
Exercise session 2 : Query Execution

Exercise 1: Query Processing Models Comparison
Explain the key differences between the following query processing models:

- Iterator (Tuple-at-a-time)

- Block-oriented (Column-at-a-time)

- Vectorization

Given the SQL query below, give one possible plan for execution and describe how each of these
models would execute your plan. 
 
SELECT A.id, B.value

FROM A, B

WHERE A.id = B.id

 AND B.c = B.d

 AND B.value > 100; 

Which model would have the best performance if A and B both have billions of elements? Why?

Exercise 2: Implementing Query Operators in the Iterator Model 
Consider the following class 
 
class Operator:
 def next(self):

 pass #todo implement this in subclasses

Provide pseudo-code that defines the Project, Select and Join operators in the Iterator model.

Hint: Use constructors to store state that should be maintained across different next() calls, like the
Select predicate or the Join key.
Hint 2: You may use dictionaries for the Join operator. Assume that all joins are equi-joins on two
relations using a single attribute from each relation as the join attribute.

Write a short explanation of the inefficiencies of this approach and how they could be mitigated
using a different processing model.

In one sentence and at a very high level, what would you change to make it Block-oriented (with a
column granularity)?

Exercise 3: First look at performance problems
Consider the following SQL query:

SELECT E.Name, D.Budget

FROM Employees E, Departments D

WHERE E.department_id = D.id

AND D.Budget > 1000000

Employees has 10,000 rows and Departments has 20.

Give two ways to execute this query using the Select, Join and Project operators.

Which is likely to be more resource-efficient? Why?

