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Machine Learning

Web search, spam detection, recommendation systems, advertizing, voice 
recognition, image classification, document analysis, NLP

Learn models from examples: training data

Can be expressed with an objective function

Learning algorithm typically minimizes 
an objective function

Starts from an initial model

Iteratively refines this model

Stops when optimal solution found or considered converged
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Challenges

• Training Data is Large – 1TB to 1PB

• Complex Models with Billions and Trillions of Parameters

• GPT-3: 175 billion

• GPT-4: > 1 trillion

• No single machine can process such large models
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Distributed machine Learning

• Datacenters
• Model parallelism

• Data parallelism

• Federated learning

• Decentralized learning
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Model versus Data Parallelism
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Data vs Model Parallelism in TensorFlow, from Illia Polosukhin slide deck.



Model training
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Maximize 𝑝(3|𝑥0,𝑤) Given input

Example



Gradient Descent

Iterative optimization algorithm: iteratively adjust the parameters of a model

Step 1: Take random values for the parameters

Step 2: Compute the gradients of the function wrt the parametres

Step 3: Calculate the step size: Step Size = negative gradient (Slope) x learning rate

Step 5: Calculate the New Parameters = Old parameters – Step Size

May take very long when millions of data points. Example use 23000 genes  to predict if 
someone has a disease: 23000 derivatives to compute  X 1M samples: 
23 B terms at each step * 1000

Akash Dhasade, Anne-Marie Kermarrec - CS 460 819/05/2025



Gradient Descent
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Stochastic Gradient Descent (SGD)

• At each step of gradient descent, instead of processing  all training 
samples, randomly pick a small subset (mini-batch) of training 
samples 𝑥k,𝑦k.

• Compared to gradient descent, SGD may take more steps to converge, 
but each step is much faster
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Parameter server
Data Parallelism
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Context

• Distributed optimization and inference for ML problems

• Cloud-computing settings
• Machines may be unreliable

• Jobs may be preempted

• Data may be lost

• Varying performance (network and computation)
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Design features

General-purpose framework exploiting specific datatypes of ML problems

Parameters stored in a distributed database (KVS) accessible through the network
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1. Efficient communication: asynchronous communication model

2. Elastic scalability: new nodes can be added without restarting 
the running framework (use of a DHT)

3. Fault-tolerance and durability: optimized data replication 
architecture for fast node failure recovery

4. Ease of use: globally shared parameters represented as linear 
algebra vectors or matrices rather than individual key-value pairs

Features

Efficient 
Communication

Elastic Scalability

Fault Tolerance

Ease of Use



Architecture

• Server nodes
• maintain a partition of the globally shared parameters

• communicate with each other to replicate or migrate parameters

• perform bookeeping and global aggregation steps

• Client nodes
• perform the bulk of the computation

• store locally a portion of the training data

• communicate with server nodes to update and retrieve the shared 
parameters
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Architecture
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• Workers get the Assigned training 
data

• Workers Pull the Working set of 
Model

• Iterate until Stop:
• Workers Compute Gradients
• Workers Push Gradients
• Servers Aggregate into current 

model
• Workers Pull updated model



Shared parameters: Key-Value vectors 

• Model Parameters are represented as Key – Value pairs

• Use of vector semantics to send large amount of data in bulk: Batch several key-
value pairs required to compute a vector/matrix instead of sending them one by 
one

• Exploit vector/matrix structure for linear algebra operation
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Range Push and Pull

• Data communication between workers and servers: PUSH and PULL operations. 

• PS minimizes network traffic by using RANGE based PUSH and PULL.

•  Example: Let w denote parameters of some model

• w.push(Range, dest)

• w.pull(Range, dest)

• These methods will send/receive all existing entries of w with keys in Range 

• Non blocking operations

• The caller inserts its requests in a queue and resume computation
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Synchronous Execution
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This is conceptual



Asynchronous Execution
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Enable more frequent coordination on parameter values
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Flexible Consistency model

• Asynchronous communication may lead to inconsistencies 

• PS provides flexible data consistencies models for applications to 
select
• Eventual : the PS never stalls regardless of resource availability

• Bounded Delay

• Sequential: 0-bounded-delay, fully synchronous model
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Stale synchronous parallel  (SSP):

•    Stale synchronous parallel  (SSP):

• Global clock time t

• Parameters workers “get” can be out of date

• but can’t be older than t-τ

• τ controls “staleness”
• ∞ : fully asynchronouS

• 1: synchronous
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Results from [Li et al., 2014]
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Consistent Hashing & Replication

• Use of DHT range partitioning 

• Servers hashed in the ring

• Virtual servers for load balancing

• Server nodes store a replica of (Key, value) 
pairs on k nodes  counter clockwise to it.
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Summary

Efficient Communication: 
• Batching (key,value) pairs in Linear Algebra objects

• Caching keys at worker and server nodes for local access

Flexible Consistency Models: 
• Can choose between Sequential, Eventual, and Bounded delay consistency models

• Allows for tradeoffs between System Performance and Algorithmic Convergence

Fault Tolerance and Durability:
• Replication of data in Servers

• Failed workers can restart at the point of failure by using vector clocks 

Ease of Use: 
• Linear Algebra objects allow for intuitive implementation of tasks
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Classical Parameter Server
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Bandwidth for Machine A=(N-1)*P where N is the number of machines and P is the total number of 
parameters. The bandwidth for machine A increases as we add more machines or have more parameters.
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All Reduce
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This results in a bandwidth of (N-1)*P/N for all machines, which is smaller than the one in 
parameter server (N-1)*P.
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HPC All reduce
Images from Andrew Gibiansky
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Scatter Reduce Phase
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Partitioning of an array in N chunks
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Data transfers in the first iteration of scatter-reduce 
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Intermediate sums after the first iteration of 
scatter-reduce is complete
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Scatter-reduce data transfers (iteration 2)
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Scatter-reduce data transfers (iteration 3)
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Scatter-reduce data transfers 
(iteration 4)
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Final state after all scatter-reduce transfers
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Allgather phase
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Data Transfers

• Each of the N GPUs send and receive:
• N-1 times for the scatter-reduce

• N-1 times for the allgather

•  Each time, the GPUs will send P / N values, where P is the total number of 
values in array being summed across the different GPUs. 

• Data Transferred=2(N−1)P/N

• which, crucially, is independent of the number of GPUs.
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Ring AllReduce
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Ring AllReduce: Scatter
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Ring AllReduce: Scatter
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Ring AllReduce: Gather
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Ring AllReduce

• At each round, we have a constant bandwidth of P that does not 
depend on the total number of machines N , thus more scalable.

• The limiting factor in Ring AllReduce is the number of rounds of 
communication, which equals to N-1. As there are more machines, it 
may take longer for each cycle.
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What if one cares about privacy?
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Everybody cares

• In 2016, Uber paid $148 million to settle the investigation on a data breach 
that exposed the personal information of over half a million drivers.

• In 2020, Google was fined $57 million for a GDPR violation

• Healthcare industry

• FinTech

• Autonomous cars

• Fraudulent behaviour in insurance

• IoT

• End users
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Privacy: A rising concern 

• Data born at the edge

• Private data: all the photos a user takes and everything they type on 
their mobile keyboard, including passwords, URLs, messages, etc.

• Data owned and processed by GAFAMs

• Users are more and more reluctant to share their data.
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A shift towards distributed/decentralized 
learning

Surge in data 
volumes

Computational 
complexity of training

Rising privacy 
concerns

Federated Learning
Decentralized 

Learning

Basic Principle: Let the data stay where it is, learn by exchanging gradients/models
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Some slides courtesy of Aurick Qiao, Joseph Gonzalez,  Wei Dai, and Jinliang Wei , Akash Dhasade
Some slides on Federated learning inspired/borrowed from Min Du
Some pictures from Ju Yang
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