
Advanced Computer Architecture
—

Part II: Embedded Computing
High Level Synthesis

EPFL – I&C – LAP

Adapted from Xilinx UG871 & UG902



Vivado High Level Synthesis (HLS)

 Software tool for synthesis and analysis of HDL design

 Compiles C programs to generate RTL

 Targets FPGA platforms

 Our goal is to understand how to analyze & optimize 
HDL design using HLS, in particular Vivado HLS

2



Vivado HLS Workflow

 Create a C file describing the HDL design

 Optimize performance using HLS directives

 Validate its functionality using C simulation

 Analyze the results using HLS analysis tools

Not covered in this lab

 Validate RTL

 Synthesize design and integrate it on an FPGA

3



Vivado Workflow

4



Design Under Test

 Implementation of “Discrete Cosine Transform”

 C code describes the function

 The code is given in the following hierarchy

5

D
CT

R
ea

d
W

rit
e

D
CT

_2
D

Double Loop

Loop
DCT_1D (double loop)

Double loop
Loop

DCT_1D (double loop)
Double loop

Double Loop



Creating a Project

 Use tcl scripts to automatically create a project
 Add C files for design
 Add C files and data files for testbench

 Create a new solution
 One project can have multiple solutions
 Each solution has different set of HLS optimization directives
 One solution is active at a time

 Set target FPGA and target clock period

6



Creating a Project

 Download the project files from Moodle page
 Don’t use any spaces in the file path

 Create a project from a tcl script
 Windows: Using Vivado HLS Command Prompt
 Linux: Using the terminal

vivado_hls –f run_hls.tcl

 A new folder (dct_prj) should be created

 Open the project in Vivado GUI
vivado_hls –p dct_prj

7



Vivado GUI

8



Navigating the Project

 The project starts in synthesis perspective

 Explorer pane shows different files & solutions in project
 Open the source file (dct.cpp) from the explorer menu
 The source file contains the main design 

 Auxiliary pane shows outline of design & interface to add 
optimization directives

 Debug perspective: useful for C simulation

 Analysis perspective: useful for design performance analysis

9



Design Validation

 Validate design using write C file testbenches
 Testbench already added to this project

 Allows to add design as a C function

 Run simulation
 Project  Run C Simulation

 You can use toolbar button as well

 Prints output on console

 Debugger (Run C Simulation + Launch debugger) gives 
advanced debug capabilities

10



Synthesis

 Synthesize the design (one solution at a time)
 Solution  Run C Synthesis  Active Solution

 You can use toolbar button as well

 Generates synthesis reports
 Access reports in Explorer menu
 Solution#  syn  project name

 Each function in the design is an instance
 Each instance has a report

 Keep an eye on synthesis report on the console

11



Synthesis Report

 Performance estimates
 If design meets timing constraints
 Reports latency and initiation interval (II)
 Breaks down performance per instance and loop in the design

 Utilization estimates
 Summarizes the resources needed for the design

 Interface
 Reports the ports used by the design

12



Analysis Perspective

 Switch to Analysis perspective

 Performance view shows how operations in particular 
block are scheduled into clock cycles/control states

 The Resource view shows how the resources in the 
design are used in different control states

 Module Hierarchy breaks down performance per instance
 Switch modules using this menu

 Performance Profile breaks down performance per loop

13



Analysis Perspective

14

Performance & Resource view



Analysis Perspective

 Looking at “dct” analysis, we see two loops even though 
we had only three functions

 Look at synthesis report on the console (switch 
perspectives for that)

 Notice how these functions were inlined

 Using data in performance profile, present latency 
breakdown of “RD_Loop_Row” and “WR_Loop_Row”

15



Performance View

16



Performance View

 Performance view color coding
 Blue: basic operation
 Yellow: loop
 Green: Instance/function

 For “RD_Loop_Col” loop, explain each basic operation
 Right-click on operation and “go to source” to get some insight

 What’s the read latency? and the write latency?

17



Loop Pipelining

 Pipeline the loops to improve performance
 Switch to synthesis directive
 Create a new solution (copy from original solution)
 For each of the inner most loops

(DCT_Inner_Loop, Xpose_Row_Inner_Loop, Xpose_Col_Inner_Loopr,

RD_Loop_Col, WR_Loop_Col)
 Double click on the loop to insert directive
 Pick pipeline directive
 Keep directive destination in directives pane
 (Adding to directive source creates issues with multiple solutions)
 Leave options empty, II will be set to 1 (best case)

 Synthesize

18



Loop Pipelining

 Compare performance with previous solution
 Project  Compare Reports

 How does pipelining decrease II?
 How does pipelining affect the loop latency breakdown from slide15?

 Flattening is done automatically with pipelining
 Synthesis report shows 4 flattened loops out of 5

 Why “DCT_Outer_Loop” cannot be flattened?

 Point to the reason by reading the synthesis report and relating it to the 
design code

19



Outer Loop Pipelining

 Pipelining outer loop causes inner loop to be unrolled
 Solves issue with loops that can’t be flattened

 Create new solution 
 Start from solution2
 Remove pipeline directive on “DCT_Inner_Loop”
 Add pipeline directive to “DCT_Outer_Loop”
 Synthesize

 How does unrolling affect performance and resource 
utilization?

Note that design might not meet timing, though it is not major

20



Review for Bottlenecks

 Using the performance view in the analysis check which 
loop can still be further optimized, explain

21



Resource View

 Observe inner loop of “dct_1d2” in performance view
 Notice operations in this loop are serialized even though loop is 

pipelined
 Can you explain this behavior?

 Switch to resource view
 “src” read ports are used in every single cycle
 How can we solve the port bottleneck?

22



Resource View

23



BRAM Partitioning

 Trace inputs used for each instance of “dct_1d2”

 Partition these inputs to allow better pipelining
 For each input add an “array_partition” directive
 Set type to “complete”
 Synthesize

 How does partitioning affect performance and resource 
utilization?

24


