
Week 6 exercises: MapReduce

EPFL SaCS and DIAS

EPFL

March 24, 2025

EPFL SaCS and DIAS CS460 - MapReduce Exercises



Exercise 1

You are given a symmetric social network (like Facebook) where a
is a friend of b implies that b is also a friend of a.

The input is a dataset D (sharded) containing such pairs of
identifiers (a, b).
Find the last names of those users whose first name is “Kanye”
and who have at least 300 friends.

EPFL SaCS and DIAS CS460 - MapReduce Exercises



Exercise 1 Solution

MapReduce Pseudocode

procedure Map(a: User, b: User)

if firstname(a) == "Kanye" then
emit(a, b)

end if
if firstname(b) == "Kanye" then

emit(b, a)
end if

end procedure

EPFL SaCS and DIAS CS460 - MapReduce Exercises



Exercise 1 Solution

MapReduce Pseudocode

procedure Map(a: User, b: User)
if firstname(a) == "Kanye" then

emit(a, b)
end if
if firstname(b) == "Kanye" then

emit(b, a)
end if

end procedure

EPFL SaCS and DIAS CS460 - MapReduce Exercises



Exercise 1 Solution

MapReduce Pseudocode

procedure Reduce(u: User, friends: List[User])

if length(friends) ≥ 300 then
emit(lastname(u))

end if
end procedure

EPFL SaCS and DIAS CS460 - MapReduce Exercises



Exercise 1 Solution

MapReduce Pseudocode

procedure Reduce(u: User, friends: List[User])
if length(friends) ≥ 300 then

emit(lastname(u))
end if

end procedure

EPFL SaCS and DIAS CS460 - MapReduce Exercises



Exercise 2

For an asymmetrical social network, you are given a dataset D
where lines consist of (a, b) which means user a follows user b.

Output the list of all users U who:
1 Have at least 2 million followers,
2 Follow fewer than 20 other users,
3 Are followed back by all the users they follow.

EPFL SaCS and DIAS CS460 - MapReduce Exercises



Exercise 2 Solution

Map Function Pseudocode

procedure Map(a: User, b: User)

emit(a, ⟨b, 1⟩) ▷ a follows b
emit(b, ⟨a, 0⟩) ▷ b is followed by a

end procedure

EPFL SaCS and DIAS CS460 - MapReduce Exercises



Exercise 2 Solution

Map Function Pseudocode

procedure Map(a: User, b: User)
emit(a, ⟨b, 1⟩) ▷ a follows b
emit(b, ⟨a, 0⟩) ▷ b is followed by a

end procedure

EPFL SaCS and DIAS CS460 - MapReduce Exercises



Exercise 2 Solution

Reduce Function Pseudocode
procedure Reduce(u: User, list: List[⟨User, Int⟩])

follows← ∅
count0 ← 0
count1 ← 0
for all pair in list do

if pair.value = 0 then
count0 ← count0 + 1 ▷ Count followers

end if
if pair.value = 1 then

count1 ← count1 + 1 ▷ Count follows
follows← follows ∪ pair.key

end if
end for

end procedure

EPFL SaCS and DIAS CS460 - MapReduce Exercises



Exercise 2 Solution

Reduce Function Pseudocode
procedure Reduce(u: User, list: List[⟨User, Int⟩])

follows← ∅
count0 ← 0
count1 ← 0
for all pair in list do

if pair.value = 0 then
count0 ← count0 + 1 ▷ Count followers

end if
if pair.value = 1 then

count1 ← count1 + 1 ▷ Count follows
follows← follows ∪ pair.key

end if
end for

end procedure

EPFL SaCS and DIAS CS460 - MapReduce Exercises



Exercise 2 Solution

Reduce Function Pseudocode
procedure Reduce(u: User, list: List[⟨User, Int⟩])

...
if count0 ≥ 2M and count1 < 20 then

for all user in follows do
if ⟨user, 0⟩ /∈ list then

return ▷ User not followed back
end if

end for
emit(u)

end if
end procedure

EPFL SaCS and DIAS CS460 - MapReduce Exercises



Exercise 3

Matrix multiplication is a fundamental operation in machine
learning. Design a Map-Reduce program for computing the product
M = AB.

A ∈ Rm×n and B ∈ Rn×m.
Matrices A and B are represented through mn pairs.
Each pair corresponds to (A, i, j,A[i, j]) or (B, i, j,B[i, j]).

EPFL SaCS and DIAS CS460 - MapReduce Exercises



Matrix Multiplication Example

(
a11 a12 a13
a21 a22 a23

)
×

b11 b12
b21 b22
b31 b32

 =

(
a11b11 + a12b21 + a13b31 a11b12 + a12b22 + a13b32
a21b11 + a22b21 + a23b31 a21b12 + a22b22 + a23b32

)

General Form: Mi ,j =
n−1∑
l=0

Ai ,l × Bl ,j

EPFL SaCS and DIAS CS460 - MapReduce Exercises



Exercise 3 Solution: Map Function

MapReduce Pseudocode for Map
procedure Map(⟨X , i , j ,Xi,j⟩: ⟨String, String, String, Float⟩)

if X = "A" then
for k in {0, 1, 2, ..., m-1} do

emit(⟨i , k⟩, ⟨X , j ,Xij⟩)
end for

end if
if X = "B" then

for k in {0, 1, 2, ..., m-1} do
emit(⟨k, j⟩, ⟨X , i ,Xij⟩)

end for
end if

end procedure

EPFL SaCS and DIAS CS460 - MapReduce Exercises



Exercise 3 Solution: Map Function

MapReduce Pseudocode for Map
procedure Map(⟨X , i , j ,Xi,j⟩: ⟨String, String, String, Float⟩)

if X = "A" then
for k in {0, 1, 2, ..., m-1} do

emit(⟨i , k⟩, ⟨X , j ,Xij⟩)
end for

end if

if X = "B" then
for k in {0, 1, 2, ..., m-1} do

emit(⟨k, j⟩, ⟨X , i ,Xij⟩)
end for

end if
end procedure

EPFL SaCS and DIAS CS460 - MapReduce Exercises



Exercise 3 Solution: Map Function

MapReduce Pseudocode for Map
procedure Map(⟨X , i , j ,Xi,j⟩: ⟨String, String, String, Float⟩)

if X = "A" then
for k in {0, 1, 2, ..., m-1} do

emit(⟨i , k⟩, ⟨X , j ,Xij⟩)
end for

end if
if X = "B" then

for k in {0, 1, 2, ..., m-1} do
emit(⟨k, j⟩, ⟨X , i ,Xij⟩)

end for
end if

end procedure

EPFL SaCS and DIAS CS460 - MapReduce Exercises



Exercise 3 Solution: Reduce Function

MapReduce Pseudocode for Reduce
procedure Reduce(⟨i , j⟩: ⟨String, String⟩, list:
List[⟨String, String, Float⟩])

Avec← ∅
Bvec← ∅
Mi,j ← 0
for all ⟨X , k,Xk⟩ in list do

if X = "A" then
Avec← Avec ∪ ⟨k,Xk⟩

end if
if X = "B" then

Bvec← Bvec ∪ ⟨k,Xk⟩
end if

end for
end procedure

EPFL SaCS and DIAS CS460 - MapReduce Exercises



Exercise 3 Solution: Reduce Function

MapReduce Pseudocode for Reduce
procedure Reduce(⟨i , j⟩: ⟨String, String⟩, list:
List[⟨String, String, Float⟩])

Avec← ∅
Bvec← ∅
Mi,j ← 0
for all ⟨X , k ,Xk⟩ in list do

if X = "A" then
Avec← Avec ∪ ⟨k ,Xk⟩

end if
if X = "B" then

Bvec← Bvec ∪ ⟨k ,Xk⟩
end if

end for
end procedure

EPFL SaCS and DIAS CS460 - MapReduce Exercises



Exercise 3 Solution: Reduce Function

MapReduce Pseudocode for Reduce
procedure Reduce(⟨i , j⟩: ⟨String, String⟩, list:
List[⟨String, String, Float⟩])

...
sort(Avec)
sort(Bvec)
for k in {0, 1, 2, ..., n-1} do

Mi,j ← Mi,j + Avec[k]× Bvec[k]
end for
emit(⟨M, i , j ,Mi,j⟩)

end procedure

EPFL SaCS and DIAS CS460 - MapReduce Exercises



Exercise 4: Word Count

Word count for a dataset comprising W total words with d
distinct words.
The mappers receive a single word as input.
Compute the total communication cost between the mappers
and the reducers.

Choices
d

W
W
d

dW

2W

EPFL SaCS and DIAS CS460 - MapReduce Exercises



Exercise 4: Word Count Solution

MapReduce Pseudocode for Word Count

procedure Map(word: String)
emit(word, 1)

end procedure
procedure Reduce(word: String, counts: List[Integer])

total ← 0
for all count in counts do

total ← total + count
end for
emit(word, total)

end procedure

EPFL SaCS and DIAS CS460 - MapReduce Exercises



Exercise 4: Word Count

Choices
d

W – The algorithm will emit one key-value pair per word.
W
d

dW

2W

EPFL SaCS and DIAS CS460 - MapReduce Exercises



Exercise 4: Matrix Multiplication Communication Cost

Matrix multiplication of two matrices of size m × n and n × p.
Mappers read input tuples in the form
⟨Matrix identifier, row index, column index, value⟩.
What is the communication cost between the mappers and the
reducers?

Choices
mp

n(m + p)

2n(m + p)

mnp

2mnp

EPFL SaCS and DIAS CS460 - MapReduce Exercises



Exercise 4: Matrix Multiplication Communication Cost
Solution

MapReduce Pseudocode for Matrix Multiplication

procedure Map(MatrixID: String, i: Integer, j: Integer, value:
Float)

if MatrixID = "A" then
for k ← 1 to p do

emit((i , k), (A, j , value))
end for

else if MatrixID = "B" then
for k ← 1 to m do

emit((k, j), (B, i , value))
end for

end if
end procedure

EPFL SaCS and DIAS CS460 - MapReduce Exercises



Exercise 4: Matrix Multiplication Communication Cost

Choices
mp

n(m + p)

2n(m + p)

mnp

2mnp – Each element (i , j) will require n elements of the first
matrix and n elements of the second matrix.

EPFL SaCS and DIAS CS460 - MapReduce Exercises



Exercise 4: Part (c1) - INNER JOIN

Compute the INNER JOIN of two relations.
R1(X ,Y ) with 4 tuples {(5,21), (7,16), (15,3), (3,21)}
R2(Y ,Z ) with 3 tuples {(3,1), (4,8), (21,28)}.
Mappers read input tuples in the form
⟨Relation identifier, X, Y⟩.

Question
How many key-value pairs are emitted by the mappers?

Choices
12
7
4
3
2

EPFL SaCS and DIAS CS460 - MapReduce Exercises



Exercise 4: INNER JOIN

MapReduce Pseudocode for INNER JOIN

1: procedure Map(RelationID: String, X: Integer, Y: Integer)
2: if RelationID = "R1" then
3: emit(Y, (RelationID, X))
4: else
5: emit(X, (RelationID, Y))
6: end if
7: end procedure

EPFL SaCS and DIAS CS460 - MapReduce Exercises



Exercise 4: Part (c1) - INNER JOIN

Choices
12
7 – Mappers will emit rows of both relations with a tag.
4
3
2

EPFL SaCS and DIAS CS460 - MapReduce Exercises



Exercise 4: Part (c2) - INNER JOIN Output

Compute the INNER JOIN of two relations.
R1(X ,Y ) with 4 tuples {(5,21), (7,16), (15,3), (3,21)}
R2(Y ,Z ) with 3 tuples {(3,1), (4,8), (21,28)}.
Mappers read input tuples in the form
⟨Relation identifier, X, Y⟩.

Question
How many output tuples are produced by the reducers?

Choices
12
7
4
3
2

EPFL SaCS and DIAS CS460 - MapReduce Exercises



Exercise 4: INNER JOIN

MapReduce Pseudocode for INNER JOIN

1: procedure Reduce(Key: Integer, Values: List[Tuple])
2: R1_list ← []
3: R2_list ← []
4: for all (RelationID,Value) in Values do
5: if RelationID = "R1" then
6: append R1_list with Value
7: else
8: append R2_list with Value
9: end if

10: end for
11: for all v1 in R1_list do
12: for all v2 in R2_list do
13: emit((v1, Key, v2))
14: end for
15: end for
16: end procedure

EPFL SaCS and DIAS CS460 - MapReduce Exercises



Exercise 4: Part (c2) - INNER JOIN Output

Choices
12
7
4
3 – Outputs are (5, 21, 28), (15, 3, 1), (3, 21, 28).
2

EPFL SaCS and DIAS CS460 - MapReduce Exercises



Exercise 4: Part (d) - Set Difference
Compute the difference of two sets X and Y with x and y
elements respectively.
Mappers read input tuples in the form ⟨Set identifier, Value⟩.
Recall: The difference of two sets X and Y is a set that
contains those elements of X that are NOT in Y.

Question
Compute the total communication cost between the mappers and
the reducers.

Choices
x + y

x − y

x

y

xy

EPFL SaCS and DIAS CS460 - MapReduce Exercises



Exercise 4: Part (d) - Set Difference Solution

MapReduce Pseudocode for Set Difference

procedure Map(SetId: String, Value: Integer)
emit(Value, SetId)

end procedure
procedure Reduce(Value: Integer, SetIds: List[String])

if "X" in SetIds and "Y" not in SetIds then
emit(Value)

end if
end procedure

EPFL SaCS and DIAS CS460 - MapReduce Exercises



Exercise 4: Part (d) - Set Difference

Choices
x + y – All values are emitted once from both sets.
x − y

x

y

xy

EPFL SaCS and DIAS CS460 - MapReduce Exercises


