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DHTs

Anne-Marie Kermarrec

You know you have a distributed system when the crash of a computer you have
never heard of stops you from getting any work done. Leslie lamport
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Share ressources among multiple machines

CCCCC
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Internet: A collaborative decentralized system
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Internet: A collaborative decentralized system

CCCCC
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=PrL
The Web: A decentralized system

Se Nionde.fr
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The Web: A decentralized system

Address book for ,!:Le mwm&g .fr
websites (DNS)

Common language to
communicate (HTTP)

®

2

https://www.lemonde.fr/

N>
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EPFL
The Web turned extremely centralized, now

in the hand of a few giants

amazon ST
fe Mlonde.fr

Annual revenue of Alphabet from 2011 to 2024
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EPFL
An increasingly popular alternative

TECHNOLOGY

 Citizen-friendly alternative
e Decentralized infrastructure
* Privacy-aware

The New JJork Times [ smsca)

Out to Remake the Digital
World.

Tim Berners-Lee wants to put people in control of
their personal data. He has technology and a start-
up pursuing that goal. Can he succeed?
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What Is Web 3 and Why Is
Everyone Talking About It?

Web 3 represents the next generation of the
internet, one that focuses on shifting power from
big tech companies to individual users.

By Redrart Slevama
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(Fully) Distributed
architectures

Aka P2P/decentralized
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Distributed systems

e Use several machines

* Yet: appears to the users as a single computer: your FB wall, your
Netflix Interface, etc

* Name it: The Web, The Internet, A wireless network, Bitcoin, A cloud
Amazon EC2/S3 or Microsoft Azure, A datacenter
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Characteristics

» Aggregate resources

 Scalability
e Speed
* Reliability

e At the price of
* Complexity
* Cost of maintenance

CS 460 14
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Why are they more complex?

* No global clock; no single global notion of the correct time (asynchrony)

* Unpredictable failures of components: lack of response may be due to
either failure of a network component, network path being down, or a
computer crash

e Highly variable bandwidth: from 16Kbps (slow modems or Google Balloon)
to Gbps (Internet2) to Tbps (in between DCs of same big company)

* Possibly large and variable latency: few ms to several seconds

* Large numbers of hosts: 2 to several millions



L
P2P applications

« Large contributor of Internet traffic (~50% of the Internet
traffic)

. Appllcatlons
» Bitcoin & Blockchain

 File sharing applications (Gnutella, Kazaa, Edonkey, Bit Torrent...)
« Archival systems
» Application level multicast Meet ChainGPT's
« Streaming protocols
« Telco applications (Skype)
« Recommenders The Future of

_ \Web3 Reporting!
« Decentralized Al

Al News Agents |

(--) ChainGPT
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Why do | tell you about P2P systems ?

* First distributed systems that seriously focused on scalability

* P2P techniques are widely used in cloud computing systems

e Key-value stores (e.g., Cassandra, Riak, Voldemort) use p2p
hashing
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What makes P2P interesting?

* End-nodes are promoted to active components

* Nodes participate, interact, contribute to the services they use.

e Harness huge pools of resources accumulated in millions of end-nodes.
* Avoid a central/master entity

* |rregularities and dynamicity are treated as the norm

CS 460
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The Internet: A decentralized system

CCCCC
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Overlay networks

CS 460
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Unstructured overlays




=PrL
Structured overlays

CCCCC
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Hash Table

e Structured overlay network

* A hash table: insert, lookup, delete object with keys
key = Hash (name)
put (key, wvalue)
get (key) —-> wvalue

containers

—» k1,v1 k2,v2  k3,v3

Operations: eEfficient access to a value

t(k given a key

u \'/ H

put(k,v) —> k4,v4 e Mapping key-value ensured
get(k,v) by the table of containers

.\ k5,V5 k6,V6
Table of

containers
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Distributed Hash Table

A DHT does the same in a distributed setting across millions of hosts on the Internet
key = hash (data)
lookup (key) -> IP addr (DHT lookup service)
send-RPC (IP address, put, key, data)

send-RPC (IP address, get, ke -> data
( J y) nodes

kivl k2,v2 k3,3

P2P
Operations: send () overlay K44

network

P2P Infrastructure ensures mapping

between keys and physical nodes
k5,v5 k6,v6

24



=Pr-L
Distributed Hash Table

nodes

N——> k1 vl k2,v2 k3,v3

Operations:

send(m,k) overlay kA, v4
network

k5,v5 k6,v6

e Message sent to keys: implementation of a DHT
e P2P Infrastructure ensures mapping between keys and physical nodes
e Fully decentralized: peer to peer communication paradigm

CS 460
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put (key,

Distributed application (e.g. storage, multicast, pub-sub)

data) get (data)

Distributed Hash table

CS 460
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Pastry

Designed by A. Rowstron (MSR) and P. Druschel (Rice Univ.)

CS 460

27



=PrL

P2P routing infrastructure

e Overlay: network abstraction on top of IP

* Basic functionality: distributed hash table
key = SHA-1 (data)

e An identifier is associated to each node
nodeId = SHA-1(IP address)

e Large identifier space (keys and nodeld)

e A node is responsible for a range of keys

* Routing: search efficiently for keys

CS 460



=PrL
Object distribution
Consistent hashing

2128_1 ‘ 0O [Karger et al. 97]

128 bit circular id space
m nodelds (uniform random)
e objlds (uniform random)

Invariant: node with numerically
closest nodeld maintains object.

.— hodelds
/
/

CS 460 29
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Pastry

Naming space :
e Ring of 128 bit integers
* nodelds chosen at random

Key/node mapping
* key associated to the node with the numerically closest node id

Routing table

Leaf set
e 8 or 16 closest numerical neighbors in the naming space

CS 460
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Pastry routing table

* Routing tables based on prefix matching
* |dentifiers are a set of digits in base 16
* Matrix of 128/4 lines et 16 columns
e routeTable (1, J):
* nodeld matching the current node identifier up to level /
* with the next digitis
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Simple example

* Consider a peer with id 01110100101

* Maintains a neighor peer in each of the following prefixes
A |
* 00
* 010
* 0110

* At each routing step, forward to a neighbor with the largest matching
prefix
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Pastry: Routing

d471f1

d467c4
d462ba

d4213f

Route(d46alc) d13da3

65alfc

CS 460

Properties

* log,c N hops

 Size of the state maintained
(routing table): O(log N)

Search takes O(log(N)) time
(intuition):

33
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=PrL pastry: Routing table(#65a1fcx)
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Routing algorithm, notations

R, :entry of the routing table R, 0<i <2,

line I, 0<1<|128/b |

L. :ith closest nodeld in the leafset

D, :value of the | digits of key D

SHL (A, B) :length of the shared prefix between A and B

35



=PrL
Routing algorithm (on node A)

(1) fLyjzy2 D <Ly A
2) // D 1s within range of our leaf set
3) forward to 1;, s.th. |D — ;| is minimal;

(4) }else{

(5) // use the routing table
(6) Let! = shl(D, A);
(7) if (R # null) {

R, :entry of the routing table R, 0<i<2°,
line 1, 0<1<128/b |

L. :ith closest nodeld inthe leafset

D, :value of the I digits of key D

g; } forward to RZU E SHL (A, B) : length of the shared prefix between A and B
(10)  else{

(11) // rare case

(12) forwardto /' € .U RU M, s.th.

(13) shi(T, D) >1,

(14) T — D] < |A—-D|

sy )

(16) t
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Node departure

 Explicit departure or failure
* Graceful replacement of a node

* The leafset of the closest node in the leafset contains the closest new
node, not yet in the leafset

 Update from the leafset information
* Update the application

CS 460
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Failure detection

* Detected when immediate neighbors in the name space
(leafset) can no longer communicate

* Detected when a contact fails during the routing
* Routing uses an alternative route

CS 460
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State maintenance

 Leaf set
* is aggressively monitored and fixed
e Eventual guarantee up to L/2 nodes with adjacent nodelds fail
simultaneously
* Routing table
 are lazily repaired
* When a hole is detected during the routing
* Periodic gossip-based maintenance

CS 460
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Reducing latency

* Random assignment of nodeld:
Nodes numerically close are
geographically (topologically)
distant

* Objective: fill the routing table
with nodes so that routing hops
are as short (latency wise) as
possible

* Topological Metric: latency

d467c4

CS 460
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Exploiting locality in Pastry

* Neighbor selected based of a network proximity metric:
* Closest topological node
 Satisfying the constraints of the routing table routeTable(i,j):

* nodeld corresponding to the current nodeld courant up to
level i

* next digit =
* nodes are close at the top level of the routing table
* random nodes at the bottom levels of the routing tables

CS 460
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Proximity routing in Pastry

Leaf set

.
“"
.
R
R
.
.
.
.
.
.
.
.
o*
o
.
.
.
.
.
.
.
.
R
*

Topological space

d4213f

Route(d46alc)
d13da3

65alfc =,
| i gebdalfc
Naming space d462ba‘  *._d13da3

CS 460
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Joining the network

* Node X joins through a nearby node A

* Node X routes to node A
* Path A,B,... >7Z
e Znumerically closest to X
* Initialisation of the line i of the routing table with the contents of line i of the routing table of the ith
node encountered on the path
* Improving the quality of the routing table
» X asks to each node of its routing table its own routing state and compare distances

* Gossip-based update for each line (every 20mn)
* Periodically, an entry is chosen at random in the routing table
e Corresponding line of this entry sent over
* Evaluation of potential candidates
* Replacement of better candidates
* New nodes gradually integrated

CS 460
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Performance 1.59 slower than IP on average

600 _
0 Normal Routing Tables
500 B Perfect Routing Tables
B3 No locality
@ :
S 400
3]
Xz :
© R e e
o 300 ............
(@) :
<
> 200
100
0
1 2 3 4 )

Hop Number
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Replication

* Replication is key to availability (low latency, failure resilience, load
balancing)

 But creates inconsistencies due to concurrent accesses
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What is a consistency model?

* Describes a contract between a client application and the data store
* States how the memory behaves

 States what the application can expect from the underlying storage systems
and the associated rules
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When is it needed?

Whenever objects are replicated

Replicas must be
e Modifications have to be carried out on all copies
* In the presence of concurrent updates/reads

Different

* A consistency model is a set of rules that process obeys while accessing data
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A large spectrum of consistency models

Process Process Process

Strong Consistency

Eventual Consistency

Distributed data storage

&
™~

Faster reads and writes

More consistency
Eventual CS 460

> Strong
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Examples of onsistency guarantees

Strong consistency See all previous writes

Eventual consistency See subset of previous writes
Consistent prefix See initial sequence of writes
Monotonic Freshness See increasing sequence of writes
Read my writes See all writes performed by reader

Bounded Staleness See all “old”writes

CS 460
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Consistency requirements in a volley-ball

game

* The first team to reach 25 points and by at least two points wins a set
(for the first 4 sets)

* The first team to reach 15 points and by at least two points wins the 5th
set

* The first team to win 3 sets wins the
game

* Imagine the score is stored and
replicated in the cloud

Inspired from Replicated Data Consistency Explained Through

Baseball Doug Terry MISR Technical Report, October 2011
CS 460




=PL strong consistency

Home-Visitors Aka linearizability , one-copy serializability
2:1 20-22 The responses to the operations invoked in an
Reader #1 . . :
2:1 20-23 execution are the same as if all operations were
1 21.23 3:1 executed in a sequential order and this order
: respects those specified by each process
2:1 22-23
7:1 23-23 Reader #2 Strong consistency is impossible to achieve in
: the presence of partition (CAP-next lecture)
2:1 24-23 3:1
2:1 25-23 Strong consistency is impossible to achieve in
31 an asynchronous system without assumptions on

message delivery latencies (FLP)

Guarantee: see all previous writes. All reads at
time t should reflect all the writes that happened
before t.

3:1
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Home-Visitors

2:1

20-22

2:1

20-23

Eventual consistency

Reader #1

2:1

21-23

2:120:23

Eventually, in the absence of operations, replicas
will be consistent

Guarantee: see some previous writes. Eventually (in

2:1

22-23

2:1

23-23

Reader #2

2:1

24-23

3:1

2:1

25-23

3:1

3:1

the absence of new writes), all the reads will return
the correct and most recent state.
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Home-Visitors

2:1

20-22

2:1

20-23

Consistent Prefix

Reader #1

2:1

21-23

2:120:23

2:1

22-23

2:1

23-23

Reader #2

Snapshot isolation, ordered delivery

Guarantee: see initial sequence of writes that existed

2:1

24-23

2:122:23

2:1

25-23

3:1

3:1

at some pointin time. If a reader issues a read request at
time t, it should read the result of any of the prefixes of
the sequence of writes.



=PTL Monotonic Freshness

Home-Visitors

- Reader #1 at
2:1 20-22 time t1 If a process reads the value of a data item x,
2:1 20-23 any successive operation on x by that process

2:120:23 will always return the same or a more recent value

2:1 21-23
2:1 22-23 Reader #1 at

_ time t2 Guarantee: see increasing subset of previous writes
2:1 23-23 _

(local guarantee from a given reader)
2:1 24-23 3:1
2:1 25-23
3:1

3:1
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Home-Visitors

2:1

20-22

2:1

20-23

Bounded Staleness

Reader #1

2:1

21-23

2:120:23

2:1
2:1

22-23
23-23

Reader #2

Periodic Snapshot, continuous consistency

Guarantee: see all « old » writes. The staleness parameter

2:1

24-23

2:122:23

2:1

25-23

3:1

3:1

denotes the allowed staleness of the system.
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Home-Visitors

2:1

20-22

2:1

20-23

Read my writes

Writer #1

2:1

21-23

3:1

2:1

22-23

2:1

23-23

Reader #2

2:1

24-23

2:122:23

2:1

25-23

3:1

3:1

The effect of a write operation by a process on
data

item x will be always seen by a successive read
operation on x by the same process

Guarantee: see all writes performed by reader.

local guarantee any read by client ¢ should reflect
all the writes by c in the past. This means that it
can also be local-strong-consistency, whereas for
writes of other clients, reads by c can be
eventually-consistent.
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Official score keeper

Suppose visitor score

Read (visitor_score)
Write(visitor_score. Update)

CS 460

a

<

Read my writes (single
score keeper)

Strong consistency
otherwise

/

60
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Referee

4th set, home scores @24
vs=Read (visitor_score);
hs= Read(home_score);

If (hs=25) & (vs<24)
end game ;

CS 460

a

<

Strong consistency

N

/
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Radio Reporter

Do{
vs=Read (visitor_score);
hs= Read(home_score);

Report vs and hs;
Sleep (30mn);

CS 460

4 N

Consistent Prefix (if reads
from same replica)
Monotonic Freshness
or Bounded Staleness

< )

62
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Sportswriter

While not end of the game{
drink beer;

}

Go out to diner;
vs=Read (visitor_score);
hs= Read(home_score);
write article;

CS 460

a

<

Eventual consistency
or Bounded Staleness

N

/
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Statistician

Wait for end of game;
score Read(“home_stats”);

stat=Read (“season-runs”);
Write{“season-runs”, stat
| +score);

CS 460

a

<

Strong consistency (1st read)
Read My Writes after

N

/
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Supporter

Read score;

Discuss score with friends

CS 460

a

N

Eventual consistency or

<

Strong consistency

/
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A wide range of models

Score keeper Radio Reporter

Read my writes Consistent prefix
Monotonic Freshness

Referee Sportswriter

Strong Bounded staleness

CS 460

Statistician

Strong
Read my writes

Supporter

Strong
AVEIIE]
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Conclusions

 Different clients want different guarantees

* One client might want different guarantees for different reads

* Several models can be applied

 Strong consistency would do but is prohibitive performance wise

e Use the lowest consistency (to the left) consistency model that is
“correct” for your application
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