
CS460 - Systems for Data Management and Data Science EPFL SaCS and DIAS

15.04.2024 Week 8 exercises:
Distributed hash tables and consistency models�� ��Exercise 1:

In Pastry, each node maintains 3 tables: (1) routing table, (2) leaf set, and (3) neighborhood set. The
data items and nodes have unique 128-bit IDs, and are treated of as sequences of digits in base 24.

Explain the routing procedure in Pastry if node 63AB wants to retrieve the value of key EB3E . Give
an example of one possible routing path.

An example of the possible routing path could be:
• From its routing table, node 63AB finds node E123, which shares 1-digit common prefix with the key.
• Node E123 checks its routing table and gets node EB17, which shares 2-digit common prefix with the

key.
• Node EB17 then checks its routing table and gets node EB39, which shares 3-digit common prefix

with the key.
• Finally, node EB39 checks its leaf set and forwards the request directly to the node responsible for

key EB3E , which can finally return its corresponding value.�� ��Exercise 2:

Background: The figure below depicts a Prefix Hash Tree. Each vertex has either 0 or 2 children.
The left child is reached by following the edge labelled 0, and the right child is reached by following the
edge labelled 1. The white vertices are the inner vertices and the grey vertices are the leaf vertices. The
leaf vertices are connected to their left and right siblings through special pointers. The path string P to
a vertex is the string formed by the labels of the edges encountered on the path from the root to this
vertex, in order.

The leaf vertices can store PHT key-value pairs. The keys are D-length strings consisting of 0s and
1s. A key K can only be stored on the leaf-vertices for which P is a prefix of K. The table on the right
shows some keys that can be stored on leaf vertices with the given P. Moreover, the PHT automatically
balances itself by creating, removing and merging vertices.

1

https://edu.epfl.ch/studyplan/en/master/data-science/coursebook/systems-for-data-management-and-data-science-CS-460
https://www.epfl.ch/labs/sacs/
https://www.epfl.ch/labs/dias/


CS460 - Systems for Data Management and Data Science EPFL SaCS and DIAS

©2004 Ramabhadran et al.

class DHTNode {
Map DHTMap; // (DHT-Key → PHT-Node)

};

procedure DHTLookup(DHT-Key) // Available

class PHTNode {
bitString P;
bool isLeaf;
Map PHTMap; // (PHT-Key → PHT-Values)
bitString PathStringLeftSibling;
bitString PathStringRightSibling;

};

1. The vertices of the prefix hash tree need to be stored on a distributed hash table comprising of
several peers, i.e., PHT vertices need to be mapped into DHT nodes. Describe what will be the
DHT-key and value to be stored on the DHT. How will you decide which DHT-key will be assigned
to which peer? Note that this DHT-key is different from the PHT-key stored on the leaf-vertices
of the prefix hash tree.
DHT-Key = HASH(P); DHT-Value = PHTNode;
We can use Pastry as the DHT. The DHT-key will be stored on the peer with the closest NodeID
to the DHT-key.

2. The prefix hash tree is now stored on a DHT. A key (K) stored on the prefix hash tree needs to
be retrieved. Give the pseudocode of Prefix-Hash-Tree-Lookup(PHT-Key) for retrieving the value

2

https://edu.epfl.ch/studyplan/en/master/data-science/coursebook/systems-for-data-management-and-data-science-CS-460
https://www.epfl.ch/labs/sacs/
https://www.epfl.ch/labs/dias/


CS460 - Systems for Data Management and Data Science EPFL SaCS and DIAS

corresponding to K on the prefix hash tree over DHT. Can you find optimization opportunities in
the algorithm? You may assume the implementation of DHTLookup(DHT-key) is already provided.
Hint: Think of a simple linear algorithm.

1: procedure Get-PHTNode(PHT-Key)
2: for each p ∈ Prefixes(PHT-Key) do
3: node ← DHTLookup(HASH(p))
4: if node ̸= φ then
5: if node.isLeaf then
6: return node
7: return φ
8: procedure Prefix-Hash-Tree-Lookup(PHT-Key)
9: node ← Get-PHTNode(PHT-Key)

10: if node ̸= φ then
11: if PHT-Key ∈ node.PHTMap then
12: return node.PHTMap[PHT-Key]
13: return φ

Since each DHT Lookup is independent, we can run them in parallel or perform a binary search
on the prefix-space.

3. Now that you are able to fetch PHT-keys from the prefix hash tree, it is time to make use of this
combination of PHT and DHT to do something cool: range queries. Range queries return the values
of all the available PHT-keys Ki , given a range L ≤ R such that L ≤ Ki ≤ R. For example, in
the figure above, the range 000000 – 000100 should return the keys 000001, 000100, and 000100.
Taking advantage of how the PHT-keys are stored on the prefix hash tree, and the special pointers
mentioned before, sketch the pseudocode of PHT-Range-Query(L,R).

1: procedure PHT-Range-Query(L,R)
2: leftNode ← Get-PHTNode(L)
3: rightNode ← Get-PHTNode(R)
4: finalKeyValues ← φ
5: while True do
6: for each key ∈ leftNode.PHTMap do
7: if L ≤ key ≤ R then
8: finalKeyValues ← finalKeyValues ∪ {(key, leftNode.PHTMap[key])}
9: if leftNode = rightNode then

10: return finalKeyValues
11: leftNode ← DHTLookup(leftNode.PathStringRightSibling)

Please refer to the original paper for a more detailed read [1].�� ��Exercise 3:

Consider a baseball game where the data (score) is read and/or written by the following participants:

1. Official Scorekeeper: Maintains the official score. Writes to the persistent key-value store.

2. Umpire: Officiates a baseball game from behind home plate. The umpire, for the most part, does

3

https://edu.epfl.ch/studyplan/en/master/data-science/coursebook/systems-for-data-management-and-data-science-CS-460
https://www.epfl.ch/labs/sacs/
https://www.epfl.ch/labs/dias/


CS460 - Systems for Data Management and Data Science EPFL SaCS and DIAS

not actually care about the current score of the game. The one exception comes after the top half
of the 9th inning, that is, after the visiting team has batted and the home team is about to bat.
Since this is the last inning (and a team cannot score negative runs), the home team has already
won if they are ahead in the score; thus, the home team can and does skip its last at bat in some
games.

3. Radio reporter: Periodically announce the scores of games that are in progress or have completed.

4. Sportswriter: Watches the game and later writes an article that appears in the morning paper or
that is posted on some website.

5. Statistician: The team statistician is responsible for keeping track of the season-long statistics for
the team and for individual players.

6. Stat Watcher: A fan inquiring about the total number of runs scored by his team this season.

Based on the following definitions, associate these consistency guarantees with each of the participants
above.

(a) Strong Consistency See all previous writes.

(b) Eventual Consistency See subset of previous writes.

(c) Consistent Prefix See initial sequence of writes.

(d) Bounded Staleness Guarantee on reading all writes that are older than a certain age.

(e) Monotonic Reads See increasing subset of writes.

(f ) Read My Writes See all writes performed by reader.

Answer:

(a) Official Scorekeeper - Read My Writes

(b) Umpire - Strong Consistency

(c) Radio reporter - Consistent Prefix and Monotonic Reads

(d) Sportswriter - Bounded Staleness

(e) Statistician - Strong Consistency, Read My Writes

(f ) Stat Watcher - Eventual Consistency

This question corresponds to a very famous article from Doug Terry at Microsoft Research - Replicated
data consistency explained through baseball.

The corresponding video can be found here: https://youtu.be/gluIh8zd26I

4

https://edu.epfl.ch/studyplan/en/master/data-science/coursebook/systems-for-data-management-and-data-science-CS-460
https://www.epfl.ch/labs/sacs/
https://www.epfl.ch/labs/dias/
https://dl.acm.org/doi/10.1145/2500500
https://dl.acm.org/doi/10.1145/2500500
https://youtu.be/gluIh8zd26I


CS460 - Systems for Data Management and Data Science EPFL SaCS and DIAS

References
[1] Sriram Ramabhadran, Sylvia Ratnasamy, Joseph M. Hellerstein, and Scott Shenker. Brief announcement:

Prefix hash tree. In Proceedings of the Twenty-Third Annual ACM Symposium on Principles of Distributed
Computing, PODC ’04, page 368, New York, NY, USA, 2004. Association for Computing Machinery.

5

https://edu.epfl.ch/studyplan/en/master/data-science/coursebook/systems-for-data-management-and-data-science-CS-460
https://www.epfl.ch/labs/sacs/
https://www.epfl.ch/labs/dias/

