
Gossip-based computing
Anne-Marie Kermarrec

CS-460

CS-460 1

The Scalable Computing Systems Lab (SaCS)

CS-460 2

• System support for machine learning
• Federated/decentralized Learning Systems
• Large-scale recommenders
• Privacy-aware learning systems
• Collaborative computing

CS-460 3

Week Date Topic

7 07/04 Gossip Protocols

8 14/04 Distributed hash tables + consistency models

9 28/04 Key-value stores + CAP theorem

10 05/05 Scheduling

11 12/05 Stream Processing

12 19/05 Distributed Learning Systems

13 26/05 Invited Industry Lecture

Where are we?

CS-460 4

Consistency protocols
CAP Theorem

Week 9

Gossip Protocols
Week 7

Distributed/decentralized
systems

Week 8-12

Data science software stack

Data Processing

Ressource Management & Optimization

Data Storage

Distributed
File Systems

(GFS)

NoSQL DB
Dynamo Big Table

Cassandra
Week 9

Distributed
Messaging

systems
Kafka – Week 11

Structured
Data

Spark SQL

Graph Data
Pregel, GraphLab, X-

Streem, Chaos

Machine
Learning
Week 12

Batch Data
Map Reduce,
Dryad, Spark

Streaming Data
Storm, Naiad, Flink, Spark

Streaming Google Data Flow

Scheduling (Mesos, YARN)-
Week 10

Query optimization

Storage
Hierarchies
& Layouts

Transaction
Management

Query
Execution

Dissemination - multicast

• Key feature in distributed computing

CS-460 5

Consistency protocols
Event dissemination

Fault-tolerant dissemination

CS-460 6

Atomicity: 100% nodes receive the message

Trade-off: latency/load-
balancing/failure resilience

Centralized: Star topology

CS-460 7

Tree-based multicast

CS-460 8

A Third Approach

9CS-460 9

A Third Approach

10

f

CS-460 10

A Third Approach

11CS-460 11

Epidemic/gossip-based dissemination

12

f

Simple

Reliable

Exponential Spreading

CS-460 12

Gossip/epidemic in distributed computing

Replace people by computers (nodes or peers), words with data

• Gossip: peerwise exchange of information

• Epidemic: wide and exponential spread

Two approaches

• Anti-entropy: peer-wise exchange

• Gossiping: update f neighbors

CS-460 13

Principle

• Information is spread to allow for local-only decision making
• Nodes exchange information with their neighbors: Peer-to-peer

communication paradigm

• Data disseminated efficiently

• No centralized control

• Eventual convergence: Probabilistic nature

CS-460 14

Mathematics of Epidemics

• n processes

• Each individual contaminates with some probability f other members
chosen at random

• Number of rounds an individual remains infectious: from infect and
die to infect forever

• Metric of success of an epidemic dissemination
• Proportion of infected processes after r rounds

• Probability of atomic “infection”

CS-460 15

rZ

nZY

r

rr

 round prior to processes infected ofnumber theis

/=

)(nZP r =

Infect forever model

N.T.J. Bailey, The Mathematical Theory of Infectious Diseases
and Its Applications, 2nd ed., Hafner Press, 1975.

Probability of “atomic” infection

 is connected isgraph random aity that probabibil the,log isfanout theIf

members. all to frompath a is thereif successful is at starting epidemicAn

. chooses

and infected is if to from edgean is thereprocess, a is nodeeach where

graph a as drepresente is system thestate, system final examine iErdos/Reny

 0 0

 2

 1 2 1

 c(n)

nn

n

nnn

+

-c-e e p(connect) =

CS-460 16

)(nZP r =

The log(n) magic

• Simple dissemination algorithm

• Probabilistic guarantees of delivery

• Each node forwards the message to f nodes chosen uniformly at random
• If f=O(log(n)), “atomic” broadcast whp in O(log(n)) hops
• Result is valid if the fanout for each peer is on average log(N) + c, regardless of the degree

distribution.

• Relate probability of reliable dissemination and proportion of failure
• Set parameters

CS-460 17

log(n) is a very slowly growing number
Base 2

log(1000) ~ 10
log(1M) ~ 20
log (1B) ~ 30

Performance (100,000 peers)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

f

Proportion of connected peers in non “atomic” broadcast

Proportion of “atomic”broadcast

CS-460 18

Proportion of nodes who
received the message in
non atomic runs Proportion of atomic runs/all runs

Failure resilience (100,000 peers)

0
10

20
30

40
50

60
70

80
90

100

0% 10% 20% 30% 40% 50%

Percentage of faulty peers

99.98 99.94

Proportion of “atomic” broadcast
Proportion of connected peers in non “atomic” broadcast

CS-460 19

Push versus Pull protocols

• “Push” protocols
• Once a node receives a multicast message, it forwards it to f nodes

• “Pull” protocols
• Periodically a node sends a request to f randomly selected processes for new

multicast messages that it has not received.

• Hybrid variant: Push-Pull
• As the name suggests

CS-460 20

The relevance of gossip

• Introduces implicit redundancy

• Flexible, scalable, and simple protocols

• Overhead
• Small messages

• Application to maintenance, monitoring, etc…

Differ in the choice of gossip targets and information exchanged

CS-460 21

Basic functionnality

• Requires a uniform random sample

• How can we do this in a decentralized way?

CS-460 22

Achieving random topologies

CS-460 23

The peer sampling service

• How to create a graph upon which applying gossip-based dissemination?... By gossiping

• Goal:
• Create an overlay network
• Provide each peer with a random sample of the network in a decentralized way

• Means: gossip-based protocols
• What data should be gossiped?

• To whom?
• How to process the exchanged data?

• Resulting “who knows who” graphs: overlay
• Properties (degree, clustering, diameter, etc.)

• Resilience to network dynamics
• Closeness to random graphs

CS-460 24

Objective

• Provide nodes with a peer drawn uniformly at random from the complete set of nodes

• Sampling is accurate: reflects the current set of nodes

• Independent views

• Scalable service

CS-460 25

Example: Gossip-based generic protocol

1

7

8

9

10

3
2

4

6 5

1 2 9 5

2 6 10 3

C=3

CS-460 26

Example: Gossip-based generic protocol

1

7

8

9

10

3
2

4

6 5

1 2 9 5 6 10 3

CS-460 27

Example: Gossip-based generic protocol

1

7

8

9

10

3
2

4

6 5

2 9 10

CS-460 28

System model

• System of n peers

• Peers join and leave (and fail) the system dynamically and are identified uniquely (IP @)

• Epidemic interaction model:
• Peers exchange some membership information periodically to update their own membership information
• Reflect the dynamics of the system
• Ensures connectivity

• Each peer maintains a local view (membership table) of c entries
• Network @ (IP@)
• Age (freshness of the descriptor)
• Each entry is unique

• Ordered list

• Active and passive threads on each node

CS-460 29

Operations on partial views (membership)

selectPeer()

permute()

increaseAge()

append(...)

removeDuplicates()

removeOldItems(n)

removeHead(n)

removeRandom(n)

returns an item

randomly shuffles items

forall items add 1 to age

append a number of items

remove duplicates (on same address), keep youngest

remove n descriptors with highest age

remove n first descriptors

remove n random descriptors

CS-460 30

Active Thread

Wait (T time units) // T is the cycle length

p <- selectPeer() // Sample a live peer from the current view

if push then // Takes initiative

myDescriptor <- (my@,0)

buffer <- merge (view, {myDescriptor}) //temporary list

view.permute() //shuffle the items in the view

move oldest h items to end of the view //to get rid of old nodes

buffer.append(view.head(c/2)) // copy first half of the items

send buffer to p

else send{} to p //triggers response

if pull then

receive buffer from p

view.selectView(c,h,s,buffer)

view.increaseage(viewp)

CS-460 31

Passive Thread

Do forever

Receive bufferp from p

if pull then

myDescriptor <-(my@,0)

buffer <-merge(view,{myDescriptor})

view.permute ()

move oldest h items to end of the view

buffer.append(view.head(c/2))

send buffer to p

view.selectView(c,h,s,buffer)

view.increaseage(view_p)

CS-460 32

Design space

• Periodically each peer initiates communication with another peer

• Peer selection

• Data exchange (View propagation)

• How peers exchange their membership information?

• Data processing (View selection): Select (c, buffer)

• c: size of the resulting view

• Buffer: information exchanged

CS-460 33

Design space: peer selection

selectPeer(): returns a live peer from the current view

• Rand: pick a peer uniformly at random

• Head: pick the “youngest” peer

• Tail: pick the “oldest” peer

Note that head leads to correlated views.

CS-460 34

View propagation

• push: Node sends descriptors to selected peer

• pull: Node only pulls in descriptors from selected peer

• pushpull: Node and selected peer exchange descriptors

Pulling alone is pretty bad: a node has no opportunity to insert information on itself. Potential loss
of all incoming connections.

CS-460 35

Design space: data exchange

• Buffer (h)
• initialized with the descriptor of the gossiper

• contains c/2 elements

• ignores h “oldest”

• Communication model
• Push: buffer sent

• Push/Pull: buffers sent both ways

• (Pull: left out, the gossiper cannot inject information about itself, harms connectivity)

CS-460 36

Design space: Data processing

• Select(c,h,s,buffer)

1. Buffer appended to view

2. Keep the freshest entry for each node

3. h oldest items removed

4. s first items removed (the one sent over)

5. Random nodes removed

• Merge strategies
• Blind (h=0,s=0): select a random subset
• Healer (h=c/2): select the “freshest” entries
• Shuffler (h=0, s=c/2): minimize loss

c: size of the resulting
view
h: self-healing
parameter
s: shuffle
Buffer: information
exchanged

CS-460 37

Nov. 2008 38

Example

B

X

D

L

I

J

V

X

G

A

W

J

A D

c/2
c/2

B

X

D

V

X

G

Nov. 2008 39

Example

B

X

D

L

I

J

A
1. Buffer appended to view B

X

D

L

I

J

A

V

X

G

Nov. 2008 40

Example

B

X

D

L

I

J

A

V

X

G

1. Buffer appended to view
2. Keep the freshest entry for each

node

B

D

L

I

J

A

V

X

G

Nov. 2008 41

Example

B

D

L

I

J

A

V

X

G

1. Buffer appended to view
2. Keep the freshest entry for each

node
3. h (=0) oldest items removed

B

D

L

I

J

A

V

X

G

Nov. 2008 42

Example

B

D

L

I

J

A

V

G

1. Buffer appended to view
2. Keep the freshest entry for each

node
3. h (=0) oldest items removed
4. s (=1) first items removed (the

one sent over)

D

L

I

J

A

V

X

G

X

Nov. 2008 43

Example

A
1. Buffer appended to view
2. Keep the freshest entry for each

node
3. h (=0) oldest items removed
4. s (=1) first items removed (the

one sent over)
5. Random nodes removed

A

D

L

I

A

V

X

G

D

L

I

J

V

X

G

Existing systems

• Lpbcast [Eugster & al, DSN 2001,ACM TOCS 2003]

• Node selection: random

• Data exchange: push

• Data processing: random

• Newscast [Jelasity & van Steen, 2002]

• Node selection: head

• Data exchange : pushpull

• Data processing : head

• Cyclon [Voulgaris & al JNSM 2005]

• Node selection: random

• Data exchange : pushpull

• Data processing : shuffle

CS-460
Degree distribution f = 30 in a 10.000 node system

Metrics
• Degree distribution
• Average path length
• Clustering coefficient

A generic gossip-based
substrate

CS-460 45

Gossip-based generic substrate

• Each node maintains a set of
neighbors (c entries)

• Periodic peerwise exchange of
information

• Each process runs an active
and passive threads

P Q

Buffer[P]

Buffer[Q]

Data exchange

Data processing

Peer selection

Parameter Space

CS-460 46

A generic gossip-based substrate

Active thread (peer P)

(1) selectPeer (&Q);

(2) selectToSend(&bufs);

(3) sendTo(Q,bufs);

(4) -

(5) receiveFrom(Q,&bufr);

(6) selectToKeep(view,bufr);

(7) processData(view)

Passive thread (peer Q)

(1)

(2)

(3) receiveFrom(&P,&bufr);

(4) selectToSend(&bufs);

(5) sendTo(P,bufs);

(6) selectToKeep(view,bufr);

(7) processData(view)

selectPeer: (randomly) select a neighbor

selectToSend: select some entries from local view

selectToKeep: add received entries to local view
CS-460 47

Gossip-based dissemination

Data exchanged

Data processing

Peer selection

Message

K random

How can we achieve
Random sampling?

Dissemination
Data = msg to broadcast

Each process gossips one
message once

CS-460 48

Topology maintenance

Data exchange
Membership data

Data processing

Peer selection

List of
Neighbours

Push

Random

Random
 merging

LpbCast
[Eugster & al, DSN 2001,

ACM TOCS 2003]

½ List of
Neighbours

PushPull

Head

Age-based
Merging (Head)

Newscast
[Jelasity & van Steen, 2002]

½ List of
neighbours

Oldest

Shuffle

Cyclon
 [Voulgaris & al

 JNSM 2005]

CS-460 49

Decentralized computations

Data exchange

Data processing

Peer selection

value

Random

Aggregation
Average

Aggregation
[Jelasity & al., ACM TCS 20025]

value

Random

Aggregation

System size
estimation

Attribute value
Random value

Random

Attribute/random
matching

Slicing

CS-460 50

Gossip-based aggregation

• Each node holds a numeric value s

• Aggregation function: average over the set of nodes

CS-460 51

Gossip-based aggregation

• Assume getneighbor() returns a uniform random sample

• Update(sp,sq) returns (sp + sq)/2

• Operation does not change the global average but redistributes the
variance over the set of all estimates in the system

• Proven that the variance tends to zero

• Exponential convergence

CS-460 52

Counting with gossip

• Initialize all nodes with value 0 but the initiator

• Global average = 1/N

• Size of the network can be easily deduced

• Robust implementation
• Multiple nodes start with their identifier

• Each concurrent instance led by a node

• Message and data of an instance tagged with a unique Id

CS-460 53

Ordered Slicing

• Create and maintain a partitioning of the network

• Each node belongs to one slice

• Ex: 20% of nodes with the largest bandwidth

• Network of size N

• Each node i has an attribute xi

• We assume that values (x1 , xN) can be ordered

• Problem: automatically assign a slice (top 20%) for each node

CS-460 54

Where is that used in practice?

• Clearinghouse and Bayou projects: email and database transactions [PODC ‘87]

• refDBMS system [Usenix ‘94]

• Bimodal Multicast [ACM TOCS ‘99]

• Sensor networks [Li Li et al, Infocom ‘02, and PBBF, ICDCS ‘05]

• AWS EC2 and S3 Cloud (rumored). [‘00s]

• Cassandra key-value store (and others) uses gossip for maintaining membership
lists

• Bitcoin/cryptocurrencies uses gossip for all communications (pre and post mining)

(‘10s)

• Federated and decentralized learning for model averaging (‘20s)

CS-460 55

References

• « The peer Sampling Service: Experimental Evaluation of Unstructured Gossip-Based Implementation » M. Jelasity, R. Guerraoui, A.-M.
Kermarrec and M. van Steen, Middleware 2004 – ACM TOCS 2007

• « Newscast Computing » M. Jelasity, W. Kowalczyk, M. van Steen. Internal report IR-CS-006, Vrije Universiteit, Department of Computer
Science, November 2003

• « Lightweight Probabilistic Broadcast ». P. Eugster, S. Handurukande, R. Guerraoui, A.-M. Kermarrec, and P. Kouznetsov ACM Transactions on
Computer Systems, 21(4), November 2003.

• « Peer-to-Peer membership management for gossip-based protocols ». A.J. Ganesh, A.-M. Kermarrec, and L. Massoulié IEEE Transactions on
Computers, 52(2), February 2003

• “Gossip-based aggregation in large dynamic networks” M. Jelasity, A. Montresor, O. Babaoglu. ACM TCS 23(3), 2005

• Differentiated Consistency for Worldwide Gossips. D. Frey, A. Mostéfaoui, M. Perrin, P.-L. Roman, F. Taiani. IEEE TPDS 34(1), 2023)

CS-460 56

	Slide 1: Gossip-based computing
	Slide 2: The Scalable Computing Systems Lab (SaCS)
	Slide 3
	Slide 4: Where are we?
	Slide 5: Dissemination - multicast
	Slide 6: Fault-tolerant dissemination
	Slide 7: Centralized: Star topology
	Slide 8: Tree-based multicast
	Slide 9: A Third Approach
	Slide 10: A Third Approach
	Slide 11: A Third Approach
	Slide 12: Epidemic/gossip-based dissemination
	Slide 13: Gossip/epidemic in distributed computing
	Slide 14: Principle
	Slide 15: Mathematics of Epidemics
	Slide 16: Probability of “atomic” infection
	Slide 17: The log(n) magic
	Slide 18: Performance (100,000 peers)
	Slide 19: Failure resilience (100,000 peers)
	Slide 20: Push versus Pull protocols
	Slide 21: The relevance of gossip
	Slide 22: Basic functionnality
	Slide 23: Achieving random topologies
	Slide 24: The peer sampling service
	Slide 25: Objective
	Slide 26: Example: Gossip-based generic protocol
	Slide 27: Example: Gossip-based generic protocol
	Slide 28: Example: Gossip-based generic protocol
	Slide 29: System model
	Slide 30: Operations on partial views (membership)
	Slide 31: Active Thread
	Slide 32: Passive Thread
	Slide 33: Design space
	Slide 34: Design space: peer selection
	Slide 35: View propagation
	Slide 36: Design space: data exchange
	Slide 37: Design space: Data processing
	Slide 38: Example
	Slide 39: Example
	Slide 40: Example
	Slide 41: Example
	Slide 42: Example
	Slide 43: Example
	Slide 44: Existing systems
	Slide 45: A generic gossip-based substrate
	Slide 46: Gossip-based generic substrate
	Slide 47: A generic gossip-based substrate
	Slide 48: Gossip-based dissemination
	Slide 49: Topology maintenance
	Slide 50: Decentralized computations
	Slide 51: Gossip-based aggregation
	Slide 52: Gossip-based aggregation
	Slide 53: Counting with gossip
	Slide 54: Ordered Slicing
	Slide 55: Where is that used in practice?
	Slide 56: References

