=PrL

Gossip-based computing

Anne-Marie Kermarrec
CS-460

EPFL
The Scalable Computing Systems Lab (SaCS)

 System support for machine learning

* Federated/decentralized Learning Systems
* Large-scale recommenders

* Privacy-aware learning systems

* Collaborative computing

=Pr-L

Week Date Topic

7 07/04 Gossip Protocols

8 14/04 Distributed hash tables + consistency models
9 28/04 Key-value stores + CAP theorem

10 05/05 Scheduling

11 12/05 Stream Processing

12 19/05 Distributed Learning Systems

13 26/05 Invited Industry Lecture

CS-460

=PrL
Where are we?

Gossip Protocols
Week 7

Consistency protocols
CAP Theorem
Week 9

Distributed/decentralized
systems
Week 8-12

Transaction
Management

Query
Execution

Storage
Hierarchies
& Layouts

Query optimization

Data science software stack

Data Processing
Graph Data Structured Machine
Pregel, GraphLab, X- DE| Learning
Streem, Chaos Spark SQL Week 12

Batch Data Streaming Data
Map Reduce, Storm, Naiad, Flink, Spark
Dryad, Spark Streaming Google Data Flow

Data Storage

NoSQL DB Distributed
Dynamo Big Table Messaging
Cassandra systems
Week 9 Kafka — Week 11

Distributed
File Systems
(GFS)

Ressource Management & Optimization

Scheduling (Mesos, YARN)-
Week 10

=PrL

Dissemination - multicast

Consistency protocols
Event dissemination

» Key feature in distributed computing

Node with a piece of information \
to be communicated to everyone
\ O
O
Distributed Group
@ >o|: “Nodes” =
Processes at
Internet-based host
®
O
©
J

CS-460 5

EPFL
Fault-tolerant dissemination

MULTICAST SENDER

PO
.3, * Nodes may crash
Vo Poeart] N M * Packets may be dropped

* 1000’s of nodes

.
-
.
.
.
.
.
-
.
..
.

MULTICAST PROTOCOL

Atomicity: 100% nodes receive the message

CS-460

Trade-off: latency/load-
balancing/failure resilience

=PrL

Centralized: Star topology

::'"':: A o * Simplest implementation
S S T g * Problems?
UDP/TCP PACKETS 'AO

g

CS-460

=PrL

Tree-based multicast

O
O
@
* Tree setup and maintenance
UDP/TCP PACKETS " * Problems?

®
O

CS-460

=PrL
A Third Approach

MULTICAST SENDER
O

O

O

CS-460

=Pr-L

A Third Approach

PERIODICALLY, TRANSMIT TO
'f RANDOM TARGETS

"
1
I
I
v

— GOSSIP MESSAGES (UDP)

O

CS-460

1010

EPFL
A Third Approach

OTHER NODES DO SAME
AFTER RECEIVING MULTICAST || —— GOSSIP MESSAGES (UDP)

CS-460 1111

EPFL

Epidemic/gossip-based dissemination

@ INFECTED

PROTOCOL ROUNDS (LOCAL CLOCK)
f RANDOM TARGETS PER ROUND

/

\

GOSSIP MESSAGE (UDP) O

®

© UNINFECTED

CS-460

EIELE

Exponential Spreading

1212

=PrL

Gossip/epidemic in distributed computing

Replace people by computers (nodes or peers), words with data

* Gossip: peerwise exchange of information

* Epidemic: wide and exponential spread

Two approaches
* Anti-entropy: peer-wise exchange

* Gossiping: update f neighbors

=PrL
Principle

* Information is spread to allow for local-only decision making

* Nodes exchange information with their neighbors: Peer-to-peer
communication paradigm

* Data disseminated efficiently
* No centralized control
* Eventual convergence: Probabilistic nature

=PrL
Mathematics of Epidemics

* N processes

e Each individual contaminates with some probability f other members
chosen at random

e Number of rounds an individual remains infectious: from infect and
die to infect forever

* Metric of success of an epidemic dissemination

* Proportion of infected processes after r rounds Infect forever model
Y.=Z,/n y 1
Z .is the number of infected processes prior to round r " 1+ nef

N.T.J. Bailey, The Mathematical Theory of Infectious Diseases

o . Gh. . ”
¢ Pro ba bll |ty Of atom IC |nfeCt| on P(Zr - n) and Its Applications, 2nd ed., Hafner Press, 1975.

=PrL
Probability of “atomic” infection

Erdos/Reny i examine final system state, the system is represented as a graph
where each node is a process, there is an edge from n ton, if n, is infected and
chooses n, .

An epidemic starting at n, Is successful if there is a path from n, to all members.
If the fanout is log (n) + c, the probabibil ity that a random graph is connected is

-C

P(Z,=n) = e°

=PrL
The log(n) magic

log(n) is a very slowly growing number
Base 2

log(1000) ~ 10
Simple dissemination algorithm log(1M) ~ 20

log (1B) ~ 30

Probabilistic guarantees of delivery

Each node forwards the message to f nodes chosen uniformly at random
* If f=0(log(n)), “atomic” broadcast whp in O(log(n)) hops

* Resultis valid if the fanout for each peer is on average log(N) + ¢, regardless of the degree
distribution.

Relate probability of reliable dissemination and proportion of failure
* Set parameters

EPFL

Performance (100,000 peers) | rroportion of nodes who

received the message in
non atomic runs

Proportion of atomic runs/all runs

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

;]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 1

16 17

Proportion of “atomic”broadcast

Proportion of connected peers in non “atomic” broadcast
CS-460 18

L

Failure resilience (100,000 peers)

100
90
80
70
60
50
40
30
20
10

0

99.98 99.94
0% 10% 20% 30% 40% 50%

Percentage of faulty peers

Proportion of “atomic” broadcast
Proportion of connected peers in non “atomic” broadcast

CS-460

19

=PrL
Push versus Pull protocols

e “Push” protocols
* Once a node receives a multicast message, it forwards it to f nodes

e “Pull” protocols

* Periodically a node sends a request to frandomly selected processes for new
multicast messages that it has not received.

* Hybrid variant: Push-Pull
* Asthe name suggests

=PrL
The relevance of gossip

* Introduces implicit redundancy
* Flexible, scalable, and simple protocols

e Overhead
* Small messages
e Application to maintenance, monitoring, etc...

Differ in the choice of gossip targets and information exchanged

=PrL
Basic functionnality

e Requires a uniform random sample

* How can we do this in a decentralized way?

=PrL

Achieving random topologies

CS-460

23

=PrL
The peer sampling service

How to create a graph upon which applying gossip-based dissemination?... By gossiping

Goal:
* Create an overlay network
* Provide each peer with a random sample of the network in a decentralized way

Means: gossip-based protocols
* What data should be gossiped?
* To whom?
* How to process the exchanged data?

Resulting “who knows who” graphs: overlay
* Properties (degree, clustering, diameter, etc.)
* Resilience to network dynamics
* Closeness to random graphs

CS-460

24

=PrL
Objective

Provide nodes with a peer drawn uniformly at random from the complete set of nodes

Sampling is accurate: reflects the current set of nodes

Independent views

Scalable service

CS-460

25

=Pr-L

Example: Gossip-based generic protocol

‘ 26103
\'

/‘\‘

CS-460 26

=Pr-L

Example: Gossip-based generic protocol

(12956103 | /’
\'

/‘\‘

CS-460

27

=Pr-L

Example: Gossi

p-based generic protocol

2910

e
B @
o ®O

CS-460

28

=PrL
System model

System of n peers

Peers join and leave (and fail) the system dynamically and are identified uniquely (IP @)

Epidemic interaction model:
* Peers exchange some membership information periodically to update their own membership information
» Reflect the dynamics of the system
* Ensures connectivity

Each peer maintains a local view (membership table) of c entries
* Network @ (IP@)
* Age (freshness of the descriptor)
* Each entry is unique
* Ordered list

Active and passive threads on each node

=PrL
Operations on partial views (membership)

selectPeer() returns an item

permute() randomly shuffles items

increaseAge() forall items add 1 to age

append(...) append a number of items

removeDuplicates() remove duplicates (on same address), keep youngest
removeOldltems(n) remove n descriptors with highest age
removeHead(n) remove n first descriptors

removeRandom(n) remove n random descriptors

=PrL
Active Thread

Wait (T time units) // T is the cycle length

p <- selectPeer() // Sample a live peer from the current view

if push then // Takes initiative
myDescriptor <- (my@,0)
buffer <- merge (view, {myDescriptor}) //temporary list
view.permute() //shuffle the items in the view
move oldest h items to end of the view //to get rid of old nodes
buffer.append(view.head(c/2)) // copy first half of the items
send buffer to p

else send{} to p //triggers response

if pull then
receive buffer from p
view.selectView(c,h,s,buffer)

view.increaseage(view,)
CS-460

31

=PrL
Passive Thread

Do forever
Receive buffer, from p

if pull then
myDescriptor <-(my@,0)
buffer <-merge(view,{myDescriptor})
view.permute ()
move oldest h items to end of the view
buffer.append(view.head(c/2))
send buffer to p

view.selectView(c,h,s,buffer)
view.increaseage(view_p)

CS-460

32

=PrL
Design space

Periodically each peer initiates communication with another peer

Peer selection

Data exchange (View propagation)
* How peers exchange their membership information?

Data processing (View selection): Select (c, buffer)
 c: size of the resulting view
e Buffer: information exchanged

=PrL
Design space: peer selection

selectPeer(): returns a live peer from the current view

* Rand: pick a peer uniformly at random
* Head: pick the “youngest” peer
e Tail: pick the “oldest” peer

Note that head leads to correlated views.

=PrL
View propagation

e push: Node sends descriptors to selected peer
e pull: Node only pulls in descriptors from selected peer

* pushpull: Node and selected peer exchange descriptors

Pulling alone is pretty bad: a node has no opportunity to insert information on itself. Potential loss
of all incoming connections.

=PrL
Design space: data exchange

 Buffer (h)

* initialized with the descriptor of the gossiper
 contains ¢/2 elements

* ignores h “oldest”

« Communication model
e Push: buffer sent
* Push/Pull: buffers sent both ways
* (Pull: left out, the gossiper cannot inject information about itself, harms connectivity)

=PrL

Design space: Data processing

L b PRE

Select(c, h,s,buffer)

Buffer appended to view

Keep the freshest entry for each node

h oldest items removed

s first items removed (the one sent over)
Random nodes removed

Merge strategies
 Blind (h=0,5=0): select a random subset
e Healer (h=c/2): select the “freshest” entries
* Shuffler (h=0, s=¢/2): minimize loss

CS-460

c: size of the resulting
view

h: self-healing
parameter

s: shuffle

Buffer: information
exchanged

37

=PrL
Example

=PrL
Example

1. Buffer appended to view

=PrL
Example

1. Buffer appended to view
2. Keep the freshest entry for each
node

=Pi-L
Example

1. Buffer appended to view

2. Keep the freshest entry for each
node

3. h (=0) oldest items removed

=PrL
Example

Y

nall

. Buffer appended to view

Keep the freshest entry for each
node

h (=0) oldest items removed

s (=1) first items removed (the
one sent over)

=PrL
Example

Y

nall

. Buffer appended to view

Keep the freshest entry for each
node

h (=0) oldest items removed

s (=1) first items removed (the
one sent over)

Random nodes removed

=PrL
Existing systems

* Lpbcast [Eugster & al, DSN 2001,ACM TOCS 2003] Metrics
* Node selection: random * Degree distribution
* Data exchange: push * Average path length
 Data processing: random * Clustering coefficient
* Newscast [Jelasity & van Steen, 2002] o F T 'ﬁi‘ﬂ: blind -
« Node selection: head & Pl Shuffler
* Data exchange : pushpull i o "Bl healer +

random graph

* Data processing : head

e Cyclon [Voulgaris & al INSM 2005]
* Node selection: random
* Data exchange : pushpull

. . 04 ': - s b N = HED
 Data processing : shuffle 0 20 40 60 8 100 120 140 160

in-degree

proportion of nodes (%)

=PrL

A generic gossip-based
substrate

=Pr-L

Gossip-based generic substrate

e Each node maintains a set of
neighbors (c entries)

* Periodic peerwise exchange of
information

e Each process runs an active
and passive threads

Buffer[P]
0=—0
Buffer[Q]

CS-460

/Parameter Space \

Peer selection

Data exchange

Data processing

46

=PrL

A generic gossip-based substrate

Active thread (peer P) Passive thread (peer Q)

(1) selectPeer (&Q); (1)

(2) selectToSend(&bufs); (2)

(3) sendTo(Q,bufs); » (3) receiveFrom(&P,&bufr);
(4) - (4) selectToSend(&bufs);
(5) receiveFrom(Q,&bufr); «— (5) sendTo(P,bufs);

(6) selectToKeep(view,bufr); (6) selectToKeep(view,bufr);
(7) processData(view) (7) processData(view)

selectPeer: (randomly) select a neighbor

selectToSend: select some entries from local view

selectToKeep: add received entries to local view

CS-460

47

EPFL

Gossip-based dissemination

Peer selection

Data exchanged

Data processing

Dissemination

Data = msg to broadcast
- Each process gossips one

message once

How can we achieve
Random sampling?

CS-460

48

EPFL
Topology maintenance

Peer selection

% List of
Neighbours

List of
Neighbours
Push

% List of
neighbours

Data exchange

Membership data

PushPull

Data orocessin Random Age-based
P 8 merging Merging (Head)
LpbCast Newscast Cyclon
[Eugster & al, DSN 2001,

[Jelasity & van Steen, 2002] [Voulgaris & al

JNSM 2005]

ACM TOCS 2003]

CS-460

EPFL

Decentralized computations

Peer selection

Attribute value
Random value

Data exchange

Aggregation Attribute/random

Data processin
P 8 Average matching

Aggregation

Aggregation System size Slicing
Pelasity & al.,, ACM TCS 20025] actimation

CS-460

50

=PrL

Gossip-based aggregation

e EFach node holds a numeric value s

* Aggregation function: average over the set of nodes

do exactly once in each consecutive do forever

d time units at a randomly picked time Sq ¢ receive(®)
q «— GETNEIGHBOR() send s, to sender(sg)
send sp to q sp < UPDATE(sp, 8q)

8q « receive(q)
sp +— UPDATE(sp, 84)

(a) active thread (b) passive thread

CS-460

51

=PrL
Gossip-based aggregation

* Assume getneighbor() returns a uniform random sample
* Update(s,,s,) returns (s, +s,)/2

* Operation does not change the global average but redistributes the
variance over the set of all estimates in the system

* Proven that the variance tends to zero
° EXpone ntial convergence // vector w s the input

do N times
(7, 7) = GETPAIR()
// perform elementary variance reduction step
wi = w; = (w; +w;)/2

return w

=PrL
Counting with gossip

* |Initialize all nodes with value O but the initiator

* Global average = 1/N
* Size of the network can be easily deduced

* Robust implementation
* Multiple nodes start with their identifier
* Each concurrent instance led by a node
* Message and data of an instance tagged with a unique Id

=PrL

Ordered Slicing

* Create and maintain a partitioning of the network

* Each node belongs to one slice

* Ex: 20% of nodes with the largest bandwidth

* Network of size N

* Each node j has an attribute x;

* We assume that values (x; x,) can be ordered

* Problem: automatically assign a slice (top 20%) for each node

=PrL
Where is that used in practice?

* Clearinghouse and Bayou projects: email and database transactions [PODC ‘87]
* refDBMS system [Usenix ‘94]

 Bimodal Multicast [ACM TOCS “99]

e Sensor networks [Li Li et al, Infocom ‘02, and PBBF, ICDCS ‘05]

e AWS EC2 and S3 Cloud (rumored). [‘00s]

e Cassandra key-value store (and others) uses gossip for maintaining membership
lists

e Bitcoin/cryptocurrencies uses gossip for all communications (pre and post mining)
(‘10s)
* Federated and decentralized learning for model averaging (‘20s)

=PrL
References

* « The peer Sampling Service: Experimental Evaluation of Unstructured Gossip-Based Implementation » M. Jelasity, R. Guerraoui, A.-M.
Kermarrec and M. van Steen, Middleware 2004 — ACM TOCS 2007

* « Newscast Computing » M. Jelasity, W. Kowalczyk, M. van Steen. Internal report IR-CS-006, Vrije Universiteit, Department of Computer
Science, November 2003

* « Lightweight Probabilistic Broadcast ». P. Eugster, S. Handurukande, R. Guerraoui, A.-M. Kermarrec, and P. Kouznetsov ACM Transactions on
Computer Systems, 21(4), November 2003.

* « Peer-to-Peer membership management for gossip-based protocols ». A.J. Ganesh, A.-M. Kermarrec, and L. Massoulié IEEE Transactions on
Computers, 52(2), February 2003

* “Gossip-based aggregation in large dynamic networks” M. Jelasity, A. Montresor, O. Babaoglu. ACM TCS 23(3), 2005
* Differentiated Consistency for Worldwide Gossips. D. Frey, A. Mostéfaoui, M. Perrin, P.-L. Roman, F. Taiani. IEEE TPDS 34(1), 2023)

CS-460 56

	Slide 1: Gossip-based computing
	Slide 2: The Scalable Computing Systems Lab (SaCS)
	Slide 3
	Slide 4: Where are we?
	Slide 5: Dissemination - multicast
	Slide 6: Fault-tolerant dissemination
	Slide 7: Centralized: Star topology
	Slide 8: Tree-based multicast
	Slide 9: A Third Approach
	Slide 10: A Third Approach
	Slide 11: A Third Approach
	Slide 12: Epidemic/gossip-based dissemination
	Slide 13: Gossip/epidemic in distributed computing
	Slide 14: Principle
	Slide 15: Mathematics of Epidemics
	Slide 16: Probability of “atomic” infection
	Slide 17: The log(n) magic
	Slide 18: Performance (100,000 peers)
	Slide 19: Failure resilience (100,000 peers)
	Slide 20: Push versus Pull protocols
	Slide 21: The relevance of gossip
	Slide 22: Basic functionnality
	Slide 23: Achieving random topologies
	Slide 24: The peer sampling service
	Slide 25: Objective
	Slide 26: Example: Gossip-based generic protocol
	Slide 27: Example: Gossip-based generic protocol
	Slide 28: Example: Gossip-based generic protocol
	Slide 29: System model
	Slide 30: Operations on partial views (membership)
	Slide 31: Active Thread
	Slide 32: Passive Thread
	Slide 33: Design space
	Slide 34: Design space: peer selection
	Slide 35: View propagation
	Slide 36: Design space: data exchange
	Slide 37: Design space: Data processing
	Slide 38: Example
	Slide 39: Example
	Slide 40: Example
	Slide 41: Example
	Slide 42: Example
	Slide 43: Example
	Slide 44: Existing systems
	Slide 45: A generic gossip-based substrate
	Slide 46: Gossip-based generic substrate
	Slide 47: A generic gossip-based substrate
	Slide 48: Gossip-based dissemination
	Slide 49: Topology maintenance
	Slide 50: Decentralized computations
	Slide 51: Gossip-based aggregation
	Slide 52: Gossip-based aggregation
	Slide 53: Counting with gossip
	Slide 54: Ordered Slicing
	Slide 55: Where is that used in practice?
	Slide 56: References

