
DHTs

Anne-Marie Kermarrec

CS 460 1

You know you have a distributed system when the crash of a computer you have
never heard of stops you from getting any work done. Leslie lamport

Where are we?

CS 460 2

Consistency protocols
CAP Theorem

Week 9

Gossip Protocols
Week 7

Distributed/decentralized
systems

Week 8-12

Data science software stack

Data Processing

Ressource Management & Optimization

Data Storage

Distributed
File Systems

(GFS)

NoSQL DB
Dynamo Big Table

Cassandra
Week 9

Distributed
Messaging

systems
Kafka – Week 11

Structured
Data

Spark SQL

Graph Data
Pregel, GraphLab, X-

Streem, Chaos

Machine
Learning
Week 12

Batch Data
Map Reduce,
Dryad, Spark

Streaming Data
Storm, Naiad, Flink, Spark

Streaming Google Data Flow

Scheduling (Mesos, YARN)-
Week 10

Query optimization

Storage
Hierarchies
& Layouts

Transaction
Management

Query
Execution

They had a dream

CS 460 3

Share ressources among multiple machines

Internet

CS 460 4

Internet: A collaborative decentralized system

CS 460 5

Internet: A collaborative decentralized system

CS 460 6

He had a similar dream

CS 460 7

The Web: A decentralized system

CS 460 8

The Web: A decentralized system

CS 460 9

Address book for
websites (DNS)

Common language to
communicate (HTTP)

https://www.lemonde.fr/

CS 460
10

The Web turned extremely centralized, now
in the hand of a few giants

An increasingly popular alternative

• Citizen-friendly alternative

• Decentralized infrastructure

• Privacy-aware

CS 460 11

(Fully) Distributed
architectures

Aka P2P/decentralized

CS 460 12

Distributed systems

• Use several machines

• Yet: appears to the users as a single computer: your FB wall, your
Netflix Interface, etc

• Name it: The Web, The Internet, A wireless network, Bitcoin, A cloud
Amazon EC2/S3 or Microsoft Azure, A datacenter

CS 460 13

Characteristics

• Aggregate resources

• Scalability

• Speed

• Reliability

• At the price of
• Complexity

• Cost of maintenance

CS 460 14

Why are they more complex?

• No global clock; no single global notion of the correct time (asynchrony)

• Unpredictable failures of components: lack of response may be due to

either failure of a network component, network path being down, or a

computer crash

• Highly variable bandwidth: from 16Kbps (slow modems or Google Balloon)

to Gbps (Internet2) to Tbps (in between DCs of same big company)

• Possibly large and variable latency: few ms to several seconds

• Large numbers of hosts: 2 to several millions

CS 460 15

16

P2P applications

• Large contributor of Internet traffic (~50% of the Internet
traffic)

• Applications
• Bitcoin & Blockchain

• File sharing applications (Gnutella, Kazaa, Edonkey, Bit Torrent…)

• Archival systems

• Application level multicast

• Streaming protocols

• Telco applications (Skype)

• Recommenders

• Decentralized AI

CS 460

Why do I tell you about P2P systems ?

• First distributed systems that seriously focused on scalability

• P2P techniques are widely used in cloud computing systems
• Key-value stores (e.g., Cassandra, Riak, Voldemort) use p2p

hashing

CS 460 17

18

What makes P2P interesting?

• End-nodes are promoted to active components

• Nodes participate, interact, contribute to the services they use.

• Harness huge pools of resources accumulated in millions of end-nodes.

• Avoid a central/master entity

• Irregularities and dynamicity are treated as the norm

CS 460

The Internet: A decentralized system

CS 460 19

Overlay networks

CS 460 20
20

Unstructured overlays

CS 460
21

22

Structured overlays

CS 460

Hash Table

• Structured overlay network

• A hash table: insert, lookup, delete object with keys
key = Hash(name)

put(key, value)

get(key) -> value

CS 460 23

k6,v6

k1,v1

k5,v5

k2,v2

k4,v4

k3,v3

containers

Operations:
put(k,v)
get(k,v)

Table of
containers

•Efficient access to a value
given a key

• Mapping key-value ensured
by the table of containers

Distributed Hash Table

• A DHT does the same in a distributed setting across millions of hosts on the Internet
key = hash(data)

lookup(key) -> IP addr (DHT lookup service)

send-RPC(IP address, put, key, data)

send-RPC(IP address, get, key) -> data

CS 460 24

k6,v6

k1,v1

k5,v5

k2,v2

k4,v4

k3,v3

nodes

Operations: send ()
P2P

overlay

network
P2P Infrastructure ensures mapping
between keys and physical nodes

25

Distributed Hash Table

k6,v6

k1,v1

k5,v5

k2,v2

k4,v4

k3,v3

nodes

Operations:

send(m,k)
P2P

overlay

network

• Message sent to keys: implementation of a DHT
• P2P Infrastructure ensures mapping between keys and physical nodes
• Fully decentralized: peer to peer communication paradigm

CS 460

CS 460 26

Distributed application (e.g. storage, multicast, pub-sub)

Distributed Hash table

Node NodeNodeNode

put(key, data) get(data) data

Lookup(key)

Pastry
Designed by A. Rowstron (MSR) and P. Druschel (Rice Univ.)

CS 460 27

P2P routing infrastructure

• Overlay: network abstraction on top of IP

• Basic functionality: distributed hash table

 key = SHA-1(data)

• An identifier is associated to each node
 nodeId = SHA-1(IP address)

• Large identifier space (keys and nodeId)

• A node is responsible for a range of keys

• Routing: search efficiently for keys

CS 460 28

Object distribution

CS 460

objId

nodeIds

O2128-1

Consistent hashing
[Karger et al. ‘97]

128 bit circular id space
 nodeIds (uniform random)
• objIds (uniform random)

Invariant: node with numerically
closest nodeId maintains object.

29

Pastry

• Naming space :
• Ring of 128 bit integers
• nodeIds chosen at random

• Key/node mapping

• key associated to the node with the numerically closest node id

• Routing table

• Leaf set
• 8 or 16 closest numerical neighbors in the naming space

CS 460 30

Pastry routing table

• Routing tables based on prefix matching

• Identifiers are a set of digits in base 16

• Matrix of 128/4 lines et 16 columns

• routeTable(i,j):

• nodeId matching the current node identifier up to level I

• with the next digit is j

CS 460 31

Simple example

• Consider a peer with id 01110100101

• Maintains a neighor peer in each of the following prefixes
• 1

• 00

• 010

• 0110

• ….

• At each routing step, forward to a neighbor with the largest matching
prefix

CS 460 32

Pastry: Routing
Properties
• log16 N hops
• Size of the state maintained

(routing table): O(log N)

d46a1c

Route(d46a1c)

d462ba

d4213f

d13da3

65a1fc

d467c4
d471f1

CS 460 33

Search takes O(log(N)) time

(intuition): at each step, distance

between query and peer-with-file

reduces by a factor of at least 2

Pastry: Routing table(#65a1fcx)
0

x

1

x

2

x

3

x

4

x

5

x

7

x

8

x

9

x

a

x

b

x

c

x

d

x

e

x

f

x

6

0

x

6

1

x

6

2

x

6

3

x

6

4

x

6

6

x

6

7

x

6

8

x

6

9

x

6

a

x

6

b

x

6

c

x

6

d

x

6

e

x

6

f

x

6

5

0

x

6

5

1

x

6

5

2

x

6

5

3

x

6

5

4

x

6

5

5

x

6

5

6

x

6

5

7

x

6

5

8

x

6

5

9

x

6

5

b

x

6

5

c

x

6

5

d

x

6

5

e

x

6

5

f

x

6

5

a

0

x

6

5

a

2

x

6

5

a

3

x

6

5

a

4

x

6

5

a

5

x

6

5

a

6

x

6

5

a

7

x

6

5

a

8

x

6

5

a

9

x

6

5

a

a

x

6

5

a

b

x

6

5

a

c

x

6

5

a

d

x

6

5

a

e

x

6

5

a

f

x
log16 N
lines

Line 0

Line 1

Line 2

Line 3

CS 460 34

35

Routing algorithm, notations

 

BASHL

DlD

L

 /bll,

, iR, R

l

i

bi

l

B andA between prefix shared theoflength :),(

key of digits theof value:

leafset in the nodeIdclosest ith :

1280 line

20 tablerouting theofentry :





CS 460

Routing algorithm (on node A)

 

BASHL

DlD

L

 /bll,

, iR, R

l

i

bi

l

B andA between prefix shared theoflength :),(

key of digits theof value:

leafset in the nodeIdclosest ith :

1280 line

20 tablerouting theofentry :





leaf set

CS 460 36

Node departure

• Explicit departure or failure

• Graceful replacement of a node

• The leafset of the closest node in the leafset contains the closest new
node, not yet in the leafset

• Update from the leafset information

• Update the application

CS 460 37

Failure detection

• Detected when immediate neighbors in the name space
(leafset) can no longer communicate

• Detected when a contact fails during the routing
• Routing uses an alternative route

CS 460 38

State maintenance

• Leaf set

• is aggressively monitored and fixed

• Eventual guarantee up to L/2 nodes with adjacent nodeIds fail
simultaneously

• Routing table

• are lazily repaired

• When a hole is detected during the routing

• Periodic gossip-based maintenance

CS 460 39

Reducing latency

• Random assignment of nodeId:
Nodes numerically close are
geographically (topologically)
distant

• Objective: fill the routing table
with nodes so that routing hops
are as short (latency wise) as
possible

• Topological Metric: latency

d467c4

d467f5

6fdacd

CS 460 40

Exploiting locality in Pastry

• Neighbor selected based of a network proximity metric:

• Closest topological node

• Satisfying the constraints of the routing table routeTable(i,j):

• nodeId corresponding to the current nodeId courant up to
level i

• next digit = j

• nodes are close at the top level of the routing table

• random nodes at the bottom levels of the routing tables

CS 460 41

Proximity routing in Pastry

d46a1c

Route(d46a1c)

d462ba

d4213f

d13da3

65a1fc

d467c4
d471f1

Naming space

d467c4

65a1fc

d13da3

d4213f

d462ba

Topological space

Leaf set

CS 460 42

Joining the network

• Node X joins through a nearby node A

• Node X routes to node A
• Path A,B,… -> Z

• Z numerically closest to X

• Initialisation of the line i of the routing table with the contents of line i of the routing table of the ith
node encountered on the path

• Improving the quality of the routing table
• X asks to each node of its routing table its own routing state and compare distances

• Gossip-based update for each line (every 20mn)
• Periodically, an entry is chosen at random in the routing table

• Corresponding line of this entry sent over

• Evaluation of potential candidates

• Replacement of better candidates

• New nodes gradually integrated

CS 460 43

44

Performance

0

100

200

300

400

500

600

1 2 3 4 5

Hop Number

P
e
r-

h
o

p
 d

is
ta

n
c
e

Normal Routing Tables

Perfect Routing Tables

No locality

1.59 slower than IP on average

CS 460

References

• Antony I. T. Rowstron, Peter Druschel: Pastry: Scalable, Decentralized Object Location, and
Routing for Large-Scale Peer-to-Peer Systems. Middleware 2001: 329-350

• Ion Stoica, Robert Tappan Morris, David R. Karger, M. Frans Kaashoek, Hari
Balakrishnan: Chord: A scalable peer-to-peer lookup service for internet applications.
SIGCOMM 2001: 149-160

• Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard M. Karp, Scott Shenker :
A scalable content-addressable network. SIGCOMM 2001: 161-172

• Ben Y. Zhao, Ling Huang, Jeremy Stribling, Sean C. Rhea, Anthony D. Joseph ,
John Kubiatowicz:
Tapestry: a resilient global-scale overlay for service deployment. IEEE J. Sel. Areas
Commun. 22(1): 41-53 (2004)

CS 460 45

https://dblp.org/pid/r/AITRowstron.html
https://dblp.org/db/conf/middleware/middleware2001.html
https://dblp.org/pid/s/IonStoica.html
https://dblp.org/pid/82/11191.html
https://dblp.org/pid/k/DavidRKarger.html
https://dblp.org/pid/b/HariBalakrishnan.html
https://dblp.org/pid/b/HariBalakrishnan.html
https://dblp.org/db/conf/sigcomm/sigcomm2001.html
https://dblp.org/pid/f/PaulFrancis.html
https://dblp.org/pid/h/MarkHandley.html
https://dblp.org/pid/k/RichardMKarp.html
https://dblp.org/pid/34/5593.html
https://dblp.org/db/conf/sigcomm/sigcomm2001.html
https://dblp.org/pid/90/3799.html
https://dblp.org/pid/74/3199.html
https://dblp.org/pid/71/1478.html
https://dblp.org/pid/30/2317.html
https://dblp.org/pid/k/JohnKubiatowicz.html
https://dblp.org/db/journals/jsac/jsac22.html
https://dblp.org/db/journals/jsac/jsac22.html

Consistency models
Anne-Marie Kermarrec

CS-460

CS 460 46

Where are we?

CS 460 47

Consistency models
CAP Theorem

Week 8-9

Gossip Protocols
Week 7

Distributed/decentralized
systems

Week 8-12

Data science software stack

Data Processing

Ressource Management & Optimization

Data Storage

Distributed
File Systems

(GFS)

NoSQL DB
Dynamo Big Table

Cassandra
Week 9

Distributed
Messaging

systems
Kafka – Week 11

Structured
Data

Spark SQL

Graph Data
Pregel, GraphLab, X-

Streem, Chaos

Machine
Learning
Week 12

Batch Data
Map Reduce,
Dryad, Spark

Streaming Data
Storm, Naiad, Flink, Spark

Streaming Google Data Flow

Scheduling (Mesos, YARN)-
Week 10

Query optimization

Storage
Hierarchies
& Layouts

Transaction
Management

Query
Execution

Replication

• Replication is key to availability (low latency, failure resilience, load
balancing)

• But creates inconsistencies due to concurrent accesses

CS 460 48

What is a consistency model?

• Describes a contract between a client application and the data store
• States how the memory behaves

• States what the application can expect from the underlying storage systems
and the associated rules

CS 460 49

When is it needed?

Whenever objects are replicated

Replicas must be consistent in some way

• Modifications have to be carried out on all copies

• In the presence of concurrent updates/reads

Different consistency models

• A consistency model is a set of rules that process obeys while accessing data

CS 460 50

A large spectrum of consistency models

Strong Consistency

•

•

•

Eventual Consistency

CS 460

Process Process Process

Distributed data storage

Strong
Eventual

More consistency

Faster reads and writes

51

Examples of onsistency guarantees

CS 460 52

Strong consistency See all previous writes

Eventual consistency See subset of previous writes

Consistent prefix See initial sequence of writes

Monotonic Freshness See increasing sequence of writes

Read my writes See all writes performed by reader

Bounded Staleness See all “old”writes

Consistency requirements in a volley-ball
game
• The first team to reach 25 points and by at least two points wins a set

(for the first 4 sets)

• The first team to reach 15 points and by at least two points wins the 5th
set

• The first team to win 3 sets wins the

game

• Imagine the score is stored and

replicated in the cloud

CS 460 53

Inspired from Replicated Data Consistency Explained Through
Baseball Doug Terry MSR Technical Report, October 2011

CS 460 54

2:1 20-22

2:1 20-23

2:1 21-23

2:1 22-23

2:1 23-23

2:1 24-23

2:1 25-23

3:1

Reader #1

3:1

3:1

Home-Visitors

Reader #2

3:1

Strong consistency
Aka linearizability , one-copy serializability

The responses to the operations invoked in an
execution are the same as if all operations were
executed in a sequential order and this order
respects those specified by each process

Strong consistency is impossible to achieve in
the presence of partition (CAP-next lecture)

Strong consistency is impossible to achieve in
an asynchronous system without assumptions on
message delivery latencies (FLP)

Guarantee: see all previous writes. All reads at
time t should reflect all the writes that happened
before t.

CS 460 55

2:1 20-22

2:1 20-23

2:1 21-23

2:1 22-23

2:1 23-23

2:1 24-23

2:1 25-23

3:1

Reader #1

3:1

2:1 20:23

Home-Visitors

Reader #2

3:1

Eventual consistency
Eventually, in the absence of operations, replicas
will be consistent

Guarantee: see some previous writes. Eventually (in
the absence of new writes), all the reads will return
the correct and most recent state.

CS 460 56

2:1 20-22

2:1 20-23

2:1 21-23

2:1 22-23

2:1 23-23

2:1 24-23

2:1 25-23

3:1

Reader #1

3:1

2:1 20:23

Home-Visitors

2:1 22:23

Consistent Prefix

Snapshot isolation, ordered delivery

Guarantee: see initial sequence of writes that existed
at some point in time. If a reader issues a read request at
time t, it should read the result of any of the prefixes of
the sequence of writes.

Reader #2

CS 460 57

2:1 20-22

2:1 20-23

2:1 21-23

2:1 22-23

2:1 23-23

2:1 24-23

2:1 25-23

3:1

Reader #1 at
 time t1

3:1

2:1 20:23

Home-Visitors

3:1

Monotonic Freshness

If a process reads the value of a data item x,
any successive operation on x by that process
will always return the same or a more recent value

Guarantee: see increasing subset of previous writes
(local guarantee from a given reader)

Reader #1 at
 time t2

CS 460 58

2:1 20-22

2:1 20-23

2:1 21-23

2:1 22-23

2:1 23-23

2:1 24-23

2:1 25-23

3:1

Reader #1

3:1

2:1 20:23

Home-Visitors

2:1 22:23

Bounded Staleness

Periodic Snapshot, continuous consistency

Guarantee: see all « old » writes. The staleness parameter
denotes the allowed staleness of the system.

Reader #2

old

new

CS 460 59

2:1 20-22

2:1 20-23

2:1 21-23

2:1 22-23

2:1 23-23

2:1 24-23

2:1 25-23

3:1

Writer #1

3:1

3:1

Home-Visitors

2:1 22:23

Read my writes

The effect of a write operation by a process on
data
item x will be always seen by a successive read
operation on x by the same process

Guarantee: see all writes performed by reader.
local guarantee any read by client c should reflect
all the writes by c in the past. This means that it
can also be local-strong-consistency, whereas for
writes of other clients, reads by c can be
eventually-consistent.

Reader #2

Official score keeper

CS 460 60

Suppose visitor score

Read (visitor_score)
Write(visitor_score. Update)

Read my writes (single
score keeper)

Strong consistency
otherwise

Referee

CS 460 61

4th set, home scores @24
vs=Read (visitor_score);
hs= Read(home_score);

If (hs=25) & (vs<24)
end game ;

Strong consistency

Radio Reporter

CS 460 62

Do{
vs=Read (visitor_score);
hs= Read(home_score);

Report vs and hs;
Sleep (30mn);

}

Consistent Prefix (if reads
from same replica)

Monotonic Freshness
or Bounded Staleness

Sportswriter

CS 460 63

While not end of the game{
 drink beer;
}

Go out to diner;
vs=Read (visitor_score);
hs= Read(home_score);

 write article;

Eventual consistency
or Bounded Staleness

Statistician

CS 460 64

Wait for end of game;
score Read(“home_stats”);
stat=Read (“season-runs”);
Write{“season-runs”, stat
|+score);

Strong consistency (1st read)
Read My Writes after

Supporter

CS 460 65

Read score;
Discuss score with friends

Eventual consistency or
Strong consistency

CS 460 66

A wide range of models

Score keeper

Referee

Radio Reporter

Sportswriter
Supporter

Statistician

Read my writes

Strong

Consistent prefix
Monotonic Freshness

Bounded staleness

Strong
Read my writes

Strong
Eventual

Conclusions

• Different clients want different guarantees

• One client might want different guarantees for different reads

• Several models can be applied

• Strong consistency would do but is prohibitive performance wise

• Use the lowest consistency (to the left) consistency model that is
“correct” for your application

CS 460 67

	Slide 1: DHTs
	Slide 2: Where are we?
	Slide 3: They had a dream
	Slide 4: Share ressources among multiple machines
	Slide 5: Internet: A collaborative decentralized system
	Slide 6: Internet: A collaborative decentralized system
	Slide 7: He had a similar dream
	Slide 8: The Web: A decentralized system
	Slide 9: The Web: A decentralized system
	Slide 10
	Slide 11: An increasingly popular alternative
	Slide 12: (Fully) Distributed architectures
	Slide 13: Distributed systems
	Slide 14: Characteristics
	Slide 15: Why are they more complex?
	Slide 16: P2P applications
	Slide 17: Why do I tell you about P2P systems ?
	Slide 18: What makes P2P interesting?
	Slide 19: The Internet: A decentralized system
	Slide 20: Overlay networks
	Slide 21: Unstructured overlays
	Slide 22: Structured overlays
	Slide 23: Hash Table
	Slide 24: Distributed Hash Table
	Slide 25: Distributed Hash Table
	Slide 26
	Slide 27: Pastry
	Slide 28: P2P routing infrastructure
	Slide 29: Object distribution
	Slide 30: Pastry
	Slide 31: Pastry routing table
	Slide 32: Simple example
	Slide 33: Pastry: Routing
	Slide 34: Pastry: Routing table(#65a1fcx)
	Slide 35: Routing algorithm, notations
	Slide 36: Routing algorithm (on node A)
	Slide 37: Node departure
	Slide 38: Failure detection
	Slide 39: State maintenance
	Slide 40: Reducing latency
	Slide 41: Exploiting locality in Pastry
	Slide 42: Proximity routing in Pastry
	Slide 43: Joining the network
	Slide 44: Performance
	Slide 45: References
	Slide 46: Consistency models
	Slide 47: Where are we?
	Slide 48: Replication
	Slide 49: What is a consistency model?
	Slide 50: When is it needed?
	Slide 51: A large spectrum of consistency models
	Slide 52: Examples of onsistency guarantees
	Slide 53: Consistency requirements in a volley-ball game
	Slide 54: Strong consistency
	Slide 55: Eventual consistency
	Slide 56: Consistent Prefix
	Slide 57: Monotonic Freshness
	Slide 58: Bounded Staleness
	Slide 59: Read my writes
	Slide 60: Official score keeper
	Slide 61: Referee
	Slide 62: Radio Reporter
	Slide 63: Sportswriter
	Slide 64: Statistician
	Slide 65: Supporter
	Slide 66: A wide range of models
	Slide 67: Conclusions

