Advanced
Computer Architecture

Part lll: Hardware Security
Cache Attack Lab

Shanqging Lin & Paolo lenne
<shanqing.lin@epfl.ch> & <paolo.ienne@epfl.ch>

Inspired by an assignment by Marten van Dijk, CWI, The Netherlands

Victim Function: Look-Up Table

 We want to guess a number used by a victim to look up a table
(index)

int LUT[256 * 512];
int victim(int input){

int index = (input * 163) & OxFF;
volatile int internal_value = LUT[index * 512];

return (internal_value * 233) & OxXFFFF;
}

* For simplicity:
— Accesses are distributed in different cache blocks (index * 512)

— The attacker and the victim share the same process (and therefore the same virtual
addresses)

Goal: Flush+Reload Attack

* Flush+Reload attack: since we share the address space with the
victim, we can reload the flushed victim data and directly see if we
get a hit (= victim accessed data):

— Flush LUT from cache
— Call the victim (it will access an unknown entry which will reveal the secret)

— Access each element of LUT and measure time (hits vs. misses)
LUT LUT LUT

8665|8277
8418919288
86184 | 3 |89
99196192(79
93|76|48|78
667418882

Flush Victim Measure

Environment Setup

You need a C compiler on an x86 machine for this lab

Linux users:
— Install gcc or clang according to your distribution

Windows users:
— You can use any C/C++ IDE (Visual Studio, CLion)
— To use gcc, check this link: https://nuwen.net/mingw.html|

MacOS X users:

— This lab cannot be run without modifications on an M1 CPU
— You can use any C/C++ IDE (XCode, CLion)

— Install XCode command line tools: xcode-select -install

— Or use brew to install gcc: brew install gcc

https://nuwen.net/mingw.html

How to Flush a Variable from the Cache?

* Use x86 intrinsic _mm _clflush and mm_mfence

* To use them, include <x86intrin.h> (GCC or Clang) or <intrin.h>
(MSVC)

int variable_to _flush = 100;
Int main() {

_mm_clflush(&variable_to_flush);
for (volatileinti =0;1 < 100; i++);
_mm_mfence();

variable to flush++;
}
* However, we don't know if a cache miss occurs without measuring
time...

Why the Volatile For Loop and the Memory

Fence?
* Why the volatile for loop?

— Your x86 is an out-of-order processor and other instructions may be executed
before cflush get executed and committed (including those to measure time)

— A for loop waits for some cycles so that the following instructions will not enter
the pipeline before cflush commits.

— Since the loop body is empty, adding volatile to the variable ensures that the
compiler will not remove the loop altogether

« Why the memory fence?

— The processor and compiler may advance later memory instructions to improve
performance

— A memory fence prevents later memory instruction to get executed until the
mfence instruction is committed

— Probably the volatile for loop and the memory fence are partly mutually
redundant, but there is no harm in using both for safety

How to Measure Time?

Use x86 intrinsic rdtscp, which requires to include
<x86intrin.h>

Also include <stdint.h> for 64-bit integers

volatile unsigned int junk = 0;
uinto4 t t0 = rdtscp(&junk);

someQOperation();
uinto4 t delta = rdtscp(&junk) - to;

The delta Is measured in CPU cycles

This method will make it possible to differentiate cache hits
and misses

Step 1: Time Difference between Cache Hits
and Misses

 Write a simple program diff.c to measure the difference

— Define a variable

— Flush its content from the cache

— Access it and measure time (you are measuring a miss)

— Access it again and measure time (you are measuring a hit, now)
 Hint:

— When an OS assigns a virtual page for a variable, many OSes map it to a

physical page full of zeros, shared by all unitialized virtual pages

— Only on the first write to an address in the virtual page, it detects a write on a
shared physical page, copies the content to a new physical page, assigns the
new physical page to the virtual page, and finally performs the write (copy-on-
write policy)

— Since you do not want to measure all the above, remember to write something
in the variable before flushing the cache and thus avoid any issues

Time Difference for Cache Hit and Miss

Try to compile the program and run it

— Here the example uses as the C compiler and Slide is the
current working directory:

L]

> Slide clang diff.c -o diff
> Slide ./diff

Miss: 841, Hit: 145

The output could vary depending on your own machine
Run it many times to see if the output is reasonably stable

Based on the output, choose a threshold to distinguish hits
from misses

Step 2: Attack the Victim

 Use the provided attack.c file
 Write the code for a Flush+Reload attack on the victim:

1.
2.

3.
4.

5.

6.

Flush LUT from cache

Call the victim (it will access an unknown entry which will reveal
the secret)

Access each element of LUT and measure time (hits vs. misses)

Repeat 1-3 several times (tens or hundreds?) and record which
accesses were hits

Find the most frequently detected location (i.e., the most likely
correct index)

Compare with the correct answer

 Use the provided file as a template and follow the guidance
there

Possible (Good) Result

attackl clang attack.c -0 attack && ./attack
Attack index: 94, Correct index: 94

Attack index: 73, Correct index: 73
Attack index: 172, Correct index: 172

If It Does Not Work for You...

* Attacks may not always work on the first attempt...

-» attackl clang attack.c -o attack && ./attack
Attack index: 5, Correct index: 94

Attack index: 5, Correct index: 73
Attack index: 2, Correct index: 172

* Try to print the hit count for each possible index

0: 0O 1: © 2: 98 3: 100 4: 99 5: 100 6: 99 7: 100
g: 100 9: 100 10: 100 11: 100 12: 100 13: 100 14: 100 15: 100

16: 100 1/7: 100 18: 100 19: 100 20: 100 21: 100 22: 100 23: 99
24: 99 25: 99 26: 100 2/7: 100 28: 100 29: 100 30: 100 31: 100

* This may give some ideas of what is not working...

A Typical Issue You May Observe

* The program always gives a small guess for index

-» attackl clang attack.c -o attack && ./attack
Attack index: 5, Correct index: 94

Attack index: 5, Correct index: 73
Attack index: 2, Correct index: 172

 And after a few positions, all index values are counted as hits

0: 0O 1: O 2: 98 3: 100 4: 99 5: 100 6: 99 7: 100
g: 100 9: 100 10: 100 11: 100 12: 100 13: 100 14: 100 15: 100

16: 100 1/: 100 18: 100 19: 100 20: 100 21: 100 22: 100 23: 99
24: 99 25: 99 26: 100 2/: 100 28: 100 29: 100 30: 100 31: 100

 What is happening?!

What Is Wrong? Data Prefetching
* Modern CPUs employ data prefetching to improve

performance
Time 0 1 2
Pipeline Access A AccessA+4 AccessA+ 8
Prefetcher Nothing Bring A+8 into Cache Bring A+12 into Cache
A A+4 A A+4 A A+4
A+8 A+12 A+8 A+12 A+8 A+12

* Prefetchers try to learn simple access patterns, such as a
seguential scan of an array

* Do we access LUT sequentially?

Where Do We Trigger Prefetching?

* The LUT Is accessed only in two places
— In victim function: we only access the LUT once, so no prefetching
— In the measurement?

« How do we measure the access time of all the blocks in LUT?
— Enumerate all the blocks and try to access each one by one

« What order do you use to access each block? Sequential? The prefetcher
might kick in...

* How to avoid the prefetcher to screw up our accesses?

— Shuffle the access order for time measurement to confuse the
prefetcher

Step 3 (if needed): Shuffle the Access Order

* We need a nonlinear and exact 1 to 1 mapping

* Possible solution: generate a table from 0 to 255, shuffle it, and use it
to translate sequential addresses into randomized ones

 python3 code to generate a header file:

import random

map_table = list(range(0, 256))
random.shuffle(map_table)

with open("shuffle_map.h","w") as f:
f.write("#pragma once \n")
f.write("const int forward[256] = {")
f.write(",".join(map(str, map_table)))
f.write("};\n")

* The provided file shuffle_ map.h is the output of the above script

	Advanced Computer Architecture — Part III: Hardware Security Ca
	Victim Function: Look-Up Table
	Goal: Flush+Reload Attack
	Environment Setup
	How to Flush a Variable from the Cache?
	Why the Volatile For Loop and the Memory Fence?
	How to Measure Time?
	Step 1: Time Difference between Cache Hits and Misses
	Time Difference for Cache Hit and Miss
	Step 2: Attack the Victim
	Possible (Good) Result
	If It Does Not Work for You...
	A Typical Issue You May Observe
	What Is Wrong? Data Prefetching
	Where Do We Trigger Prefetching?
	Step 3 (if needed): Shuffle the Access Order

