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Machine Learning

Web search, spam detection, recommendation systems, advertizing, voice
recognition, image classification, document analysis, NLP

Learn models from examples: training data

Can be expressed with an objective function

Starts from an initial model

Learning algorithm typically minimizes
an objective function

Iteratively refines this model

Stops when optimal solution found or considered converged
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Challenges

Machine Learning Process

TRAINING
DATA

Algorithm Learning Trained model Results

* Training Data is Large — 1TB to 1PB

* Complex Models with Billions and Trillions of Parameters
 GPT-3: 175 billion
 GPT-4: > 1 trillion

* No single machine can process such large models
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Distributed machine Learning

 Datacenters

* Model parallelism
e Data parallelism

* Federated learning

* Decentralized learning
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Model versus Data Parallelism
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Data Parallelism
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Model training

Example

n
. 1 , : _
maximize Hzp(y"lx"’w) Given input Maximize p(3|x,w)
=1

For a training dataset containing n samples (x;,y;),1 < i < n, the training
objective is:

min f(w) ~ where f(w) & ¥, fi(w)

fi(w) = l(x;,y;,w) is the loss of the prediction on example (x;, y;)
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Gradient Descent

Iterative optimization algorithm: iteratively adjust the parameters of a model

Step 1: Take random values for the parameters
Step 2: Compute the gradients of the function wrt the parametres

Step 3: Calculate the step size: Step Size = negative gradient (Slope) x learning rate

Step 5: Calculate the New Parameters = Old parameters — Step Size

May take very long when millions of data points. Example use 23000 genes to predict if
someone has a disease: 23000 derivatives to compute X 1M samples:
23 B terms at each step * 1000

19/05/2025 Akash Dhasade, Anne-Marie Kermarrec - CS 460 8



=PrL
Gradient Descent

* Loss f(w)

Randomly initialized weight w

¥

|

|
-

|

|

4

Compute gradient Vf(w) |

|'¢

Wiy = W — V(W)

(Gradient Descent)

Learning rate n controls the step size

How to stop? — when the update
is small enough — converge.

| wepr —we IS €

or IVf(wy) IS €

Problem: Usually the number of training
samples n is large — slow convergence
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Stochastic Gradient Descent (SGD)

* At each step of gradient descent, instead of processing all training
samples, randomly pick a small subset (mini-batch) of training
samples x,,y,.

Wep1 € We — NV (We; X, Vi)

 Compared to gradient descent, SGD may take more steps to converge,
but each step is much faster
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Parameter server

Data Parallelism
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Context

* Distributed optimization and inference for ML problems

* Cloud-computing settings
* Machines may be unreliable
* Jobs may be preempted
e Data may be lost
 Varying performance (network and computation)
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Design features

General-purpose framework exploiting specific datatypes of ML problems
Parameters stored in a distributed database (KVS) accessible through the network

1. Efficient communication: asynchronous communication model m

2. Elastic scalability: new nodes can be added without restarting Efficient
the running framework (use of a DHT) Communication

3. Fault-tolerance and durability: optimized data replication Elastic Scalability

architecture for fast node failure recovery e Ul Tol
au olerance

4. Ease of use: globally shared parameters represented as linear
algebra vectors or matrices rather than individual key-value pairs Ease of Use
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Architecture

* Server nodes
* maintain a partition of the globally shared parameters
 communicate with each other to replicate or migrate parameters

* perform bookeeping and global aggregation steps

* Client nodes
* perform the bulk of the computation
e store locally a portion of the training data

e communicate with server nodes to update and retrieve the shared
parameters
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Architecture

Server Machines

Server
Manager
Resource
Manager / ‘
Push

Worker Machines

Task
Scheduler

Training Data
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Algorithm 1 Distributed Subgradient Descent

Task Scheduler:

1: issue LoadData() to all workers
2: foriterationt =0,...,7T do

3: issue WORKERITERATE(?) to all workers.

4: end for
Workerr = 1,...,m:

: function LOADDATA()
load a part of training data {y;, , ;) }rrq

1

2

3 pull the working set w?@ from servers

4: end function

5: function WORKERITERATE(?)

6 gradient g?(nt) — Srr 08z, Yiy w&t))
7 push g?(f) to servers

8: pull w£t+1) from servers

9: end function

Servers:
1: function SERVERITERATE(?)
2: aggregate g) < 3" g,
5w w® — (g 4 a0w®)
4: end function

Workers get the Assigned training
data
Workers Pull the Working set of
Model
Iterate until Stop:

 Workers Compute Gradients

* Workers Push Gradients

* Servers Aggregate into current

model
* Workers Pull updated model
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Shared parameters: Key-Value vectors

 Model Parameters are represented as Key — Value pairs

e Use of vector semantics to send large amount of data in bulk: Batch several key-
value pairs required to compute a vector/matrix instead of sending them one by

one
* Exploit vector/matrix structure for linear algebra operation
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Range Push and Pull

Data communication between workers and servers: PUSH and PULL operations.

PS minimizes network traffic by using RANGE based PUSH and PULL.

Example: Let w denote parameters of some model
* w.push(Range, dest)
* w.pull(Range, dest)
* These methods will send/receive all existing entries of w with keys in Range

Non blocking operations
* The caller inserts its requests in a queue and resume computation
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Synchronous Execution

Compute . Communicate

Machine 1

Machine 2

Machine 3 Waste

Barrier Barrier
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Asynchronous Execution

Machine 1 — Iteration - lteration
Machine 2 - lteration — |teration
Machine 3 - lteration = lteration

Enable more frequent coordination on parameter values

Akash Dhasade, Anne-Marie Kermarrec - CS 460
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Flexible Consistency model

* Asynchronous communication may lead to inconsistencies

* PS provides flexible data consistencies models for applications to
select

* Eventual : the PS never stalls regardless of resource availability

* Bounded Delay
1-bounded delay @ @

e Sequential: 0-bounded-delay, fully synchronous model

Sequential )<< <0
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Stale synchronous parallel (SSP):

e Stale synchronous parallel (SSP):

* Global clock time t

 Parameters workers “get” can be out of date
* but can’t be older than t-t

e Tt controls “staleness”
oo : fully asynchronou$S
e 1: synchronous



=PrL Results from [Li et al., 2014]

Ad click prediction

sequential

o computing B waiting

135 -

time (hour) 09 -

045 -
0

o 1 2 4 8 16
Bounded delay
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cPrL Consistent Hashing & Replication

* Use of DHT range partitioning
* Servers hashed in the ring
* Virtual servers for load balancing

» Server nodes store a replica of (Key, value)
pairs on k nodes counter clockwise to it.
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Summary

Efficient Communication:
* Batching (key,value) pairs in Linear Algebra objects

* Caching keys at worker and server nodes for local access

Flexible Consistency Models:
e Can choose between Sequential, Eventual, and Bounded delay consistency models

* Allows for tradeoffs between System Performance and Algorithmic Convergence

Fault Tolerance and Durability:
* Replication of data in Servers
* Failed workers can restart at the point of failure by using vector clocks

Ease of Use:
* Linear Algebra objects allow for intuitive implementation of tasks
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Classical Parameter Server

step |1 Machine B step 2 ( Machine B J

Machine D Machine C Machine D Machine C
[ d, ] d. |d

Machine A
i ~d=ddd

Sfep 3 Machine B Sfep 4 Machine B
S . - ,,., - ., AL ,... -
Machine A Machine A
_..' O..:Q.li_:b].l - 5, S,.. S‘

=n+“++ =m+m++
2 3 4 5, 5, S:] >

Bandwidth for Machine A=(N-1)*P where N is the number of machines and P is the total number of
parameters. The bandwidth for machine A increases as we add more machines or have more parameters.
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All Reduce

step 1 step 2

Machine A J _‘ Machine B

N o s

Machine D Machine C
&l ‘e, EAEA a, b, EMEN -

ot iepi Machine D Machine C
L : Machine A J ‘Machi Machine A J Machine B

[ 1 ]}

[AMdMaA

Machine D Machine C

N EN EN BN

EN .EN .Y .

mm T
S, S: S“ 2 5 S SA S: S,

This results in a bandwidth of (N-1)*P/N for all machines, which is smaller than the one in
parameter server (N-1)*P.
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HPC All reduce

Images from Andrew Gibiansky
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Scatter Reduce Phase

Receive

Receive

Receive

Receive

-

Receive Send
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Partitioning of an array in N chunks

Arrays Being Summed

a, by Co do €
ay b, Cy d ®
a, b, Co d, €s
a, by Cq ds €3
a, b, C, dy ey
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Data transfers in the first iteration of scatter-reduce

Arrays Being Summed

a by Cy dy
a, b, 4 d;
4
a, b, c, d,
4
ag by Cy dy
4
ay b, C4 d
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Intermediate sums after the first iteration of
scatter-reduce is complete

Arrays Being Summed

dy by Co

b, Cy
a, by+b; C;
il
a b, C3+Cs
l
ay b, Cy dy+ds
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Scatter-reduce data transfers (iteration 2)

Arrays Being Summed

dy by Co

b, Cy
a, by+b; C;
il
a b, C3+Cs
l
ay b, Cy dy+ds
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Scatter-reduce data transfers (iteration 3)

ag by Cy d,+ds+d, egte,
4
a,+ay b, Cq d, epte,t+e,

{4
a,+ag+a, b,+b; Cc, d, e
ag bs+b,+bs C3+Co dy €,

{4

a4 by C3+Co+Cy dy+dy ey
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Scatter-reduce data transfers
(iteration 4)

a by Cy+Cy+Cy+Cy d,+dy+d, eg+e,
4
a,+ay b, Cq d,+d,+dy+d, ey+e,+e,
J
a +ag+a, b,+b; C, d, eyte,+e,+e;

{4
a;+agtay+a, b,+b,+b, Cq+Cy dy e,
ay by+b,+bs+b, C3+Cy+Cy dy+ds €4
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Final state after all scatter-reduce transfers

a Ca+Cy+Cy+Cq d +dy+d, egt€y
a,+ay b, d,+d;+d,+d, e,+€,+6,
a;+a +a, b,+b; (o BgtE +81+€y
A +agtay+ay by+b;+by C4+Cy dy

b,+by+ba+h, Ca+CotCy dg+dsy Y
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Allgather phase
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ay Ib2+b1+h3+b4+hu| Caq+C5+Cy+Cy d,+dy+d, €5+€y
U
a,+a b, Ic3+-::2+-::4+-::u+c,| d,+d5+dy+d, Egte +e,
U
a,+ay+a, b,+b, Cy d4+d3+dn+d,+d2| Bpt+€,+E,+8y
4
a;+ag+a,+a, b,+b,+by Ca+Cy d, | Epte,+e,+8,+e, |

L
a,+ag+a,+as+a,| bs,+b,+by+b, C3+Co+Cy dy+ds ey
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|a1+aﬂ+a2+a3+a4|h2+h1+b3+h4+h0| C3+C5+C4+Cy d,+d;+d, €pt+€,
I
a,+ag Ib2+b1+b3+b4+bn|c3+c2+-::4+cu+c,| d,+d;+dy+d, egte,te,
4
a,+ay+a, b,y+b, |-::3+u32+-:4+n::,,]+c:1 dytdy+dp+di+d, | Epteyte te,
I
a,+ag+as+a, bs+b+bg Ca+Cy | dy+dg+dy+d,+d, |e[,+134+eI +8,+€5 |
J
aj+ag+ay+ag+a, | by+b +bg+by C3+Co+Cy dy+d; |eﬂ+e_1+e1+ez+eal
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|:511+1aﬂ,+;3t2+aa+a4 h2+h1+b3+h4+hu| C3+C5+C4+Cy d,+d;+d, |eﬂ+e_¢+e1+ez+eal
|a1 +aﬂ+az+aﬂ+a4| by+by+bs+by+by | Ca3+Cy+Cy+Cy+Cy | d,+d;+dy+d, ept+e +e,

g

a-l +au+a2 I b2+b1+b3+b4+bu |C3+CE+64+EU+C1 | d4+d3+ﬂn+dl+d2 | E'U+E'4+E'1 +EE

g

a,+agt+a,+a, by+b4+by I Cq+Cy+Cy+Cot+Cy I dy+dg+dg+d;+d; |em+{ﬂ;4+e1 +€5+€4 I
a,+ag+ay,+as+a, | bo+b,+bs+b, C3+Co+Cy | dy+dg+dy+d;+dy |n.=,~ﬂ+n.=,~_ﬂr+le:1 +92+93|
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|a1 +aﬂ+a2+a3+a4| bo+b+bs+btby I C4+C5+C4+Cy I dy+dz+dy+d+ds

4

| a,+ag+a,+ay+a, | by+b;+bs+b,+by | Cq+Cy+Cy+Co+Cy I d,+d,+dy+d, | B+, +8 +Ex+Ey |

g

Bg+e,+e,+E,

egt+e,t+e; "'92"'93'

| El1 +EG+EZ+33+34 | b2 + bn‘ BB b3+ b-4+ bﬂ | C3+CE +C4+l:ﬂ+|:-| I d 4+d 3+d U‘l‘d 1 +d2

g

a,+ag+a,+ag | bo+b,+bs+b,+bg Ic3+c2+c: 4+C+Cy | dy+dg+dg+d,+d, |aﬂ-,ﬂ+ed+e1 +8,+€4 |

g

eg+e,+e, "'92"'33'
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|a1 +agt+ay+ayt+a, I by+by+bs+b+b, Ic3+c2+c: 4+CptCy I dy+dg+dg+dy+d, Ir—';ﬂ+r—;-_1+e1 +8y+85 |

I 31 +Bﬂ+32+33+a4 I b2+b-| +b3+b4+b_n CE+C2+{:4+CD+C1 I d4+d3+dﬂ+d1 +d2 I E‘U+E‘4+E1 +EE+EE |

| aj+agta,+as+a,

|a1 +agtay+as+a, | by+b,+bg+b,+b, Ic3+c2+c4+cﬂ+c1 I d+dy+dg+d,+d, Ir—z,,:,+eﬂ+t=,-1 +8,+64 |
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Data Transfers

e Each of the N GPUs send and receive:
 N-1 times for the scatter-reduce
* N-1 times for the allgather

* Each time, the GPUs will send P / N values, where P is the total number of
values in array being summed across the different GPUs.

e Data Transferred=2(N-1)P/N
* which, crucially, is independent of the number of GPUs.
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Ring AllReduce

Machine D Machine C

19/05/2025
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Ring AllReduce: Scatter

step 1 step 2

Machine Machine C Machine D

step 3 step 4

b Machine D Machine C Machine D Machine C
,;“

— 7 —)

19/05/2025 Akash Dhasade, Anne-Marie Kermarrec - CS 460



=Pr-L

Ring AllIReduce: Gather

step 1

l Machine A J
s

Machine D

step 2

Machine B

Machine A Machine B

S,

Machine C

Machine D
S

3

S2 S,

step 3

‘ S

Machine A
S

3

Machine D

55

step 4

S

Machine B
mE .

-

Machine A

Machine B

Machine C

Machine D Machine C

s,

19/05/2025
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Ring AllReduce

e At each round, we have a constant bandwidth of P that does not
depend on the total number of machines N, thus more scalable.

* The limiting factor in Ring Al
communication, which equa
may take longer for each cyc

Reduce is the number of rounds of
s to N-1. As there are more machines, it
e.
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What it one cares about privacy?
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Everybody cares

* In 2016, Uber paid $148 million to settle the investigation on a data breach
that exposed the personal information of over half a million drivers.

* In 2020, Google was fined $57 million for a GDPR violation
* Healthcare industry

* FinTech

e Autonomous cars

* Fraudulent behaviour in insurance

* loT

* End users
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Privacy: A rising concern

e Data born at the edge

* Private data: all the photos a user takes and everything they type on
their mobile keyboard, including passwords, URLs, messages, etc.

e Data owned and processed by GAFAMs
e Users are more and more reluctant to share their data.
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A shift towards distributed/decentralized

earning

Surge in data Computational

Rising privacy
volumes complexity of training

concerns

Decentralized

Federated Learning Learning

Basic Principle: Let the data stay where it is, learn by exchanging gradients/models
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Some slides courtesy of Aurick Qiao, Joseph Gonzalez, Wei Dai, and Jinliang Wei , Akash Dhasade
Some slides on Federated learning inspired/borrowed from Min Du
Some pictures from Ju Yang
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