Advanced Computer Architecture

CS-470

24th June 2023, 9:15am—-11:15am, Room CE6

e The exam lasts exactly 2 hours.
* No books, notes, or references are allowed.

* Read the questions carefully—they may not be asking what you think at
first.

e Answer all the questions in the space provided (you are encouraged to
use more sheets to develop many of the solutions, but these should not
be handed in).

e Try to be as succinct and to the point as possible: long and vague an-
swers will be treated at a disadvantage!

e When required, explain the answer given—a correct answer without an
appropriate explanation is worthless.

Identification

SUINAME AN MBI ittt ettt et et et et et e e e e e e e e e e e

SO P E R MO ottt e e e e e e e e .

1 Out-of-Order (0O00) Execution

a. Consider a processor which can issue a single instruction per cycle and whose functional units
take exactly one cycle to execute any instruction. How much advantage would you expect by
implementing the logic for 000 execution? Explain your answer.

No. The purpose of 000 is to execute later instructions ahead of time to hide the latency of early
instructions, so that the processor is always busy. For a single-issue processor with all instructions
taking one cycle to finish, dependencies cannot delay any instruction from being issued.

b. Which structures of 000 processors are responsible of changing the order of execution of instruc-
tions?

Reservation stations and the load-store queue.

c. A Reorder Buffer (ROB) is one of the key components for an 000 processor to implement precise
exceptions and speculative execution. The basic idea is to hold back state updates until the exe-
cution of an instruction is fully confirmed (no exceptions, no mispredictions, etc.). Why might the
ROB contain the address in memory of the instruction (informally sometimes called PC)?

The PC would be needed in case of exception, to load appropriately the EPC.

d. Suppose that a processor has 32 architectural registers and an implementation has a 32-entry
ROB. (a) What would be the maximum number of physical registers that would make sense for it?
(b) Would it make sense to have fewer physical registers than that? What might happen in that
case? Explain.

(a) 64. More would never be used at once. (b) Yes, but then decoding might need to stop if there
are no free physical registers.

2 Register Copy Elimination

The decode stage of modern processors can execute directly copy instructions such as move rY, rX,
where the value of register rX is copied to the register rY. The idea is to implement the copy by simply
mapping the architectural register rY to the same physical register to which rX is mapped.

a. Consider the following processor resources:

e reorder buffer,
* reservation stations, and
¢ physical register file.

For each of these three resources, mention if you expect them to be on average (i) less occupied,
(ii) more occupied, or essentially (iii) left unaffected by this modification. Briefly explain.

e Reorder buffer: Unaffected, because the instruction should still be tracked for sequential
ordering.

e Reservation stations: Less occupied, because no actual functional unit is used.

e Physical register file: Less occupied, because no additional physical register is allocated.

b. Consider a normal register renaming scheme such as the one implemented in the MIPS R10000.
What are the two situations when physical registers are freed and made available for a new use?

There are two cases:

¢ When aninstruction is committed, the old physical register mapping to the dest architectural
register should be recycled.

e When there is a rollback (e.g., exception, or branch misprediction), all in-flight instruction
destination physical registers will be recycled.

c. If more than a single architectural register points to the same physical register, it will be more
complicated to figure out when the physical register can be freed. Suggest an idea on how this
problem could be solved.

An additional entry is needed for every physical register to track how many architectural registers
are mapped to it (i.e., a counter of references). During the decode stage, when copy elimination
happened, the reference counter is increased. Before attempting to free a physical register, the
reference counter is decremented and actually freed only if the counter is null.

3 Memory Order Speculation

a. Both 000 processors and VLIW processors reorder memory instructions to improve parallelism.
What are the two ways used in Itanium to reorder memory instructions?

e Speculative load, when a load instruction is moved before a branch instruction. It requires
the user to check the load poison bit before using the result, in case an exception happened.

¢ Advanced load, when a load instruction is moved before a store instruction. It requres the
user to check the load poison bit before using the result, in case the store and the load
accessed the same memory location.

b. Foreach of the two ways mentioned above, name the mechanisms implementing the correspond-
ing memory reordering in an 000 processor.

¢ Branch prediction and speculation achieve the same effect as an speculative load.

e Dependency prediction and speculation achieve the same effect as a advanced load.

¢. Why do both designs only reorder load instruction, rather than reorder both load and store in-
structions?

¢ In both VLIW and 000 processors, store instructions do not return any data and thus cannot
create any register dependency; hence, there is little motivation to reorder.

¢ In an 000 processor, store instructions are only executed when committed, because they
alter the machine state irreversibly. Thus, they are executed in program order.

d. Do you think it might be possible to conduct a Meltdown attack on Itanium? Explain.

No. Meltdown makes an illegal access to memory. Although the returned value of the load is
never made architecturally visible, of course, Meltdown exploits speculative execution to leave an
imprint of the value in the cache before the speculated instruction are cancelled. Since Itanium
has no way to hide a returned value (there is no commit phase), any load, including advanced
and speculative loads, must only return legitimate values or return garbage—in fact, a speculative
load returns NaN in Itanium.

4 Dynamic Binary Translation

As an intermediate layer between traditional software and hardware, dynamic binary translation is an
effective tool to solve many problems at binary level.

a. What problem of VLIW processors is mitigated by using dynamic binary translation?

Binary incompatibility.

b. Many dynamic binary translation engines (e.g., Transmeta Crusoe, Intel Pin, DynamoRIO) use a
translation cache to improve performance. Name one program property that makes a translation
cache beneficial. Explain.

In general, temporal locality as for all caches. This may occur because of loops or because of
frequently used functions and routines.

¢. A particular form of dynamic binary translation is dynamic code optimization, which can generate
more efficient code than a static compiler by exploiting profiling information at runtime. This ean-
bles the construction of traces, that is, chains of basic blocks frequently executed as a sequence
and efficiently scheduled together.

Both trace scheduling and predication remove branch instructions. What is the main difference
between the two optimizations?

Traces are a form of static speculation and only contain instructions from one path (e.g., they
assume a branch is taken or not taken), while predicated execution involves instructions from
both paths and is not really speculative.

d. What is the equivalent way in an 000 processor to achieve the same goal that trace scheduling
achieves in a VLIW?

Dynamic branch prediction and speculative execution.

5 Cache Side-Channel Attack

You want to perform the cache attack of Lab 4 on an Apple M-series processor. However, this processor
has two important relevant characteristics:

¢ For the sake of security, it does not provide a high-resolution timer for user-space applications.

¢ By default, it does not provide an effective cache flush instruction
Assume that you have the full control of the victim functionality (i.e., the same way as in Lab 4).

a. How would you build a highly precise timer on an M-series multicore processor.

Utilize a separate core to build a timer by executing instructions that increment the value of a
counter in memory. The attacker thread can read the value of the counter to get an accurate
measure of time (probably in the range of 10 ns, due to the coherence protocol).

b. How would you implement cache flushing? Which information would you need in order to make
your plan work?

One can only use eviction to mimic the behavior of flushing. To fully fill the cache with one’s own
content, one needs to know all parameters of the cache, such as size, associativity, set selection
function, replacement policy, victim cache, etc. Also one needs to know something about the
mapping between virtual and physical addresses.

6 Spectre Attack

a. One of the key factors to successfully perform a Spectre attack is to train the branch predictor.
Explain why you need to train the branch predictor to perform a Spectre attack.

Because Spectre relies on leaking through the cache information obtained in a malicious memory
access performed after a branch misprediction, where the branch typically was intended to pre-
vent the access. Training the branch predictor is needed to guarantee that a branch misprediction
would happen when attacking.

b. Here is an idea for training the branch predictor:

for (dnt i = 0; i < 10; i++) {
// [...] omitted code to prepare the side channel attack

int input = LEGAL_INPUT;
if (1 ==9) {

input = MALICIOQUS_INPUT;
}

victim_function(input) ;
// [...] omitted code for counting

As you may know, modern processors use a combination of global branch history and branch
address to query the Pattern History Table (PHT). Thus, there are sound reasons to believe that
this might not work. Why?

This global branch history is different in the loop iteration when the malicious input is presented,
thus updating a one particular entry in the PHT during the preparation and using a different during
for the attack.

c. Suppose that indeed the attack fails. By inserting a simple loop before calling victim_function,
one would create a uniform history and the problem would be altogether avoided. Following this
idea, one could reverse-engineer the maximum global history a processor can hold. Explain a
possible experiment to get this information.

Each iteration of the simple loop would shift by one position in the global history the problematic
branch outcome of the test loading the input with the malicious input. While that branch out-
come remains in the global history, the attack fails. Hence, the minimum number of simple loop
iterations that make the attack succeed represents the size of the global history shift register.

7 Statically Scheduled HLS

Consider the following kernel:

fp16 polynomial (fp16 d) {
return (((((((d + 18.3) * d + 7.2) * d) + 93.2) * d) + 56.1) * d);
}

fp64 accumulation(fpi6 A[N]) {
fp64 acc = 0.0;
for (int i = 0; i < 1000; i++) {
fpl6 elem = A[i];
acc += polynomial (elem);
}
return acc;

}

The £p16 and fp64 types are, respectively, 16-bit and 64-bit custom floating-point formats. In £p16,
there are only three available components: (i) a three-input component performing the addition of
two inputs and a multiplication of the result with the third component, (ii) a two-input component
performing a comparison, and (iii) a load unit. All have latency of one cycle and include a register before
the output. In £p64, the only available component is an adder with a 4-cycle latency; it has four pipeline
registers internally, including one before the output. All components can start a new operation every
cycle.

a. Draw the datapath that would be generated by a static HLS tool with a target initiation interval (1l)
of 1 for the function polynomial. Do not detail control signals, if any.

| 183

b. Now draw the datapath that would be generated by a static HLS tool with a target Il = 4 for the
same function polynomial. Do not detail control signals, if any.

c. Draw the best schedule for function accumulation. What is the II? Which of the previous imple-
mentations of polynomial is most adapted? Why?

Id Ali] t=g(d) s+=t

Id Ali] t=g(d) s+=t

Id Afi] t = g(d) s+=t

The Il is 4 due to the accumulation and the latency of the adder. Hence, there is no point on using
the implementation of bullet (a); the one at bullet (b) is cheaper and equally effective.

d. If there were an even cheaper implementation of polynomial with Il = 8, would a good HLS tool
use it? Explain.

No. It would slow down execution. [The question was actually a mistake, because it was meant
to ask about the influence of a higher latency, not higher Il....]

e. Now consider a different algorithm with the following loop (the rest is unmodified):

for (int i = 0; i < 1000; i++) {
fpl6 elem = A[il;
if (elem >= 0) {
acc += polynomial(elem);
}
}

Show the modified schedule. Assume, for instance, that the first three elements of A[] are posi-
tive, negative, and positive, respectively.

Id A[i] dof_f t=g(d) s+=t
Id Al dof_f t= g(d) s+=t
S Id A[i] doff t=g(d) St

8 Hybrid Statically and Dynamically Scheduled HLS

a. What overhead does dynamically scheduled HLS add over statically scheduled HLS? Explain.

The FSM controlling the datapath is replaced by handshake management logic. This is usually
more expensive (more area) and may creates a longer critical path (slower).

b. Now consider the code at the end of Question 7 (the version with the modified loop). Would
this code offer opportunities for dynamically scheduled HLS to achieve better performance than
statically scheduled HLS? Why? Justify your positive answer by showing the superior schedule of
the dynamically scheduled circuit or explain why it would make no difference in this case.

The loop carried dependendence now exists only when the values in the array are positive or null.
A dynamically scheduled circuit would not waste time for the accumulation when unnecessary.

Id A[l] doff t= g(d) o=
Id Ali] doff
Id Ali] doff t= g(d) S

¢. Can statically scheduled HLS be a better choice than dynamically scheduled HLS, in some cases?
Explain.

Statically scheduled HLS is better when the optimal schedule for the circuit does not depend from
runtime information, as in FIR filters or in (dense) matrix multiply.

d. Anidea could then be to implement some parts of the design as statically scheduled circuits and
limit the dynamic handshaking protocol only to those parts of the design which can really profit of
that. Explain which parts of the algorithm of Question 7 (again, the version with the modified loop)
you would synthesize with statically scheduled HLS and which parts with dynamically scheduled
HLS. Explain.

e The loop should be implemented as a dynamically scheduled circuit because the condition
and the existence of a loop-carried dependence depends on runtime information; the func-
tion polynomial, on the other hand, is a simple arithmetic operation that can be imple-
mented with static HLS.

10

