
1

Advanced
Computer Architecture

—
Part III: Hardware Security

Cache Attack Lab
Shanqing Lin & Paolo Ienne

<shanqing.lin@epfl.ch> & <paolo.ienne@epfl.ch>

Inspired by an assignment by Marten van Dijk, CWI, The Netherlands

2

Victim Function: Look-Up Table
• We want to guess a number used by a victim to look up a table

(index)

// See attack.c
int LUT[256 * 512];
int victim(int input){
 // some processing over input
 int index = (input * 163) & 0xFF;
 // Use it to access the LUT.
 volatile int internal_value = LUT[index * 512];
 // Other processing...
 return (internal_value * 233) & 0xFFFF;
}

• For simplicity:
– Accesses are distributed in different cache blocks (index * 512)
– The attacker and the victim share the same process (and therefore the same virtual

addresses)

3

Goal: Flush+Reload Attack
• Flush+Reload attack: since we share the address space with the

victim, we can reload the flushed victim data and directly see if we
get a hit (= victim accessed data):
– Flush LUT from cache
– Call the victim (it will access an unknown entry which will reveal the secret)
– Access each element of LUT and measure time (hits vs. misses)

4

Environment Setup

• You need a C compiler on an x86 machine for this lab
• Linux users:
– Install gcc or clang according to your distribution

• Windows users:
– You can use any C/C++ IDE (Visual Studio, CLion)
– To use gcc, check this link: https://nuwen.net/mingw.html

• MacOS X users:
– This lab cannot be run without modifications on an M1 CPU
– You can use any C/C++ IDE (XCode, CLion)
– Install XCode command line tools: xcode-select -install
– Or use brew to install gcc: brew install gcc

https://nuwen.net/mingw.html

5

How to Flush a Variable from the Cache?
• Use x86 intrinsic _mm_clflush and _mm_mfence
• To use them, include <x86intrin.h> (GCC or Clang) or <intrin.h>

(MSVC)
// here is a variable
int variable_to_flush = 100;
int main() {
 // you want to flush it
 _mm_clflush(&variable_to_flush);
 // wait several cycles for clflush to commit
 for (volatile int i = 0; i < 100; i++);
 // memory fence
 _mm_mfence();
 // this will trigger a cache miss
 variable_to_flush++;
}

• However, we don't know if a cache miss occurs without measuring
time...

6

Why the Volatile For Loop and the Memory
Fence?

• Why the volatile for loop?
– Your x86 is an out-of-order processor and other instructions may be executed

before cflush get executed and committed (including those to measure time)
– A for loop waits for some cycles so that the following instructions will not enter

the pipeline before cflush commits.
– Since the loop body is empty, adding volatile to the variable ensures that the

compiler will not remove the loop altogether
• Why the memory fence?

– The processor and compiler may advance later memory instructions to improve
performance

– A memory fence prevents later memory instruction to get executed until the
mfence instruction is committed

– Probably the volatile for loop and the memory fence are partly mutually
redundant, but there is no harm in using both for safety

7

How to Measure Time?

• Use x86 intrinsic __rdtscp, which requires to include
<x86intrin.h>

• Also include <stdint.h> for 64-bit integers

volatile unsigned int junk = 0; // A junk number as parameter
uint64_t t0 = __rdtscp(&junk); // get current time stamp
// execute the operation to time
someOperation();
uint64_t delta = __rdtscp(&junk) - t0; // delta is the duration

• The delta is measured in CPU cycles
• This method will make it possible to differentiate cache hits

and misses

8

Step 1: Time Difference between Cache Hits
and Misses

• Write a simple program diff.c to measure the difference
– Define a variable
– Flush its content from the cache
– Access it and measure time (you are measuring a miss)
– Access it again and measure time (you are measuring a hit, now)

• Hint:
– When an OS assigns a virtual page for a variable, many OSes map it to a

physical page full of zeros, shared by all unitialized virtual pages
– Only on the first write to an address in the virtual page, it detects a write on a

shared physical page, copies the content to a new physical page, assigns the
new physical page to the virtual page, and finally performs the write (copy-on-
write policy)

– Since you do not want to measure all the above, remember to write something
in the variable before flushing the cache and thus avoid any issues

9

Time Difference for Cache Hit and Miss

• Try to compile the program and run it
– Here the example uses clang as the C compiler and Slide is the

current working directory:

• The output could vary depending on your own machine
• Run it many times to see if the output is reasonably stable
• Based on the output, choose a threshold to distinguish hits

from misses

1
0

Step 2: Attack the Victim

• Use the provided attack.c file
• Write the code for a Flush+Reload attack on the victim:

1. Flush LUT from cache
2. Call the victim (it will access an unknown entry which will reveal

the secret)
3. Access each element of LUT and measure time (hits vs. misses)
4. Repeat 1-3 several times (tens or hundreds?) and record which

accesses were hits
5. Find the most frequently detected location (i.e., the most likely

correct index)
6. Compare with the correct answer

• Use the provided file as a template and follow the guidance
there

1
1

Possible (Good) Result

1
2

If It Does Not Work for You...
• Attacks may not always work on the first attempt…

• Try to print the hit count for each possible index

• This may give some ideas of what is not working…

1
3

A Typical Issue You May Observe
• The program always gives a small guess for index

• And after a few positions, all index values are counted as hits

• What is happening?!

1
4

What Is Wrong? Data Prefetching
• Modern CPUs employ data prefetching to improve

performance

• Prefetchers try to learn simple access patterns, such as a
sequential scan of an array

• Do we access LUT sequentially?

1
5

Where Do We Trigger Prefetching?

• The LUT is accessed only in two places
– In victim function: we only access the LUT once, so no prefetching
– In the measurement?

• How do we measure the access time of all the blocks in LUT?
– Enumerate all the blocks and try to access each one by one

• What order do you use to access each block? Sequential? The prefetcher
might kick in…

• How to avoid the prefetcher to screw up our accesses?
– Shuffle the access order for time measurement to confuse the

prefetcher

1
6

Step 3 (if needed): Shuffle the Access Order
• We need a nonlinear and exact 1 to 1 mapping
• Possible solution: generate a table from 0 to 255, shuffle it, and use it

to translate sequential addresses into randomized ones
• python3 code to generate a header file:

import random

map_table = list(range(0, 256))
random.shuffle(map_table)

with open("shuffle_map.h","w") as f:
 f.write("#pragma once \n")
 f.write("const int forward[256] = {")
 f.write(",".join(map(str, map_table)))
 f.write("};\n")

• The provided file shuffle_map.h is the output of the above script

	Advanced Computer Architecture — Part III: Hardware Security Ca
	Victim Function: Look-Up Table
	Goal: Flush+Reload Attack
	Environment Setup
	How to Flush a Variable from the Cache?
	Why the Volatile For Loop and the Memory Fence?
	How to Measure Time?
	Step 1: Time Difference between Cache Hits and Misses
	Time Difference for Cache Hit and Miss
	Step 2: Attack the Victim
	Possible (Good) Result
	If It Does Not Work for You...
	A Typical Issue You May Observe
	What Is Wrong? Data Prefetching
	Where Do We Trigger Prefetching?
	Step 3 (if needed): Shuffle the Access Order

