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Exercise 1

You are given a symmetric social network (like Facebook) where a
is a friend of b implies that b is also a friend of a.

The input is a dataset D (sharded) containing such pairs of
identifiers (a, b).
Find the last names of those users whose first name is “Kanye”
and who have at least 300 friends.
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Exercise 1 Solution

MapReduce Pseudocode

procedure Map(a: User, b: User)

if firstname(a) == "Kanye" then
emit(a, b)

end if
if firstname(b) == "Kanye" then

emit(b, a)
end if

end procedure
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Exercise 1 Solution

MapReduce Pseudocode

procedure Map(a: User, b: User)
if firstname(a) == "Kanye" then

emit(a, b)
end if
if firstname(b) == "Kanye" then

emit(b, a)
end if

end procedure
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Exercise 1 Solution

MapReduce Pseudocode

procedure Reduce(u: User, friends: List[User])

if length(friends) ≥ 300 then
emit(lastname(u))

end if
end procedure
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Exercise 1 Solution

MapReduce Pseudocode

procedure Reduce(u: User, friends: List[User])
if length(friends) ≥ 300 then

emit(lastname(u))
end if

end procedure
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Exercise 2

For an asymmetrical social network, you are given a dataset D
where lines consist of (a, b) which means user a follows user b.

Output the list of all users U who:
1 Have at least 2 million followers,
2 Follow fewer than 20 other users,
3 Are followed back by all the users they follow.
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Exercise 2 Solution

Map Function Pseudocode

procedure Map(a: User, b: User)

emit(a, ⟨b, 1⟩) ▷ a follows b
emit(b, ⟨a, 0⟩) ▷ b is followed by a

end procedure
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Exercise 2 Solution

Map Function Pseudocode

procedure Map(a: User, b: User)
emit(a, ⟨b, 1⟩) ▷ a follows b
emit(b, ⟨a, 0⟩) ▷ b is followed by a

end procedure
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Exercise 2 Solution

Reduce Function Pseudocode
procedure Reduce(u: User, list: List[⟨User, Int⟩])

follows← ∅
count0 ← 0
count1 ← 0
for all pair in list do

if pair.value = 0 then
count0 ← count0 + 1 ▷ Count followers

end if
if pair.value = 1 then

count1 ← count1 + 1 ▷ Count follows
follows← follows ∪ pair.key

end if
end for

end procedure
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Exercise 2 Solution

Reduce Function Pseudocode
procedure Reduce(u: User, list: List[⟨User, Int⟩])

follows← ∅
count0 ← 0
count1 ← 0
for all pair in list do

if pair.value = 0 then
count0 ← count0 + 1 ▷ Count followers

end if
if pair.value = 1 then

count1 ← count1 + 1 ▷ Count follows
follows← follows ∪ pair.key

end if
end for

end procedure
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Exercise 2 Solution

Reduce Function Pseudocode
procedure Reduce(u: User, list: List[⟨User, Int⟩])

...
if count0 ≥ 2M and count1 < 20 then

for all user in follows do
if ⟨user, 0⟩ /∈ list then

return ▷ User not followed back
end if

end for
emit(u)

end if
end procedure
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Exercise 3

Matrix multiplication is a fundamental operation in machine
learning. Design a Map-Reduce program for computing the product
M = AB.

A ∈ Rm×n and B ∈ Rn×m.
Matrices A and B are represented through mn pairs.
Each pair corresponds to (A, i, j,A[i, j]) or (B, i, j,B[i, j]).
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Matrix Multiplication Example

(
a11 a12 a13
a21 a22 a23

)
×

b11 b12
b21 b22
b31 b32

 =

(
a11b11 + a12b21 + a13b31 a11b12 + a12b22 + a13b32
a21b11 + a22b21 + a23b31 a21b12 + a22b22 + a23b32

)

General Form: Mi ,j =
n−1∑
l=0

Ai ,l × Bl ,j
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Exercise 3 Solution: Map Function

MapReduce Pseudocode for Map
procedure Map(⟨X , i , j ,Xi,j⟩: ⟨String, String, String, Float⟩)

if X = "A" then
for k in {0, 1, 2, ..., m-1} do

emit(⟨i , k⟩, ⟨X , j ,Xij⟩)
end for

end if
if X = "B" then

for k in {0, 1, 2, ..., m-1} do
emit(⟨k, j⟩, ⟨X , i ,Xij⟩)

end for
end if

end procedure
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Exercise 3 Solution: Map Function

MapReduce Pseudocode for Map
procedure Map(⟨X , i , j ,Xi,j⟩: ⟨String, String, String, Float⟩)

if X = "A" then
for k in {0, 1, 2, ..., m-1} do

emit(⟨i , k⟩, ⟨X , j ,Xij⟩)
end for

end if

if X = "B" then
for k in {0, 1, 2, ..., m-1} do

emit(⟨k, j⟩, ⟨X , i ,Xij⟩)
end for

end if
end procedure
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Exercise 3 Solution: Map Function

MapReduce Pseudocode for Map
procedure Map(⟨X , i , j ,Xi,j⟩: ⟨String, String, String, Float⟩)

if X = "A" then
for k in {0, 1, 2, ..., m-1} do

emit(⟨i , k⟩, ⟨X , j ,Xij⟩)
end for

end if
if X = "B" then

for k in {0, 1, 2, ..., m-1} do
emit(⟨k, j⟩, ⟨X , i ,Xij⟩)

end for
end if

end procedure
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Exercise 3 Solution: Reduce Function

MapReduce Pseudocode for Reduce
procedure Reduce(⟨i , j⟩: ⟨String, String⟩, list:
List[⟨String, String, Float⟩])

Avec← ∅
Bvec← ∅
Mi,j ← 0
for all ⟨X , k,Xk⟩ in list do

if X = "A" then
Avec← Avec ∪ ⟨k,Xk⟩

end if
if X = "B" then

Bvec← Bvec ∪ ⟨k,Xk⟩
end if

end for
end procedure
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Exercise 3 Solution: Reduce Function

MapReduce Pseudocode for Reduce
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end for
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Exercise 3 Solution: Reduce Function

MapReduce Pseudocode for Reduce
procedure Reduce(⟨i , j⟩: ⟨String, String⟩, list:
List[⟨String, String, Float⟩])

...
sort(Avec)
sort(Bvec)
for k in {0, 1, 2, ..., n-1} do

Mi,j ← Mi,j + Avec[k]× Bvec[k]
end for
emit(⟨M, i , j ,Mi,j⟩)

end procedure
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Exercise 4: Word Count

Word count for a dataset comprising W total words with d
distinct words.
The mappers receive a single word as input.
Compute the total communication cost between the mappers
and the reducers.

Choices
d

W
W
d

dW

2W
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Exercise 4: Word Count Solution

MapReduce Pseudocode for Word Count

procedure Map(word: String)
emit(word, 1)

end procedure
procedure Reduce(word: String, counts: List[Integer])

total ← 0
for all count in counts do

total ← total + count
end for
emit(word, total)

end procedure
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Exercise 4: Word Count

Choices
d

W – The algorithm will emit one key-value pair per word.
W
d

dW

2W
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Exercise 4: Matrix Multiplication Communication Cost

Matrix multiplication of two matrices of size m × n and n × p.
Mappers read input tuples in the form
⟨Matrix identifier, row index, column index, value⟩.
What is the communication cost between the mappers and the
reducers?

Choices
mp

n(m + p)

2n(m + p)

mnp

2mnp
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Exercise 4: Matrix Multiplication Communication Cost
Solution

MapReduce Pseudocode for Matrix Multiplication

procedure Map(MatrixID: String, i: Integer, j: Integer, value:
Float)

if MatrixID = "A" then
for k ← 1 to p do

emit((i , k), (A, j , value))
end for

else if MatrixID = "B" then
for k ← 1 to m do

emit((k, j), (B, i , value))
end for

end if
end procedure
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Exercise 4: Matrix Multiplication Communication Cost

Choices
mp

n(m + p)

2n(m + p)

mnp

2mnp – Each element (i , j) will require n elements of the first
matrix and n elements of the second matrix.
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Exercise 4: Part (c1) - INNER JOIN

Compute the INNER JOIN of two relations.
R1(X ,Y ) with 4 tuples {(5,21), (7,16), (15,3), (3,21)}
R2(Y ,Z ) with 3 tuples {(3,1), (4,8), (21,28)}.
Mappers read input tuples in the form
⟨Relation identifier, X, Y⟩.

Question
How many key-value pairs are emitted by the mappers?

Choices
12
7
4
3
2
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Exercise 4: INNER JOIN

MapReduce Pseudocode for INNER JOIN

1: procedure Map(RelationID: String, X: Integer, Y: Integer)
2: if RelationID = "R1" then
3: emit(Y, (RelationID, X))
4: else
5: emit(X, (RelationID, Y))
6: end if
7: end procedure
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Exercise 4: Part (c1) - INNER JOIN

Choices
12
7 – Mappers will emit rows of both relations with a tag.
4
3
2
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Exercise 4: Part (c2) - INNER JOIN Output

Compute the INNER JOIN of two relations.
R1(X ,Y ) with 4 tuples {(5,21), (7,16), (15,3), (3,21)}
R2(Y ,Z ) with 3 tuples {(3,1), (4,8), (21,28)}.
Mappers read input tuples in the form
⟨Relation identifier, X, Y⟩.

Question
How many output tuples are produced by the reducers?

Choices
12
7
4
3
2
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Exercise 4: INNER JOIN

MapReduce Pseudocode for INNER JOIN

1: procedure Reduce(Key: Integer, Values: List[Tuple])
2: R1_list ← []
3: R2_list ← []
4: for all (RelationID,Value) in Values do
5: if RelationID = "R1" then
6: append R1_list with Value
7: else
8: append R2_list with Value
9: end if

10: end for
11: for all v1 in R1_list do
12: for all v2 in R2_list do
13: emit((v1, Key, v2))
14: end for
15: end for
16: end procedure

EPFL SaCS and DIAS CS460 - MapReduce Exercises



Exercise 4: Part (c2) - INNER JOIN Output

Choices
12
7
4
3 – Outputs are (5, 21, 28), (15, 3, 1), (3, 21, 28).
2
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Exercise 4: Part (d) - Set Difference
Compute the difference of two sets X and Y with x and y
elements respectively.
Mappers read input tuples in the form ⟨Set identifier, Value⟩.
Recall: The difference of two sets X and Y is a set that
contains those elements of X that are NOT in Y.

Question
Compute the total communication cost between the mappers and
the reducers.

Choices
x + y

x − y

x

y

xy

EPFL SaCS and DIAS CS460 - MapReduce Exercises



Exercise 4: Part (d) - Set Difference Solution

MapReduce Pseudocode for Set Difference

procedure Map(SetId: String, Value: Integer)
emit(Value, SetId)

end procedure
procedure Reduce(Value: Integer, SetIds: List[String])

if "X" in SetIds and "Y" not in SetIds then
emit(Value)

end if
end procedure
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Exercise 4: Part (d) - Set Difference

Choices
x + y – All values are emitted once from both sets.
x − y

x

y

xy
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