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You know you have a distributed system when the crash of a computer you have 
never heard of stops you from getting any work done. Leslie lamport



Where are we?
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They had a dream
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Share ressources among multiple machines

Internet
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Internet: A collaborative decentralized system
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Internet: A collaborative decentralized system
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He had a similar dream
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The Web: A decentralized system
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The Web: A decentralized system
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Address book for 
websites (DNS)

Common language to 
communicate (HTTP)

https://www.lemonde.fr/
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The Web turned extremely centralized, now 
in the hand of a few giants



An increasingly popular alternative

• Citizen-friendly alternative

• Decentralized infrastructure

• Privacy-aware
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(Fully) Distributed 
architectures

Aka P2P/decentralized
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Distributed systems

• Use several machines

• Yet: appears to the users as a single computer: your FB wall, your 
Netflix Interface, etc

• Name it: The Web, The Internet, A wireless network, Bitcoin, A cloud 
Amazon EC2/S3 or Microsoft Azure, A datacenter
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Characteristics

• Aggregate resources

• Scalability

• Speed

• Reliability

• At the price of
• Complexity

• Cost of maintenance
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Why are they more complex?

• No global clock; no single global notion of the correct time (asynchrony)

• Unpredictable failures of components: lack of response may be due to 

either failure of a network component, network path being down, or a 

computer crash 

• Highly variable bandwidth: from 16Kbps (slow modems or Google Balloon) 

to Gbps (Internet2) to Tbps (in between DCs of same big company)

• Possibly large and variable latency: few ms to several seconds

• Large numbers of hosts: 2 to several millions
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P2P applications

• Large contributor of Internet traffic (~50% of the Internet 
traffic)

• Applications
• Bitcoin & Blockchain 

• File sharing applications (Gnutella, Kazaa, Edonkey, Bit Torrent…)

• Archival systems

• Application level multicast

• Streaming protocols 

• Telco applications (Skype)

• Recommenders

• Decentralized AI
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Why do I tell you about P2P systems ?

• First distributed systems that seriously focused on scalability 

• P2P techniques are widely used in cloud computing systems
• Key-value stores (e.g., Cassandra, Riak, Voldemort) use p2p 

hashing
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What makes P2P interesting?

• End-nodes are promoted to active components

• Nodes participate, interact, contribute to the services they use.

• Harness huge pools of resources accumulated in millions of end-nodes.

• Avoid a central/master entity

• Irregularities and dynamicity are treated as the norm

CS 460



The Internet: A decentralized system
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Overlay networks
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Unstructured overlays
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Structured overlays
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Hash Table

• Structured overlay network

• A hash table: insert, lookup, delete object with keys
key = Hash(name)

put(key, value)

get(key) -> value
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k6,v6

k1,v1

k5,v5

k2,v2

k4,v4

k3,v3

containers

Operations:
put(k,v)
get(k,v)

Table of 
containers

•Efficient access to a value 
given a key 

•  Mapping key-value ensured 
by the table of containers 



Distributed Hash Table

• A DHT does the same in a distributed setting across millions of hosts on the Internet
key = hash(data)

lookup(key) -> IP addr (DHT lookup service)

send-RPC(IP address, put, key, data)

send-RPC(IP address, get, key) ->  data
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k6,v6

k1,v1

k5,v5

k2,v2

k4,v4

k3,v3

nodes

Operations: send ()
P2P 

overlay 

network
P2P Infrastructure ensures mapping 
between keys and physical nodes
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Distributed Hash Table

k6,v6

k1,v1

k5,v5

k2,v2

k4,v4

k3,v3

nodes

Operations:

send(m,k)
P2P 

overlay 

network

• Message sent to keys: implementation of a DHT 
• P2P Infrastructure ensures mapping between keys and physical nodes
• Fully decentralized: peer to peer communication paradigm
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Distributed application (e.g. storage, multicast, pub-sub)

Distributed Hash table

Node NodeNodeNode

put(key, data) get(data) data

Lookup(key)



Pastry
Designed by A. Rowstron (MSR) and P. Druschel (Rice Univ.)
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P2P routing infrastructure

• Overlay: network abstraction on top of IP 

• Basic functionality: distributed hash table 

 key = SHA-1(data)

• An identifier is associated to each node 
      nodeId = SHA-1(IP address)

• Large identifier space (keys and nodeId)  

• A node is responsible for a range of keys

• Routing: search efficiently for keys
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Object distribution

CS 460

objId

nodeIds

O2128-1

Consistent hashing 
[Karger et al. ‘97]

128 bit circular id space
   nodeIds (uniform random)
• objIds (uniform random)

Invariant: node with numerically 
closest nodeId maintains object.
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Pastry

• Naming space :
• Ring of 128 bit integers  
• nodeIds chosen at random

• Key/node mapping

•  key associated to the node with the numerically closest node id  

• Routing table

• Leaf set
• 8 or 16 closest numerical neighbors in the naming space
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Pastry routing table

• Routing tables based on prefix matching 

• Identifiers are a set of digits in base 16

• Matrix of  128/4 lines et 16 columns

• routeTable(i,j):

•  nodeId matching the current node identifier up to level I 

•  with the next digit is j
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Simple example

• Consider a peer with id 01110100101

• Maintains a neighor peer in each of the following prefixes
• 1

• 00

• 010

• 0110

• ….

• At each routing step, forward to a neighbor with the largest matching 
prefix
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Pastry: Routing
Properties
• log16 N hops 
• Size of the state maintained 

(routing table): O(log N) 

d46a1c

Route(d46a1c)

d462ba

d4213f

d13da3

65a1fc

d467c4
d471f1

CS 460 33

Search takes O(log(N)) time  

(intuition): at each step, distance 

between query and peer-with-file 

reduces by a factor of at least 2



Pastry: Routing table(#65a1fcx)
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Routing algorithm, notations 
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Routing algorithm (on node A)
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Node departure

• Explicit departure or failure

• Graceful replacement of a node

• The leafset of the closest node in the leafset contains the closest new 
node, not yet in the leafset

• Update from the leafset information 

• Update the application 
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Failure detection 

• Detected  when immediate  neighbors in the name space  
(leafset) can no longer communicate 

• Detected when a contact fails during the routing
• Routing uses an alternative route
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State maintenance

• Leaf set 

• is aggressively monitored and fixed 

• Eventual guarantee up to L/2 nodes  with adjacent nodeIds fail 
simultaneously

• Routing table

•  are lazily repaired

• When a hole is detected during the routing 

• Periodic gossip-based maintenance
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Reducing latency

• Random assignment of nodeId: 
Nodes numerically close are 
geographically (topologically) 
distant

• Objective: fill the routing table 
with nodes so that routing hops 
are as short (latency wise) as 
possible

• Topological Metric: latency

d467c4

d467f5

6fdacd
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Exploiting locality in Pastry

• Neighbor selected based of a network  proximity metric:

• Closest topological node

• Satisfying the constraints of the routing table  routeTable(i,j):

•  nodeId corresponding to the current  nodeId courant up to 
level i 

•  next digit = j 

• nodes are close at the top level of the routing table 

• random nodes at the bottom levels of the routing tables 
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Proximity routing in Pastry

d46a1c

Route(d46a1c)

d462ba

d4213f

d13da3

65a1fc

d467c4
d471f1

Naming space

d467c4

65a1fc

d13da3

d4213f

d462ba

Topological space

Leaf set
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Joining the network

• Node X joins through a nearby node A

• Node X routes to node A
• Path A,B,…  -> Z

• Z numerically closest to X 

• Initialisation of the line i of the routing table with the contents of line i of the routing table of the ith 
node encountered on the path 

• Improving the quality of the routing table
• X asks to each node of its routing table its own routing state and compare distances 

• Gossip-based update for each line  (every 20mn) 
• Periodically, an entry is chosen at random in the routing table  

• Corresponding line of this entry sent over

• Evaluation of potential candidates 

• Replacement of better candidates 

• New nodes gradually integrated
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Performance
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Where are we?
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Replication

• Replication is key to availability (low latency, failure resilience, load 
balancing)

• But creates inconsistencies due to concurrent accesses 
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What is a consistency model?

• Describes a contract between a client application  and the data store
• States how the memory behaves

• States what the application can expect from the underlying storage systems 
and the associated rules
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When is it needed?

Whenever objects are replicated

Replicas must be consistent in some way

• Modifications have to be carried out on all copies 

• In the presence of concurrent updates/reads

Different consistency models

• A consistency model is a set of rules that process obeys while accessing data
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A large spectrum of consistency models

Strong Consistency

•

•

•

Eventual Consistency

CS 460

Process Process Process

Distributed data storage

Strong 
Eventual

More consistency

Faster reads and writes
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Examples of onsistency guarantees
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Strong consistency See all previous writes

Eventual consistency See subset of previous writes

Consistent prefix See initial sequence of writes

Monotonic Freshness See increasing sequence of writes

Read my writes See all writes performed by reader 

Bounded Staleness See all “old”writes



Consistency requirements in a volley-ball 
game
•   The first team to reach 25 points and by at least two points wins a set 

(for the first 4 sets)

• The first team to reach 15 points and by at least two points wins the 5th 
set

• The first team to win 3 sets wins the 

game

• Imagine the score is stored and 

replicated in the cloud
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Inspired from Replicated Data Consistency Explained Through 
Baseball Doug Terry MSR Technical Report, October 2011
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2:1  20-22

2:1  20-23

2:1  21-23

2:1  22-23

2:1  23-23

2:1  24-23

2:1  25-23

3:1  

Reader #1

3:1

3:1

Home-Visitors

Reader #2

3:1

Strong consistency
Aka linearizability , one-copy serializability

The responses to the operations invoked in an 
execution are the same as if all operations were 
executed in a sequential order and this order 
respects those specified by each process

Strong consistency is impossible to achieve in 
the presence of partition (CAP-next lecture)

Strong consistency is impossible to achieve in 
an asynchronous system without assumptions on 
message delivery latencies (FLP)

Guarantee: see all previous writes. All reads at 
time t should reflect all the writes that happened 
before t.
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2:1  20-22

2:1  20-23

2:1  21-23

2:1  22-23

2:1  23-23

2:1  24-23

2:1  25-23

3:1  

Reader #1

3:1

2:1 20:23

Home-Visitors

Reader #2

3:1

Eventual consistency
Eventually, in the absence of operations, replicas
will be consistent

Guarantee: see some previous writes. Eventually (in 
the absence of new writes), all the reads will return 
the correct and most recent state.
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2:1  20-22

2:1  20-23

2:1  21-23

2:1  22-23

2:1  23-23

2:1  24-23

2:1  25-23

3:1  

Reader #1

3:1

2:1 20:23

Home-Visitors

2:1 22:23

Consistent Prefix

Snapshot isolation, ordered delivery

Guarantee: see initial sequence of writes that existed
at some point in time. If a reader issues a read request at 
time t, it should read the result of any of the prefixes of 
the sequence of writes.

Reader #2



CS 460 57

2:1  20-22

2:1  20-23

2:1  21-23

2:1  22-23

2:1  23-23

2:1  24-23

2:1  25-23

3:1  

Reader #1 at
 time t1

3:1

2:1 20:23

Home-Visitors

3:1

Monotonic Freshness

If a process reads the value of a data item x, 
any successive operation on x by that process
will always return the same or a more recent value

Guarantee: see increasing subset of previous writes
(local guarantee from a given reader)

Reader #1 at
 time t2
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2:1  20-22

2:1  20-23

2:1  21-23

2:1  22-23

2:1  23-23

2:1  24-23

2:1  25-23

3:1  

Reader #1

3:1

2:1 20:23

Home-Visitors

2:1 22:23

Bounded Staleness

Periodic Snapshot, continuous consistency

Guarantee: see all « old » writes. The staleness parameter 
denotes the allowed staleness of the system.

Reader #2

old

new
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2:1  20-22

2:1  20-23

2:1  21-23

2:1  22-23

2:1  23-23

2:1  24-23

2:1  25-23

3:1  

Writer #1

3:1

3:1

Home-Visitors

2:1 22:23

Read my writes

The effect of a write operation by a process on 
data
item x will be always seen by a successive read
operation on x by the same process

Guarantee: see all writes performed by reader. 
local guarantee any read by client c should reflect 
all the writes by c in the past. This means that it 
can also be local-strong-consistency, whereas for 
writes of other clients, reads by c can be 
eventually-consistent.

Reader #2



Official score keeper
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Suppose visitor score

Read (visitor_score)
Write(visitor_score. Update)

Read my writes (single 
score keeper)

Strong consistency 
otherwise



Referee
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4th set, home scores @24
vs=Read (visitor_score);
hs= Read(home_score);

If (hs=25) & (vs<24)
end game ;

Strong consistency



Radio Reporter

CS 460 62

Do{
vs=Read (visitor_score);
hs= Read(home_score);

Report vs and hs;
Sleep (30mn);

}

Consistent Prefix (if reads 
from same replica)

Monotonic Freshness
or Bounded Staleness



Sportswriter
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While not end of the game{
 drink beer;
}

Go out to diner;
vs=Read (visitor_score);
hs= Read(home_score);

          write article; 

Eventual consistency
or Bounded Staleness



Statistician
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Wait for end of game;
score Read(“home_stats”);
stat=Read (“season-runs”);
Write{“season-runs”, stat 
|+score);

Strong consistency (1st read)
Read My Writes after



Supporter
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Read score;
Discuss score with friends

Eventual consistency or 
Strong consistency
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A wide range of models

Score keeper

Referee

Radio Reporter

Sportswriter
Supporter

Statistician

Read my writes

Strong

Consistent prefix
Monotonic Freshness

Bounded staleness

Strong
Read my writes

Strong
Eventual



Conclusions

• Different clients want different guarantees

• One client might want different guarantees for different reads

• Several models can be applied

• Strong consistency would do but is prohibitive performance wise

• Use the lowest consistency (to the left) consistency model that is 
“correct” for your application
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