MIPS R10000 is a superscalar processor from 1996

Easy to understand:

- Simple RISC ISA
- Relatively old processor (many of the presented techniques have not changed)

Great start before doing the homework!

- Impossible to do the homework without understanding this lab very well

Great opportunity to check your knowledge!

- (Ask the TAs as many questions as you want)

Outline

* This processor view is great and high level but how things
work in details?

This lab

* First: Read the paper if not already done

"~ THE Mips R10000
UPERSCALAR

Kenneth C. Yeager

Silicon Graphics, Inc.

he Mips R10000 is a dynamic, super-

scalar microprocessor that implements

the G4-bit Mips 4 instruction set archi-
tecture. It fetches and decodes four instruc-
tions per cycle and dynamically issues them
to five fully-pipelined, low-latency execution
units. Instructions can be felched and exe-
cuted speculatively beyond branches.
Instructions graduate in order upon comple-
tion. Although execution is out of order, the
nrocessor still nrovides seaquential memorv

MICROPROCESSOR

parallel while the processor executes other
instructions, This type of cache design is
called “nonblocking,” because cache refills
do not block subsequent accesses to other
cache lines. o :
Processors rely on compiler support w0
optimize instruction sequencing. This tech-
nique is especially effective for data: agrays,
such as those used in many floating-point
applications. For these arrays, a sophisticated
comniler can ontimize nerformance for a spe-

This lab

* Answer the questions
* Ask the TAs whenever you have any doubt on the paper
* We are here to help!

1 Pipeline and Register Renaming

1. Explain why in the 3rd stage of the pipeline (see Figure 2) the register
file is read in the 2nd half of each cycle. What are the advantages and
disadvantages of such an implementation?

2. Figure 5 describes register renaming. Why are the destination and source
registers represented with 5 bits in the original instruction, and with 6
bits after the renaming?

3. Specify the function of the queues, active lists, and map tables in the
R10000. Relate each of these to the structures described in the course
(reservation stations, ROB, ...).

A MNMueoceriho tho rale af tho comnanonte Rdar (mAd (B (Inl! Noet A Nect

This lab

Fill the simulation spreadsheet

Good starting point before implementing the simulator
(HW1)

You cannot implement the simulator without understanding
this lab very well

Use the TAs
Simulation details on the pdf on Moodle

Program

LDC1 $FO, #0000(%$I1)
LDC1 $F1, #0000(%$I1)
LDC1 $F2, #0000(%$I1)
LDC1 $F3, #0000(%$I1)
MUL.S $F4, $FO, $F3
MUL.S $F5, $F1, $F2
SUB.S $F4, $F4, $F5
ADD.S $F5,%$F0, $F1
MUL.S $F9, $F5, $F5
MUL.S $F10, $F4, $FO
SUB.S $F9, $F9, $F10
SQRT.S $F9, $F9
SDC1 F4, #0004(%$11)
SDC1 F5, #0005(%11)
SDC1 F9, #0006(%$11)
SDC1 $F10, #0007(%$I1)

Simulation

End of Cycle #0

[hctvelisti | [FP Register Map Table | [BusyBitTabe |
_Adess | OldDest [LogDest [Done Logical Map %00 0 %20 0 [AddessQuewe]
x00 %00 %00 x01 0 %21 0 Tag Rdy opa Dest
%01 x01 x01 x02 0 K22 0
x02 x02 x02 %03 0 X23 0
x03 %03 x03 %04 0 x24 0
x04 x04 x04 %05 0 X25 0
%05 %05 x05 %06 0 x26 4]
x06 %06 x06 %07 0 x27 0
%07 x07 x07 x08 0 x28 4]
x08 x08 %09 0 X29 0
[Adwelsiz | x09 x09 x0A 0 x2A 0
Adress Old Dest Log Dest Done x0A x0A x0B 0 ®2B 0
x08 x0B x0B x0C 0 x2C 0
x09 x0C x0C x0D 0 ®2D 0 Pipeline Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6 Stage 7
x0A x0D x0D x0E 0 X2E 0 @
x0B X0E x0E x0F 0 x2F 0 58 -
%0C XOF XOF %10 0 %30 0 g = o
x0D x10 x10 x11 0 x31 0 g 8 -
x0E x11 x11 x12 0 x32 0 =
x0F x12 x12 %13 0 x33 4]
%13 x13 x14 0 X34 0
[~ctvelists | x14 x14 x15 0 x35 0
Adress Old Dest Log Dest Done x15 x15 x16 0 x36 0
x10 x16 x16 x17 0 x37 0 . Fequee |
x11 x17 x17 x18] x38 0 Tag Rdy QpA QpB Qpc Dest
x12 x18 x18 x19 0 x39 0
%13 x19 x19 x1A 0 x3A 0
x14 X1A X1A x1B 0 x3B 0
x15 x1B x1B x1C 0 ®x3C 4]
x16 x1C x1C x1D 0 x3D 0
x17 x1D x1D x1E 0 *3E 4]
X1E X1E X1F 0 X3F 0
[~ctivelista | x1F xIF
Adress Old Dest | LogDest Done
x18 Free List
x19 FIFO1 4 x20 x4 %28 ®2C x30 ®34 %38 ®3C
X1A FIFO2 | x21 X25 x29 X2D x31 X35 %39 x3D
x1B FIF FIFBEE_' 26 x2A ®2E x32 x36 x3A ®3E
x1C FIF x27 x2B X2F X33 x37 x3B A X3F
x1D
o
x1F

Solution to Lab questions

Pipelining and Renaming: Question 1

* Why is the register file read in the? half of each cycle?

* We can write in the first half of the cycle and access the
results in the same cycle

* (drawback: register file has to be fast)

Pipelining and Renaming: Question 2

* Why are the destination and source registers represented
with 5 bits in original instructions and 6 bits after
renaming?

* 32 logical registers, 64 physical registers.

* More parallelism available than what is exposed to
programmer

Pipelining and Renaming: Question 3

Meaning of queues, active lists, map tables

Address Queue = Load Store Queue
FP Queue = Reservation Station
Active list = Reorder Buffer

Register Map Table = Mapping Table

Pipelining and Renaming: Question 4

Describe Rdy, OpA, OpB, OpC, Dest, Old Dest, Log Dest,
Tag, D

Rdy: Is the operand ready

OpA, OpB, OpC: Physical reqgisters of operands A, B, C
Dest: Physical destination register

Old Dest: Old physical register associated with logical
Log Dest: Logical register in the program

Tag: Addr within active list

D: Has the instruction been executed yet?

Pipelining and Renaming: Question 5

* How many memory bits for FP queue, active list, map
table, free reqister list, busy bit table?

* FP Queue:
- Tag = 5 bits, Rdy= 3 bits,
- OpA = OpB = OpC = Dest = 6 bits
- Func = 10 bits
- Unit = 4 bits
- Br =4 bits
- 50 bits / line, 16 entires in the FP queue, 16 * 50 = 800 bits.

Pipelining and Renaming: Question 5

* How many memory bits for FP queue, active list, map
table, free reqister list, busy bit table?

 Active List:

- OldDest = 6 bits

- Log Dest = 5 bits

- Done =1 bit

- Exc = 6 bits

- 18 bits / entry, 32 entries in the active list, 18 * 32 = 576 bits.

Pipelining and Renaming: Question 5

How many memory bits for FP queue, active list, map
table, free reqister list, busy bit table?

Register Map Table:
- 32 entries each 6 bits = 192 bits

Free Register List:
- 32 entries each 6 bits = 192 bits

Busy Bit table:
- 64 physical registers = 64 bits

Pipelining and Renaming: Question 6

* How many read / write ports in the busy bit / FP map table?
* Busy Bit Table read ports:

- Each instructions has up to 3 operands (opA, opB, opC)
- 4 instructions decoded per cycle
- 3 additional ports for special instructions

- = 15 read ports
* Map Table:

- 4 instructions decoded per cycle, 3 operands each, a destination register each
- Read physical reqisters: 4*4=16

- Write new renaming mappings: 4*1=4

Pipelining and Renaming: Question 7

* How dependencies are detected and modeled?

* WAW, WAR: Disappear because of register renaming
(become writes to different registers)

* RAW: busy bit table tracks operand dependencies in the
reservation stations

Exception Handling: Question 1

How R10000 handles exceptions?

Discards all instructions after the one triggering exception
in the ROB (program order)

Unmaps 4 instructions per cycle

- Need to check the oldDest of the Map table each time to restore mappings

Walits for instructions before the one triggering exception
to be done before jumping to exception handler

Exception Handling: Question 2

* What happens if instruction 6 generates an overflow?

* Going from the newest instruction in the active list to
oldest, 4 instructions per cycle:

- Read oldDest in the active list and updates the register map table

- Removes corresponding entries from reservation stations

Branch Prediction: Question 1

* What algorithm R10000 uses for branch prediction?

not talcen
Predict talen Predict taken
talcen

taken f not taken

not taken
Predict not taken Fredict not taken
* talken

Branch Prediction: Question 2

* What if a prediction is not correct?

* If the prediction is not correct, processor needs to restore
state as at the time of the branch. For R10000:

R10000 can predict at most 4 branches at a time
Each time a prediction occurs, store the processor state in the Branch Stack

Branch stack contains:
* the alternative address associated to the branch (the correct one)
* Copies of register map tables

Processor copies content of the Branch Stack to corresponding structures

Processor discards any instruction fetched along mispredicted path using the
branch mask

This operation takes a cycle, and no instruction can be decoded in the
meantime

Branch Prediction: Question 3

* Why is there a NOP after the branch in the given program?

* In the MIPS ISA, any instruction right after a branch is
always executed. The NOP is necessary for program
correctness when no instruction independent from the

branch can be scheduled at this slot.

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23

