(CS460 - Systems for Data Management and Data Science EPFL SaCS and DIAS

07.04.2025 Week 8 exercises: Gossip

What are the 3 ways of propagating information in a graph? What are the advantages and
disadvantages of each one of them?
The 3 ways of propagating information in the graph are the following:

e Pull is bad if just a small amount of nodes are aware of the information, as in some rounds we may
not distribute any information to the rest.

e Push is good when we have a few small number of nodes that know the information in a graph, as
they will push it in every round to some others.

e Both pull and push is a very fast way to spread the information along the graph as it takes
advantage of both approaches.

Exercise 2:

Recall from the lecture the skeleton for gossip-based peer sampling service. Three system parameters:
¢, H and S play an important role in the dynamics of the algorithm. ¢ controls the view size while H and
S represent the healing and swapping parameters.

Algorithm 7 The skeleton of a gossip-based peer sampling service.

1: loop 15: procedure UPDATE(buffer,c,H,S)

2: wait(A) 16: view.append(buffer)

3: p < selectGPSPeer() 17: view.removeDuplicates()

4: sendPush(p, toSend()) 18: view.removeOldItems(min(H,view.size-c))
5: view.increaseAge() 19: view.removeHead(min(S,view.size-c))
6: 20: view.removeAtRandom(view.size-c)
7: procedure ONPUSH(m) 21:

8: if pull then 22: procedure TOSEND

9: sendPull(m.sender, toSend()) 23: buffer < (MyAddress,0))
10: onPull(m) 24: view.shuffle()
11: 25: move oldest H items to end of view
12: procedure ONPULL(m) 26: buffer.append(view.head(c/2 — 1))
13 update(m.buffer,c,H,S) 27: return buffer

14: view.increaseAge()

Figure 1: Gossip based peer sampling [1].

1. What is the effect of increasing or decreasing H ?

The parameter H defines how aggressive the protocol is when removing old nodes. The larger the
value of H, the sooner the older items will be removed from the view and vice-versa. Note that the
protocol does not actually check the liveness of the node before removing it from the view. It instead

https://edu.epfl.ch/studyplan/en/master/data-science/coursebook/systems-for-data-management-and-data-science-CS-460
https://www.epfl.ch/labs/sacs/
https://www.epfl.ch/labs/dias/

(CS460 - Systems for Data Management and Data Science EPFL SaCS and DIAS

relies on the fact that nodes which are not alive will have unrefreshed or very old descriptors in
the views of other nodes.

2. Can you explain similarly the effect of increasing or decreasing S ?

From the algorithm above, we see that the items received from the peer are appended to the end
of the view. Then the first S items ie., items owned by the node get removed from the view. Recall
that these were exactly the items that were sent to the peer previously. Thus a large value of S
will result in higher probability of keeping items received from the peer while a low values of S
results in mixing of items from bhoth peers. S controls the number of items swapped between peers,
hence the name swapping parameter.

Exercise 3:

Gossip can be used not only for information dissemination but also for information processing. In the
lecture we saw how to compute mean of values in a network in a Gossip-style protocol. Let us recall the
algorithm below. For an in-depth discussion, refer to [1].

1: loop
wait A
p < Random Peer
sendPush(p, x)

sendPull(m.sender, x)
X «— (m.x + x)/2
: procedure ONPuLL(m)

2
3
4
5:
6: procedure ONPusH(m)
7
8
9
10:

X «— (m.x + x)/[2

The algorithm can be shown to converge to the global average in the network. Now that we have
established that we can compute the average, can we also compute other means ? Design a Gossip-style
algorithm to compute geometric mean of values in the network.

Let x1, x2, ..., X, be the attributes of n nodes. If we can compute the average of x;'s, we can also
computes averages of any transformations on x;. Precisely, g(x1, x2, ..., x,) = f’1(Z,.N:1 f(x;)/n) where
f is the transformation. Interestingly, the choice of appropriate transformation leads us to the desired
mean. For example, f(x) = log, x, {~'(x) = e* gives us the geometric mean and f(x) = 1/x, f~(x) = x
gives us the harmonic mean.

)

Exercise 4 (Gossip-based resource assignment):}

Resource assignment to services and applications is crucial in many distributed settings. At one
end of the spectrum, a centralized server can maintain a database of resource availability for the whole
network. At the other end, one can think of a fully decentralized solution that automatically partitions
the available nodes into “slices”, taking into account specific attributes of the nodes (such as available
bandwidth, storage capacity or number of processing units). The goal of this exercise is to design a
gossip-based protocol that can achieve such a decentralized slicing.

We assume:

e The network is composed of a set of n nodes. Nodes are uniquely identified by their IP address.

https://edu.epfl.ch/studyplan/en/master/data-science/coursebook/systems-for-data-management-and-data-science-CS-460
https://www.epfl.ch/labs/sacs/
https://www.epfl.ch/labs/dias/

(CS460 - Systems for Data Management and Data Science EPFL SaCS and DIAS

e There are no failures, node arrivals nor departures.

e Each node is connected to a set of k = log(n) other nodes called neighbors. This means that each
node can communicate with this set of neighbors.

e We assume that the neighbors of the node change periodically (every t milliseconds), meaning every
node periodically gets a new set of random neighbors (picked uniformly).

e A peer-sampling service provides the current view of k neighbors.
e All nodes execute the same code.

e Hint: attribute a random number to each node. Assume that the random number generator is
uniform and there are no collisions.

1. [7 points] Design a gossip-based algorithm that arbitrarily divides the system into 10 slices of
approximately equal size. Write the pseudocode of your protocol, so that by the end each node
knows the other approximately (n/10) — 1 nodes in its slice.

1: r < Sample a random number btw [0,1] 13:

2. mySlice < {} 14: procedure ONPuLL(m) > Passive Thread
3 15: Merge(m)

4: loop > Active Thread 4.

5 wait A 17: procedure T0SEND

6: j < Random Peer 18: mr«—r

7 sendPush(j, TOSEND()) 10: m.sender « i > I'm node {
8: 20: return m

9: procedure ONPusH(m) > Passive Thread 9.

1. if pull then 22: procedure MERGE(m)

Ok sendPull(m.sender, toSend()) 23: if m.r in my percentile then

12: Merge(m) 24: mySlice.append(m.sender)

2. [8 points] Assume now that each node i has an attribute x; that measures the availability of some
resource (e.g., bandwidth) on node i. We assume that there exists a total ordering over the domain
of the attribute values, so that the values in the network (xq, ..., x,) can be ordered. Let us also
assume that there is a slice specification that defines an ordered partitioning of the nodes. That
is, the slice specification is a list of positive real numbers sy, ..., s, such that for all u < v,i € S,
and j € S, we have x; < x;. As opposed to question 1., a node does not need to know the other
nodes in its slice.

Design a gossip-based algorithm that assigns each node to one of 10 slices (m = 10) in such a way
that it satisfies the slice specification, using only local message exchange with currently known
neighbors. That is, we want each node to find out which slice (i.e., which 10th-percentile) it belongs
to. For example, each node can then know, assuming x represents the available bandwidth, if it
belongs to the 10% of nodes with the highest available bandwidth.

https://edu.epfl.ch/studyplan/en/master/data-science/coursebook/systems-for-data-management-and-data-science-CS-460
https://www.epfl.ch/labs/sacs/
https://www.epfl.ch/labs/dias/

(CS460 - Systems for Data Management and Data Science EPFL SaCS and DIAS

1: r < Sample a random number btw [0,1] 13: procedure ONPuLL(m) > Passive Thread
2: x is my resource 14: Merge(m)

3 15:

4 loop > Active Thread 16: procedure ToSEND

5 wait A 17: m.r<«r

6: j < Random Peer 18: m.X — X

7 sendPush(j, ToSEND()) 19: m.sender « i > I'm node {
8: 20: return m

9. procedure ONPusH(m) > Passive Thread 9.

10: sendPull(m.sender, toSend()) 22: procedure MERGE(m)

Ok Merge(m) 23: if (x—m.x)* (r—m.r) <0) then

12: 24: r <« m.r © Swap random numbers

‘Tl’g playing with the Gossip code at https://github.com/rishi-s8/gossip-sim.

References

[1] Mérk Jelasity. Gossip-based protocols for large-scale distributed systems. PhD thesis, mi, 2013.

https://edu.epfl.ch/studyplan/en/master/data-science/coursebook/systems-for-data-management-and-data-science-CS-460
https://www.epfl.ch/labs/sacs/
https://www.epfl.ch/labs/dias/
https://github.com/rishi-s8/gossip-sim

