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The Scalable Computing Systems Lab (SaCS)
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• System support for machine learning
• Federated/decentralized Learning Systems
• Large-scale recommenders
• Privacy-aware learning systems
• Collaborative computing
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Week Date Topic

7 07/04 Gossip Protocols

8 14/04 Distributed hash tables + consistency models 

9 28/04 Key-value stores + CAP theorem

10 05/05 Scheduling

11 12/05 Stream Processing

12 19/05 Distributed Learning Systems

13 26/05 Invited Industry Lecture



Where are we?
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Dissemination - multicast

• Key feature in distributed computing
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Consistency protocols
Event dissemination



Fault-tolerant dissemination
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Atomicity: 100% nodes receive the message

Trade-off: latency/load-
balancing/failure resilience



Centralized: Star topology
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Tree-based multicast
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A Third Approach
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A Third Approach

10

f

CS-460 10



A Third Approach

11CS-460 11



Epidemic/gossip-based dissemination
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Simple

Reliable

Exponential Spreading
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Gossip/epidemic in distributed computing

Replace people by computers (nodes or peers), words with data

• Gossip: peerwise exchange of information

• Epidemic: wide and exponential spread

Two approaches

• Anti-entropy: peer-wise exchange

• Gossiping: update f neighbors
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Principle

• Information is spread to allow for local-only decision making
• Nodes exchange information with their neighbors: Peer-to-peer 

communication paradigm 

• Data disseminated efficiently

• No centralized control

• Eventual convergence: Probabilistic nature
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Mathematics of Epidemics

• n processes

• Each individual contaminates with some probability f other members 
chosen at random

• Number of rounds an individual remains infectious: from infect and 
die to infect forever

• Metric of success of an epidemic dissemination
• Proportion of infected processes after r rounds

• Probability of atomic “infection”
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Probability of “atomic” infection
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The log(n) magic

• Simple dissemination algorithm

• Probabilistic guarantees of delivery

• Each node forwards the message to f nodes chosen uniformly at random
• If f=O(log(n)), “atomic” broadcast whp in O(log(n)) hops
• Result is valid if the fanout for each peer is on average log(N) + c, regardless of the degree 

distribution.
 

• Relate probability of reliable dissemination and proportion of failure
• Set parameters 
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log(n)  is a very slowly growing number
Base 2

log(1000) ~ 10
log(1M) ~ 20
log (1B) ~ 30



Performance (100,000 peers)
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Proportion of nodes who 
received the message in 
non atomic runs Proportion of  atomic runs/all runs



Failure resilience (100,000 peers)
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Push versus Pull protocols

• “Push” protocols
• Once a node receives a multicast message, it forwards it to f nodes

• “Pull” protocols
• Periodically a node sends a request to  f randomly selected processes for new 

multicast messages that it has not received.

• Hybrid variant: Push-Pull
• As the name suggests
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The relevance of gossip

• Introduces implicit redundancy

• Flexible, scalable, and simple protocols

• Overhead
• Small messages

• Application to maintenance, monitoring, etc…

Differ in the choice of gossip targets and information exchanged
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Basic functionnality

• Requires a uniform random sample

• How can we do this in a decentralized way?
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Achieving random topologies
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The peer sampling service

• How to create a graph upon which applying gossip-based dissemination?... By gossiping 

• Goal: 
• Create an overlay network
• Provide each peer with a random sample of the network in a decentralized way

• Means: gossip-based protocols 
• What data should be gossiped?

• To whom?
• How to process the exchanged data?

• Resulting “who knows who” graphs: overlay
• Properties (degree, clustering, diameter, etc.)

• Resilience to network dynamics
• Closeness to random graphs
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Objective

• Provide nodes with a peer drawn uniformly at random from the complete set of nodes

• Sampling is accurate: reflects the current set of nodes

• Independent views

• Scalable service

CS-460 25



Example: Gossip-based generic protocol

1

7

8

9

10

3
2

4

6 5

1 2 9 5 

2 6 10 3 

C=3

CS-460 26



Example: Gossip-based generic protocol
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Example: Gossip-based generic protocol
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System model

• System of n peers 

• Peers  join and leave (and fail) the system dynamically and are identified uniquely (IP @)

• Epidemic interaction model:
• Peers exchange some membership information periodically to update their own membership information
• Reflect the dynamics of the system
• Ensures connectivity

• Each peer maintains a local view (membership table) of  c entries
• Network @ (IP@)
• Age (freshness of the descriptor)
• Each entry is unique

• Ordered list 

• Active and passive threads on each node
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Operations on partial views (membership)

selectPeer() 

permute() 

increaseAge() 

append(...) 

removeDuplicates()

removeOldItems(n) 

removeHead(n) 

removeRandom(n)

returns an item

randomly shuffles items

forall items add 1 to age

append a number of items

remove duplicates (on same address), keep youngest

remove n descriptors with highest age

remove n first descriptors

remove n random descriptors
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Active Thread

Wait (T time units) // T is the cycle length

p <- selectPeer() // Sample a live peer from the current view

if push then // Takes initiative

myDescriptor <- (my@,0)

buffer <- merge (view, {myDescriptor}) //temporary list

view.permute() //shuffle the items in the view

move oldest h items to end of the view //to get rid of old nodes

buffer.append(view.head(c/2)) // copy first half of the items

send buffer to p

else send{} to p //triggers response

if pull then

receive buffer from p

view.selectView(c,h,s,buffer)

view.increaseage(viewp)
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Passive Thread

Do forever

Receive bufferp from p

if pull then

myDescriptor <-(my@,0)

buffer <-merge(view,{myDescriptor})

view.permute ()

move oldest h items to end of the view

buffer.append(view.head(c/2))

send buffer to p

view.selectView(c,h,s,buffer)

view.increaseage(view_p)
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Design space

• Periodically each peer initiates communication with another peer 

• Peer selection

• Data exchange (View propagation)

• How peers exchange their membership information?

• Data processing (View selection): Select (c, buffer)

• c: size of the resulting view

• Buffer: information exchanged
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Design space: peer selection

selectPeer(): returns a live peer from the current view

• Rand: pick a peer uniformly at random

• Head: pick the “youngest” peer

• Tail: pick the “oldest” peer

Note that head leads to correlated views.
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View propagation

• push:  Node sends descriptors to selected peer

• pull:  Node only pulls in descriptors from selected peer

• pushpull:  Node and selected peer exchange descriptors

Pulling alone is pretty bad: a node has no opportunity to insert information on itself. Potential loss
of all incoming connections.
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Design space: data exchange

• Buffer (h)
• initialized with the descriptor of the gossiper

• contains c/2 elements

• ignores h “oldest”

• Communication model
• Push: buffer sent

• Push/Pull: buffers sent both ways

• (Pull: left out, the gossiper cannot inject information about itself, harms connectivity)
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Design space: Data processing

• Select(c,h,s,buffer)

1. Buffer appended to view

2. Keep the freshest entry for each node

3. h oldest items removed

4. s first items removed (the one sent over)

5. Random nodes removed

• Merge strategies
• Blind (h=0,s=0): select a random subset
• Healer (h=c/2): select the “freshest” entries
• Shuffler (h=0, s=c/2): minimize loss

c: size of the resulting 
view
h: self-healing 
parameter
s: shuffle
Buffer: information 
exchanged
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Example

B

D

L

I

J

A

V

X

G

1. Buffer appended to view
2. Keep the freshest entry for each 

node
3. h (=0) oldest items removed

B

D

L

I

J

A

V

X

G



Nov. 2008 42

Example

B

D

L

I

J

A

V

G

1. Buffer appended to view
2. Keep the freshest entry for each 

node
3. h (=0) oldest items removed
4. s (=1) first items removed (the 

one sent over)

D

L

I

J

A

V

X

G

X



Nov. 2008 43

Example
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Existing systems

• Lpbcast [Eugster & al, DSN 2001,ACM TOCS 2003]

• Node selection: random

• Data exchange: push

• Data processing: random

• Newscast [Jelasity & van Steen, 2002]

• Node selection: head

• Data exchange : pushpull

• Data processing : head

• Cyclon [Voulgaris & al JNSM 2005] 

• Node selection: random

• Data exchange : pushpull

• Data processing : shuffle

CS-460
Degree distribution f = 30  in a 10.000 node system

Metrics
• Degree distribution
• Average path length 
• Clustering coefficient



A generic gossip-based 
substrate
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Gossip-based generic substrate

• Each node maintains a set of 
neighbors (c entries)

• Periodic peerwise exchange of 
information

• Each process runs an active 
and passive threads

P Q

Buffer[P]

Buffer[Q]

Data exchange

Data processing

Peer selection

Parameter Space
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A generic gossip-based substrate

Active thread (peer P)

(1) selectPeer (&Q);

(2) selectToSend(&bufs);

(3) sendTo(Q,bufs);

(4) -

(5) receiveFrom(Q,&bufr);

(6) selectToKeep(view,bufr);

(7) processData(view)

Passive thread (peer Q)

(1) 

(2) 

(3) receiveFrom(&P,&bufr);

(4) selectToSend(&bufs); 

(5) sendTo(P,bufs);

(6) selectToKeep(view,bufr);

(7) processData(view)

selectPeer: (randomly) select a neighbor

selectToSend: select some entries from local view

selectToKeep: add received entries to local view
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Gossip-based dissemination

Data exchanged

Data processing

Peer selection

Message

K random

How can we achieve 
Random sampling?

Dissemination
Data = msg to broadcast

Each process gossips one 
message once
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Topology maintenance

Data exchange
Membership data

Data processing

Peer selection

List of 
Neighbours

Push

Random

Random
 merging

LpbCast
[Eugster & al, DSN 2001,

ACM TOCS 2003]

½ List of 
Neighbours

PushPull

Head

Age-based 
Merging (Head)

Newscast
[Jelasity & van Steen, 2002]

½ List of 
neighbours

Oldest

Shuffle

Cyclon
  [Voulgaris & al 

     JNSM 2005] 
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Decentralized computations

Data exchange

Data processing

Peer selection

value

Random

Aggregation
Average

Aggregation
[Jelasity & al., ACM TCS 20025]

value

Random

Aggregation

System size
estimation

Attribute value
Random value

Random

Attribute/random
matching

Slicing
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Gossip-based aggregation

• Each node holds a numeric value s

• Aggregation function: average over the set of nodes
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Gossip-based aggregation

• Assume getneighbor() returns a uniform random sample

• Update(sp,sq) returns (sp + sq)/2

• Operation does not change the global average but redistributes the 
variance over the set of all estimates in the system

• Proven that the variance tends to zero

• Exponential convergence
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Counting with gossip

• Initialize all nodes with value 0 but the initiator

• Global average = 1/N

• Size of the network can be easily deduced

• Robust implementation
• Multiple nodes start with their identifier

• Each concurrent instance led by a node

• Message and data of an instance tagged with a unique Id
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Ordered Slicing

• Create and maintain a partitioning of the network

• Each node belongs to one slice

• Ex: 20% of nodes with the largest bandwidth

• Network of size N

• Each node i has an attribute xi

• We assume that values (x1 ,  xN ) can be ordered

• Problem: automatically assign a slice (top 20%) for each node
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Where is that used in practice?

• Clearinghouse and Bayou projects: email and database transactions [PODC ‘87]

• refDBMS system [Usenix ‘94]

• Bimodal Multicast [ACM TOCS ‘99]

• Sensor networks [Li Li et al, Infocom ‘02, and PBBF, ICDCS ‘05]

• AWS EC2 and S3 Cloud (rumored). [‘00s]

• Cassandra key-value store (and others) uses gossip for maintaining membership 
lists

• Bitcoin/cryptocurrencies uses gossip for all communications (pre and post mining) 

(‘10s)

• Federated and decentralized learning for model averaging (‘20s)
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