=Pr-L

DHTs

Anne-Marie Kermarrec

You know you have a distributed system when the crash of a computer you have
never heard of stops you from getting any work done. Leslie lamport

CS 460

=PrL
Where are we?

Gossip Protocols
Week 7

Consistency protocols
CAP Theorem
Week 9

systems

‘ Distributed/decentralized
Week 8-12

Transaction
Management

Query
Execution

Storage
Hierarchies
& Layouts

Query optimization

Data science software stack

Data Processing
Graph Data Structured Machine
Pregel, GraphLab, X- Data Learning
Streem, Chaos Spark SQL Week 12

Batch Data Streaming Data
Map Reduce, Storm, Naiad, Flink, Spark
Dryad, Spark Streaming Google Data Flow

Data Storage

NoSQL DB Distributed
Dynamo Big Table Messaging
Cassandra systems
Week 9 Kafka — Week 11

Distributed
File Systems
(GFS)

Ressource Management & Optimization

Scheduling (Mesos, YARN)-
Week 10

[nternel Inventors

(T'

Lomputer scientisis .
. Vinton Cerf & Bob Kahn T8
b, are credited with inventing ;
; the Internet communication
' Protocoss
[
nformationClcom

=PrL
Share ressources among multiple machines

CCCCC

=PrL
Internet: A collaborative decentralized system

CCCCC

=PrL
Internet: A collaborative decentralized system

CCCCC

o

,/‘jl

/

7Y
g

’ ‘ TR\ N ! d Nie”
V/ b i <N\
ST)

X Vet //, /“34 - q)

P2 A N '

e 2\

— \\.\\ ; \‘\ J
‘ / | ’ \ ¥ ‘

\ /

Vi //
/,
v' % ,/ ' = { ‘ F
‘{’1"’/ -
LN\ % '

/
y

=PrL
The Web: A decentralized system

Se Nionde.fr

CCCCC

=PrL
The Web: A decentralized system

Address book for ,!:Le mwm&g .fr
websites (DNS)

Common language to
communicate (HTTP)

®

2

https://www.lemonde.fr/

N>

CS 460 9

EPFL
The Web turned extremely centralized, now

in the hand of a few giants

amazon ST
fe Mlonde.fr

Annual revenue of Alphabet from 2011 to 2024

(in million U.S. dollars)

400,000 *
350,018
350,000 a
307,394
300,000 o
282,836
= 257,637 <
L 250,000
b
2 200,000
150,000
1)

2222222

1111111

222222

=

CS 460

© Statista 2025 &

EPFL
An increasingly popular alternative

TECHNOLOGY

 Citizen-friendly alternative
e Decentralized infrastructure
* Privacy-aware

The New JJork Times [smsca)

Out to Remake the Digital
World.

Tim Berners-Lee wants to put people in control of
their personal data. He has technology and a start-
up pursuing that goal. Can he succeed?

<) hd
J Qe
e 7 3 Artificail
i i Intelligence
} &
Brain Computer ' oy
Interfaces (_)’
e .i
L

q h'< Environment
~ @
Q "y ,
P ‘>)
User Friendly ﬁ ﬁ ! g

W
(i TN 3 Assistive Internet of

W n Technologies Things

\8

h]

D e — CoinDesk € Layor2 Newslottars Q

Cryptocurrency

What Is Web 3 and Why Is
Everyone Talking About It?

Web 3 represents the next generation of the
internet, one that focuses on shifting power from
big tech companies to individual users.

By Redrart Slevama

CS 460 11

=Pr-L

(Fully) Distributed
architectures

Aka P2P/decentralized

=PrL
Distributed systems

e Use several machines

* Yet: appears to the users as a single computer: your FB wall, your
Netflix Interface, etc

* Name it: The Web, The Internet, A wireless network, Bitcoin, A cloud
Amazon EC2/S3 or Microsoft Azure, A datacenter

EPFL
Characteristics

» Aggregate resources

 Scalability
e Speed
* Reliability

e At the price of
* Complexity
* Cost of maintenance

CS 460 14

=PrL
Why are they more complex?

* No global clock; no single global notion of the correct time (asynchrony)

* Unpredictable failures of components: lack of response may be due to
either failure of a network component, network path being down, or a
computer crash

e Highly variable bandwidth: from 16Kbps (slow modems or Google Balloon)
to Gbps (Internet2) to Tbps (in between DCs of same big company)

* Possibly large and variable latency: few ms to several seconds

* Large numbers of hosts: 2 to several millions

L
P2P applications

« Large contributor of Internet traffic (~50% of the Internet
traffic)

. Appllcatlons
» Bitcoin & Blockchain

 File sharing applications (Gnutella, Kazaa, Edonkey, Bit Torrent...)
« Archival systems
» Application level multicast Meet ChainGPT's
« Streaming protocols
« Telco applications (Skype)
« Recommenders The Future of

_ \Web3 Reporting!
« Decentralized Al

Al News Agents |

(--) ChainGPT

=PrL

Why do | tell you about P2P systems ?

* First distributed systems that seriously focused on scalability

* P2P techniques are widely used in cloud computing systems

e Key-value stores (e.g., Cassandra, Riak, Voldemort) use p2p
hashing

=PrL
What makes P2P interesting?

* End-nodes are promoted to active components

* Nodes participate, interact, contribute to the services they use.

e Harness huge pools of resources accumulated in millions of end-nodes.
* Avoid a central/master entity

* |rregularities and dynamicity are treated as the norm

CS 460

18

=PrL
The Internet: A decentralized system

CCCCC

=PrL
Overlay networks

CS 460

20

20

=PrL
Unstructured overlays

=PrL
Structured overlays

CCCCC

EPFL
Hash Table

e Structured overlay network

* A hash table: insert, lookup, delete object with keys
key = Hash (name)
put (key, wvalue)
get (key) —-> wvalue

containers

—» k1,v1 k2,v2 k3,v3

Operations: eEfficient access to a value

t(k given a key

u \'/ H

put(k,v) —> k4,v4 e Mapping key-value ensured
get(k,v) by the table of containers

.\ k5,V5 k6,V6
Table of

containers

=Pr-L
Distributed Hash Table

A DHT does the same in a distributed setting across millions of hosts on the Internet
key = hash (data)
lookup (key) -> IP addr (DHT lookup service)
send-RPC (IP address, put, key, data)

send-RPC (IP address, get, ke -> data
(J y) nodes

kivl k2,v2 k3,3

P2P
Operations: send () overlay K44

network

P2P Infrastructure ensures mapping

between keys and physical nodes
k5,v5 k6,v6

24

=Pr-L
Distributed Hash Table

nodes

N——> k1 vl k2,v2 k3,v3

Operations:

send(m,k) overlay kA, v4
network

k5,v5 k6,v6

e Message sent to keys: implementation of a DHT
e P2P Infrastructure ensures mapping between keys and physical nodes
e Fully decentralized: peer to peer communication paradigm

CS 460

25

=Pr-L

put (key,

Distributed application (e.g. storage, multicast, pub-sub)

data) get (data)

Distributed Hash table

CS 460

26

=Pr-L

Pastry

Designed by A. Rowstron (MSR) and P. Druschel (Rice Univ.)

CS 460

27

=PrL

P2P routing infrastructure

e Overlay: network abstraction on top of IP

* Basic functionality: distributed hash table
key = SHA-1 (data)

e An identifier is associated to each node
nodeId = SHA-1(IP address)

e Large identifier space (keys and nodeld)

e A node is responsible for a range of keys

* Routing: search efficiently for keys

CS 460

=PrL
Object distribution
Consistent hashing

2128_1 ‘ 0O [Karger et al. 97]

128 bit circular id space
m nodelds (uniform random)
e objlds (uniform random)

Invariant: node with numerically
closest nodeld maintains object.

.— hodelds
/
/

CS 460 29

cPrL
Pastry

Naming space :
e Ring of 128 bit integers
* nodelds chosen at random

Key/node mapping
* key associated to the node with the numerically closest node id

Routing table

Leaf set
e 8 or 16 closest numerical neighbors in the naming space

CS 460

=PrL

Pastry routing table

* Routing tables based on prefix matching
* |dentifiers are a set of digits in base 16
* Matrix of 128/4 lines et 16 columns
e routeTable (1, J):
* nodeld matching the current node identifier up to level /
* with the next digitis

=PrL

Simple example

* Consider a peer with id 01110100101

* Maintains a neighor peer in each of the following prefixes
A |
* 00
* 010
* 0110

* At each routing step, forward to a neighbor with the largest matching
prefix

cPrL
Pastry: Routing

d471f1

d467c4
d462ba

d4213f

Route(d46alc) d13da3

65alfc

CS 460

Properties

* log,c N hops

 Size of the state maintained
(routing table): O(log N)

Search takes O(log(N)) time
(intuition):

33

CS 46

=PrL pastry: Routing table(#65a1fcx)

.._IX|6.TX 65.._IX|6_ban
QX WoX ©OnoX ©OnocoX
dX|6dX|65dX| OLWmaocT X
OX ©WoX OonwoX | oo X
X o X |ownoaX omn moca X
X |©® X O C T X
9X- 69X| O LWmmo X OLWmaoco X
ooX. 600X- 6500X. O L ©@ 0 X
N~ X 67X_ 657X- O LW @M~ X
O © X 656X| O LW o O X
5X. 655X| OLmaoLw X
< X Ot X (Ot X |0 ®< X
3X|63X| 653X|6583X
2X|62X|652X|6582X
1_X|61_ X|651_X
OX lwoXx oOomwo X o co X
o — N ™
g 2 = =
< w
=
o =

=PrL

Routing algorithm, notations

R, :entry of the routing table R, 0<i <2,

line I, 0<1<|128/b |

L. :ith closest nodeld in the leafset

D, :value of the | digits of key D

SHL (A, B) :length of the shared prefix between A and B

35

=PrL
Routing algorithm (on node A)

(1) fLyjzy2 D <Ly A
2) // D 1s within range of our leaf set
3) forward to 1;, s.th. |D — ;| is minimal;

(4) }else{

(5) // use the routing table
(6) Let! = shl(D, A);
(7) if (R # null) {

R, :entry of the routing table R, 0<i<2°,
line 1, 0<1<128/b |

L. :ith closest nodeld inthe leafset

D, :value of the I digits of key D

g; } forward to RZU E SHL (A, B) : length of the shared prefix between A and B
(10) else{

(11) // rare case

(12) forwardto /' € .U RU M, s.th.

(13) shi(T, D) >1,

(14) T — D] < |A—-D|

sy)

(16) t

=PrL
Node departure

 Explicit departure or failure
* Graceful replacement of a node

* The leafset of the closest node in the leafset contains the closest new
node, not yet in the leafset

 Update from the leafset information
* Update the application

CS 460

=PrL
Failure detection

* Detected when immediate neighbors in the name space
(leafset) can no longer communicate

* Detected when a contact fails during the routing
* Routing uses an alternative route

CS 460

=PrL

State maintenance

 Leaf set
* is aggressively monitored and fixed
e Eventual guarantee up to L/2 nodes with adjacent nodelds fail
simultaneously
* Routing table
 are lazily repaired
* When a hole is detected during the routing
* Periodic gossip-based maintenance

CS 460

=PrL
Reducing latency

* Random assignment of nodeld:
Nodes numerically close are
geographically (topologically)
distant

* Objective: fill the routing table
with nodes so that routing hops
are as short (latency wise) as
possible

* Topological Metric: latency

d467c4

CS 460

www, jedessine com

=PrL

Exploiting locality in Pastry

* Neighbor selected based of a network proximity metric:
* Closest topological node
 Satisfying the constraints of the routing table routeTable(i,j):

* nodeld corresponding to the current nodeld courant up to
level i

* next digit =
* nodes are close at the top level of the routing table
* random nodes at the bottom levels of the routing tables

CS 460

c=PrL
Proximity routing in Pastry

Leaf set

.
“"
.
R
R
.
.
.
.
.
.
.
.
o*
o
.
.
.
.
.
.
.
.
R
*

Topological space

d4213f

Route(d46alc)
d13da3

65alfc =,
| i gebdalfc
Naming space d462ba‘ *._d13da3

CS 460

42

=PrL
Joining the network

* Node X joins through a nearby node A

* Node X routes to node A
* Path A,B,... >7Z
e Znumerically closest to X
* Initialisation of the line i of the routing table with the contents of line i of the routing table of the ith
node encountered on the path
* Improving the quality of the routing table
» X asks to each node of its routing table its own routing state and compare distances

* Gossip-based update for each line (every 20mn)
* Periodically, an entry is chosen at random in the routing table
e Corresponding line of this entry sent over
* Evaluation of potential candidates
* Replacement of better candidates
* New nodes gradually integrated

CS 460

=PrL

Performance 1.59 slower than IP on average

600 _
0 Normal Routing Tables
500 B Perfect Routing Tables
B3 No locality
@ :
S 400
3]
Xz :
© R e e
o 300
(@) :
<
> 200
100
0
1 2 3 4)

Hop Number

44

EPFL
References

* Antony I. T. Rowstron, Peter Druschel: Pastry: Scalable, Decentralized Object Location, and
Routing for Large-Scale Peer-to-Peer Systems. Middleware 2001: 329-350

« |on Stoica, Robert Tappan Morris, David R. Karger, M. Frans Kaashoek, Hari
Balakrishnan: Chord: A scalable peer-to-peer lookup service for internet applications.
SIGCOMM 2001: 149-160

« Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard M. Karp, Scott Shenker :
A scalable content-addressable network. SIGCOMM 2001: 161-172

 BenY. Zhao, Ling Huang, Jeremy Stribling, Sean C. Rhea, Anthony D. Joseph
John Kubiatowicz:
Tapestry: a resilient global-scale overlay for service deployment. IEEE J. Sel. Areas
Commun. 22(1): 41-53 (2004)

CS 460 45

https://dblp.org/pid/r/AITRowstron.html
https://dblp.org/db/conf/middleware/middleware2001.html
https://dblp.org/pid/s/IonStoica.html
https://dblp.org/pid/82/11191.html
https://dblp.org/pid/k/DavidRKarger.html
https://dblp.org/pid/b/HariBalakrishnan.html
https://dblp.org/pid/b/HariBalakrishnan.html
https://dblp.org/db/conf/sigcomm/sigcomm2001.html
https://dblp.org/pid/f/PaulFrancis.html
https://dblp.org/pid/h/MarkHandley.html
https://dblp.org/pid/k/RichardMKarp.html
https://dblp.org/pid/34/5593.html
https://dblp.org/db/conf/sigcomm/sigcomm2001.html
https://dblp.org/pid/90/3799.html
https://dblp.org/pid/74/3199.html
https://dblp.org/pid/71/1478.html
https://dblp.org/pid/30/2317.html
https://dblp.org/pid/k/JohnKubiatowicz.html
https://dblp.org/db/journals/jsac/jsac22.html
https://dblp.org/db/journals/jsac/jsac22.html

=Pr-L

Consistency models

Anne-Marie Kermarrec
CS-460

=PrL
Where are we?

Gossip Protocols
Week 7

Consistency models
CAP Theorem
Week 8-9

Transaction
Management

Query
Execution

Storage
Hierarchies
& Layouts

Query optimization

Data science software stack

Data Processing
Graph Data Structured Machine
Pregel, GraphLab, X- DE| Learning
Streem, Chaos Spark SQL Week 12

Batch Data Streaming Data
Map Reduce, Storm, Naiad, Flink, Spark
Dryad, Spark Streaming Google Data Flow

Data Storage

NoSQL DB Distributed
Dynamo Big Table Messaging
Cassandra systems
Week 9 Kafka — Week 11

Distributed
File Systems
(GFS)

Ressource Management & Optimization

Scheduling (Mesos, YARN)-
Week 10

=PrL
Replication

* Replication is key to availability (low latency, failure resilience, load
balancing)

 But creates inconsistencies due to concurrent accesses

=PrL
What is a consistency model?

* Describes a contract between a client application and the data store
* States how the memory behaves

 States what the application can expect from the underlying storage systems
and the associated rules

=PrL

When is it needed?

Whenever objects are replicated

Replicas must be
e Modifications have to be carried out on all copies
* In the presence of concurrent updates/reads

Different

* A consistency model is a set of rules that process obeys while accessing data

=Pi-L |
A large spectrum of consistency models

Process Process Process

Strong Consistency

Eventual Consistency

Distributed data storage

&
™~

Faster reads and writes

More consistency
Eventual CS 460

> Strong

=Pr-L
Examples of onsistency guarantees

Strong consistency See all previous writes

Eventual consistency See subset of previous writes
Consistent prefix See initial sequence of writes
Monotonic Freshness See increasing sequence of writes
Read my writes See all writes performed by reader

Bounded Staleness See all “old”writes

CS 460

52

cPrL , |
Consistency requirements in a volley-ball

game

* The first team to reach 25 points and by at least two points wins a set
(for the first 4 sets)

* The first team to reach 15 points and by at least two points wins the 5th
set

* The first team to win 3 sets wins the
game

* Imagine the score is stored and
replicated in the cloud

Inspired from Replicated Data Consistency Explained Through

Baseball Doug Terry MISR Technical Report, October 2011
CS 460

=PL strong consistency

Home-Visitors Aka linearizability , one-copy serializability
2:1 20-22 The responses to the operations invoked in an
Reader #1 . . :
2:1 20-23 execution are the same as if all operations were
1 21.23 3:1 executed in a sequential order and this order
: respects those specified by each process
2:1 22-23
7:1 23-23 Reader #2 Strong consistency is impossible to achieve in
: the presence of partition (CAP-next lecture)
2:1 24-23 3:1
2:1 25-23 Strong consistency is impossible to achieve in
31 an asynchronous system without assumptions on

message delivery latencies (FLP)

Guarantee: see all previous writes. All reads at
time t should reflect all the writes that happened
before t.

3:1

=PrL

Home-Visitors

2:1

20-22

2:1

20-23

Eventual consistency

Reader #1

2:1

21-23

2:120:23

Eventually, in the absence of operations, replicas
will be consistent

Guarantee: see some previous writes. Eventually (in

2:1

22-23

2:1

23-23

Reader #2

2:1

24-23

3:1

2:1

25-23

3:1

3:1

the absence of new writes), all the reads will return
the correct and most recent state.

=PrL

Home-Visitors

2:1

20-22

2:1

20-23

Consistent Prefix

Reader #1

2:1

21-23

2:120:23

2:1

22-23

2:1

23-23

Reader #2

Snapshot isolation, ordered delivery

Guarantee: see initial sequence of writes that existed

2:1

24-23

2:122:23

2:1

25-23

3:1

3:1

at some pointin time. If a reader issues a read request at
time t, it should read the result of any of the prefixes of
the sequence of writes.

=PTL Monotonic Freshness

Home-Visitors

- Reader #1 at
2:1 20-22 time t1 If a process reads the value of a data item x,
2:1 20-23 any successive operation on x by that process

2:120:23 will always return the same or a more recent value

2:1 21-23
2:1 22-23 Reader #1 at

_ time t2 Guarantee: see increasing subset of previous writes
2:1 23-23 _

(local guarantee from a given reader)
2:1 24-23 3:1
2:1 25-23
3:1

3:1

=PrL

Home-Visitors

2:1

20-22

2:1

20-23

Bounded Staleness

Reader #1

2:1

21-23

2:120:23

2:1
2:1

22-23
23-23

Reader #2

Periodic Snapshot, continuous consistency

Guarantee: see all « old » writes. The staleness parameter

2:1

24-23

2:122:23

2:1

25-23

3:1

3:1

denotes the allowed staleness of the system.

=PrL

Home-Visitors

2:1

20-22

2:1

20-23

Read my writes

Writer #1

2:1

21-23

3:1

2:1

22-23

2:1

23-23

Reader #2

2:1

24-23

2:122:23

2:1

25-23

3:1

3:1

The effect of a write operation by a process on
data

item x will be always seen by a successive read
operation on x by the same process

Guarantee: see all writes performed by reader.

local guarantee any read by client ¢ should reflect
all the writes by c in the past. This means that it
can also be local-strong-consistency, whereas for
writes of other clients, reads by c can be
eventually-consistent.

=Pi-L
Official score keeper

Suppose visitor score

Read (visitor_score)
Write(visitor_score. Update)

CS 460

a

<

Read my writes (single
score keeper)

Strong consistency
otherwise

/

60

=PrL
Referee

4th set, home scores @24
vs=Read (visitor_score);
hs= Read(home_score);

If (hs=25) & (vs<24)
end game ;

CS 460

a

<

Strong consistency

N

/

61

=PrL
Radio Reporter

Do{
vs=Read (visitor_score);
hs= Read(home_score);

Report vs and hs;
Sleep (30mn);

CS 460

4 N

Consistent Prefix (if reads
from same replica)
Monotonic Freshness
or Bounded Staleness

<)

62

=PrL
Sportswriter

While not end of the game{
drink beer;

}

Go out to diner;
vs=Read (visitor_score);
hs= Read(home_score);
write article;

CS 460

a

<

Eventual consistency
or Bounded Staleness

N

/

63

=Pr-L
Statistician

Wait for end of game;
score Read(“home_stats”);

stat=Read (“season-runs”);
Write{“season-runs”, stat
| +score);

CS 460

a

<

Strong consistency (1st read)
Read My Writes after

N

/

64

=PrL
Supporter

Read score;

Discuss score with friends

CS 460

a

N

Eventual consistency or

<

Strong consistency

/

65

=PrL
A wide range of models

Score keeper Radio Reporter

Read my writes Consistent prefix
Monotonic Freshness

Referee Sportswriter

Strong Bounded staleness

CS 460

Statistician

Strong
Read my writes

Supporter

Strong
AVEIIE]

66

=PrL

Conclusions

 Different clients want different guarantees

* One client might want different guarantees for different reads

* Several models can be applied

 Strong consistency would do but is prohibitive performance wise

e Use the lowest consistency (to the left) consistency model that is
“correct” for your application

	Slide 1: DHTs
	Slide 2: Where are we?
	Slide 3: They had a dream
	Slide 4: Share ressources among multiple machines
	Slide 5: Internet: A collaborative decentralized system
	Slide 6: Internet: A collaborative decentralized system
	Slide 7: He had a similar dream
	Slide 8: The Web: A decentralized system
	Slide 9: The Web: A decentralized system
	Slide 10
	Slide 11: An increasingly popular alternative
	Slide 12: (Fully) Distributed architectures
	Slide 13: Distributed systems
	Slide 14: Characteristics
	Slide 15: Why are they more complex?
	Slide 16: P2P applications
	Slide 17: Why do I tell you about P2P systems ?
	Slide 18: What makes P2P interesting?
	Slide 19: The Internet: A decentralized system
	Slide 20: Overlay networks
	Slide 21: Unstructured overlays
	Slide 22: Structured overlays
	Slide 23: Hash Table
	Slide 24: Distributed Hash Table
	Slide 25: Distributed Hash Table
	Slide 26
	Slide 27: Pastry
	Slide 28: P2P routing infrastructure
	Slide 29: Object distribution
	Slide 30: Pastry
	Slide 31: Pastry routing table
	Slide 32: Simple example
	Slide 33: Pastry: Routing
	Slide 34: Pastry: Routing table(#65a1fcx)
	Slide 35: Routing algorithm, notations
	Slide 36: Routing algorithm (on node A)
	Slide 37: Node departure
	Slide 38: Failure detection
	Slide 39: State maintenance
	Slide 40: Reducing latency
	Slide 41: Exploiting locality in Pastry
	Slide 42: Proximity routing in Pastry
	Slide 43: Joining the network
	Slide 44: Performance
	Slide 45: References
	Slide 46: Consistency models
	Slide 47: Where are we?
	Slide 48: Replication
	Slide 49: What is a consistency model?
	Slide 50: When is it needed?
	Slide 51: A large spectrum of consistency models
	Slide 52: Examples of onsistency guarantees
	Slide 53: Consistency requirements in a volley-ball game
	Slide 54: Strong consistency
	Slide 55: Eventual consistency
	Slide 56: Consistent Prefix
	Slide 57: Monotonic Freshness
	Slide 58: Bounded Staleness
	Slide 59: Read my writes
	Slide 60: Official score keeper
	Slide 61: Referee
	Slide 62: Radio Reporter
	Slide 63: Sportswriter
	Slide 64: Statistician
	Slide 65: Supporter
	Slide 66: A wide range of models
	Slide 67: Conclusions

