=Pr-L

Distributed Learning

Akash Dhasade, Anne-Marie Kermarrec

19/05/2025 Akash Dhasade, Anne-Marie Kermarrec - CS 460

=PrL
Where are we?

Gossip Protocols

Consistency protocols
CAP Theorem

Distributed/decentralized
systems

19/05/2025

Transaction
Management

Query
Execution

Storage
Hierarchies
& Layouts

Data science software stack

Data Processing
Graph Data Structured
Pregel, GraphLab, X- Data
Streem, Chaos Spark SQL

Batch Data Streaming Data
Map Reduce, Storm, Naiad, Flink, Spark
Dryad, Spark Streaming Google Data Flow

Machine
Learning

Data Storage

NoSQL DB Distributed
Dynamo Messaging
Big Table systems

Cassandra Kafka

Distributed
File Systems
(GFS)

Ressource Management & Optimization

Query optimization Scheduling (Mesos)

Akash Dhasade, Anne-Marie Kermarrec - CS 460

=Pir-L
Machine Learning

Web search, spam detection, recommendation systems, advertizing, voice
recognition, image classification, document analysis, NLP

Learn models from examples: training data

Can be expressed with an objective function

Starts from an initial model

Learning algorithm typically minimizes
an objective function

Iteratively refines this model

Stops when optimal solution found or considered converged

=PrL
Challenges

Machine Learning Process

TRAINING
DATA

Algorithm Learning Trained model Results

* Training Data is Large — 1TB to 1PB

* Complex Models with Billions and Trillions of Parameters
 GPT-3: 175 billion
 GPT-4: > 1 trillion

* No single machine can process such large models

19/05/2025 Akash Dhasade, Anne-Marie Kermarrec - CS 460 4

=Pir-L
Distributed machine Learning

 Datacenters

* Model parallelism
e Data parallelism

* Federated learning

* Decentralized learning

19/05/2025 Akash Dhasade, Anne-Marie Kermarrec - CS 460

=Pr-L

Model versus Data Parallelism

Data

Data Parallelism

Data-Parallel

Partitions Workers

Shared

States

Model Parallelism

Parallel Model

19/05/2025

Akash Dhasade, Anne-Marie Kermarrec - CS 460

Model Partitioned

Workers States

=Pir-L
Model training

Example

n
. 1 , : _
maximize Hzp(y"lx"’w) Given input Maximize p(3|x,w)
=1

For a training dataset containing n samples (x;,y;),1 < i < n, the training
objective is:

min f(w) ~ where f(w) & ¥, fi(w)

fi(w) = l(x;,y;,w) is the loss of the prediction on example (x;, y;)

19/05/2025 Akash Dhasade, Anne-Marie Kermarrec - CS 460 7

=PrL
Gradient Descent

Iterative optimization algorithm: iteratively adjust the parameters of a model

Step 1: Take random values for the parameters
Step 2: Compute the gradients of the function wrt the parametres

Step 3: Calculate the step size: Step Size = negative gradient (Slope) x learning rate

Step 5: Calculate the New Parameters = Old parameters — Step Size

May take very long when millions of data points. Example use 23000 genes to predict if
someone has a disease: 23000 derivatives to compute X 1M samples:
23 B terms at each step * 1000

19/05/2025 Akash Dhasade, Anne-Marie Kermarrec - CS 460 8

=PrL
Gradient Descent

* Loss f(w)

Randomly initialized weight w

¥

|

|
-

|

|

4

Compute gradient Vf(w) |

|'¢

Wiy = W — V(W)

(Gradient Descent)

Learning rate n controls the step size

How to stop? — when the update
is small enough — converge.

| wepr —we IS €

or IVf(wy) IS €

Problem: Usually the number of training
samples n is large — slow convergence

19/05/2025 Akash Dhasade, Anne-Marie Kermarrec - CS 460

=PrL
Stochastic Gradient Descent (SGD)

* At each step of gradient descent, instead of processing all training
samples, randomly pick a small subset (mini-batch) of training
samples x,,y,.

Wep1 € We — NV (We; X, Vi)

 Compared to gradient descent, SGD may take more steps to converge,
but each step is much faster

=Pr-L

Parameter server

Data Parallelism

19/05/2025 Akash Dhasade, Anne-Marie Kermarrec - CS 460

11

=PrL
Context

* Distributed optimization and inference for ML problems

* Cloud-computing settings
* Machines may be unreliable
* Jobs may be preempted
e Data may be lost
 Varying performance (network and computation)

=Pir-L
Design features

General-purpose framework exploiting specific datatypes of ML problems
Parameters stored in a distributed database (KVS) accessible through the network

1. Efficient communication: asynchronous communication model m

2. Elastic scalability: new nodes can be added without restarting Efficient
the running framework (use of a DHT) Communication

3. Fault-tolerance and durability: optimized data replication Elastic Scalability

architecture for fast node failure recovery e Ul Tol
au olerance

4. Ease of use: globally shared parameters represented as linear
algebra vectors or matrices rather than individual key-value pairs Ease of Use

19/05/2025 Akash Dhasade, Anne-Marie Kermarrec - CS 460 13

=PrL
Architecture

* Server nodes
* maintain a partition of the globally shared parameters
 communicate with each other to replicate or migrate parameters

* perform bookeeping and global aggregation steps

* Client nodes
* perform the bulk of the computation
e store locally a portion of the training data

e communicate with server nodes to update and retrieve the shared
parameters

=PrL
Architecture

Server Machines

Server
Manager
Resource
Manager / ‘
Push

Worker Machines

Task
Scheduler

Training Data

19/05/2025 Akash Dhasade, Anne-Marie Kermarrec - CS 460 15

c=PrL

Algorithm 1 Distributed Subgradient Descent

Task Scheduler:

1: issue LoadData() to all workers
2: foriterationt =0,...,7T do

3: issue WORKERITERATE(?) to all workers.

4: end for
Workerr = 1,...,m:

: function LOADDATA()
load a part of training data {y;, , ;) }rrq

1

2

3 pull the working set w?@ from servers

4: end function

5: function WORKERITERATE(?)

6 gradient g?(nt) — Srr 08z, Yiy w&t))
7 push g?(f) to servers

8: pull w£t+1) from servers

9: end function

Servers:
1: function SERVERITERATE(?)
2: aggregate g) < 3" g,
5w w® — (g 4 a0w®)
4: end function

Workers get the Assigned training
data
Workers Pull the Working set of
Model
Iterate until Stop:

 Workers Compute Gradients

* Workers Push Gradients

* Servers Aggregate into current

model
* Workers Pull updated model

19/05/2025 Akash Dhasade, Anne-Marie Kermarrec - CS 460

16

=Pir-L
Shared parameters: Key-Value vectors

 Model Parameters are represented as Key — Value pairs

e Use of vector semantics to send large amount of data in bulk: Batch several key-
value pairs required to compute a vector/matrix instead of sending them one by

one
* Exploit vector/matrix structure for linear algebra operation

=PrL
Range Push and Pull

Data communication between workers and servers: PUSH and PULL operations.

PS minimizes network traffic by using RANGE based PUSH and PULL.

Example: Let w denote parameters of some model
* w.push(Range, dest)
* w.pull(Range, dest)
* These methods will send/receive all existing entries of w with keys in Range

Non blocking operations
* The caller inserts its requests in a queue and resume computation

=Pr-L

19/05/2025

Synchronous Execution

Compute . Communicate

Machine 1

Machine 2

Machine 3 Waste

Barrier Barrier

Akash Dhasade, Anne-Marie Kermarrec - CS 460

This is conceptual

Compute

19

=Pr-L

19/05/2025

Asynchronous Execution

Machine 1 — Iteration - lteration
Machine 2 - lteration — |teration
Machine 3 - lteration = lteration

Enable more frequent coordination on parameter values

Akash Dhasade, Anne-Marie Kermarrec - CS 460

20

=PrL
Flexible Consistency model

* Asynchronous communication may lead to inconsistencies

* PS provides flexible data consistencies models for applications to
select

* Eventual : the PS never stalls regardless of resource availability

* Bounded Delay
1-bounded delay @ @

e Sequential: 0-bounded-delay, fully synchronous model

Sequential)<< <0

19/05/2025 Akash Dhasade, Anne-Marie Kermarrec - CS 460 21

=PrL
Stale synchronous parallel (SSP):

e Stale synchronous parallel (SSP):

* Global clock time t

 Parameters workers “get” can be out of date
* but can’t be older than t-t

e Tt controls “staleness”
oo : fully asynchronou$S
e 1: synchronous

=PrL Results from [Li et al., 2014]

Ad click prediction

sequential

o computing B waiting

135 -

time (hour) 09 -

045 -
0

o 1 2 4 8 16
Bounded delay

19/05/2025 Akash Dhasade, Anne-Marie Kermarrec - CS 460

23

cPrL Consistent Hashing & Replication

* Use of DHT range partitioning
* Servers hashed in the ring
* Virtual servers for load balancing

» Server nodes store a replica of (Key, value)
pairs on k nodes counter clockwise to it.

19/05/2025 Akash Dhasade, Anne-Marie Kermarrec - CS 460

replicated

24

cPrL
Summary

Efficient Communication:
* Batching (key,value) pairs in Linear Algebra objects

* Caching keys at worker and server nodes for local access

Flexible Consistency Models:
e Can choose between Sequential, Eventual, and Bounded delay consistency models

* Allows for tradeoffs between System Performance and Algorithmic Convergence

Fault Tolerance and Durability:
* Replication of data in Servers
* Failed workers can restart at the point of failure by using vector clocks

Ease of Use:
* Linear Algebra objects allow for intuitive implementation of tasks

19/05/2025 Akash Dhasade, Anne-Marie Kermarrec - CS 460

25

=PrL
Classical Parameter Server

step |1 Machine B step 2 (Machine B J

Machine D Machine C Machine D Machine C
[d,] d. |d

Machine A
i ~d=ddd

Sfep 3 Machine B Sfep 4 Machine B
S . - ,,., - ., AL ,... -
Machine A Machine A
..' O..:Q.li:b].l - 5, S,.. S‘

=n+“++ =m+m++
2 3 4 5, 5, S:] >

Bandwidth for Machine A=(N-1)*P where N is the number of machines and P is the total number of
parameters. The bandwidth for machine A increases as we add more machines or have more parameters.

19/05/2025 Akash Dhasade, Anne-Marie Kermarrec - CS 460

=P-L
All Reduce

step 1 step 2

Machine A J _‘ Machine B

N o s

Machine D Machine C
&l ‘e, EAEA a, b, EMEN -

ot iepi Machine D Machine C
L : Machine A J ‘Machi Machine A J Machine B

[1]}

[AMdMaA

Machine D Machine C

N EN EN BN

EN .EN .Y .

mm T
S, S: S“ 2 5 S SA S: S,

This results in a bandwidth of (N-1)*P/N for all machines, which is smaller than the one in
parameter server (N-1)*P.

19/05/2025 Akash Dhasade, Anne-Marie Kermarrec - CS 460 27

=Pr-L

19/05/2025

HPC All reduce

Images from Andrew Gibiansky

Akash Dhasade, Anne-Marie Kermarrec - CS 460

28

=PrL
Scatter Reduce Phase

Receive

Receive

Receive

Receive

-

Receive Send

19/05/2025 Akash Dhasade, Anne-Marie Kermarrec - CS 460

29

=Pr-L

19/05/2025

Partitioning of an array in N chunks

Arrays Being Summed

a, by Co do €
ay b, Cy d ®
a, b, Co d, €s
a, by Cq ds €3
a, b, C, dy ey

Akash Dhasade, Anne-Marie Kermarrec - CS 460

30

=Pr-L

19/05/2025

Data transfers in the first iteration of scatter-reduce

Arrays Being Summed

a by Cy dy
a, b, 4 d;
4
a, b, c, d,
4
ag by Cy dy
4
ay b, C4 d

Akash Dhasade, Anne-Marie Kermarrec -

CS 460

31

=Pr-L

19/05/2025

Intermediate sums after the first iteration of
scatter-reduce is complete

Arrays Being Summed

dy by Co

b, Cy
a, by+b; C;
il
a b, C3+Cs
l
ay b, Cy dy+ds

Akash Dhasade, Anne-Marie Kermarrec - CS 460

=Pr-L

19/05/2025

Scatter-reduce data transfers (iteration 2)

Arrays Being Summed

dy by Co

b, Cy
a, by+b; C;
il
a b, C3+Cs
l
ay b, Cy dy+ds

Akash Dhasade, Anne-Marie Kermarrec - CS 460

=Pr-L

19/05/2025

Scatter-reduce data transfers (iteration 3)

ag by Cy d,+ds+d, egte,
4
a,+ay b, Cq d, epte,t+e,

{4
a,+ag+a, b,+b; Cc, d, e
ag bs+b,+bs C3+Co dy €,

{4

a4 by C3+Co+Cy dy+dy ey

34

=Pr-L

19/05/2025

Scatter-reduce data transfers
(iteration 4)

a by Cy+Cy+Cy+Cy d,+dy+d, eg+e,
4
a,+ay b, Cq d,+d,+dy+d, ey+e,+e,
J
a +ag+a, b,+b; C, d, eyte,+e,+e;

{4
a;+agtay+a, b,+b,+b, Cq+Cy dy e,
ay by+b,+bs+b, C3+Cy+Cy dy+ds €4

35

=Pr-L

19/05/2025

Final state after all scatter-reduce transfers

a Ca+Cy+Cy+Cq d +dy+d, egt€y
a,+ay b, d,+d;+d,+d, e,+€,+6,
a;+a +a, b,+b; (o BgtE +81+€y
A +agtay+ay by+b;+by C4+Cy dy

b,+by+ba+h, Ca+CotCy dg+dsy Y

Akash Dhasade, Anne-Marie Kermarrec - CS 460

36

=Pir-L
Allgather phase

19/05/2025

Akash Dhasade, Anne-Marie Kermarrec - CS 460

37

=Pr-L

19/05/2025

ay Ib2+b1+h3+b4+hu| Caq+C5+Cy+Cy d,+dy+d, €5+€y
U
a,+a b, Ic3+-::2+-::4+-::u+c,| d,+d5+dy+d, Egte +e,
U
a,+ay+a, b,+b, Cy d4+d3+dn+d,+d2| Bpt+€,+E,+8y
4
a;+ag+a,+a, b,+b,+by Ca+Cy d, | Epte,+e,+8,+e, |

L
a,+ag+a,+as+a,| bs,+b,+by+b, C3+Co+Cy dy+ds ey

Akash Dhasade, Anne-Marie Kermarrec - CS 460

38

=Pr-L

19/05/2025

|a1+aﬂ+a2+a3+a4|h2+h1+b3+h4+h0| C3+C5+C4+Cy d,+d;+d, €pt+€,
I
a,+ag Ib2+b1+b3+b4+bn|c3+c2+-::4+cu+c,| d,+d;+dy+d, egte,te,
4
a,+ay+a, b,y+b, |-::3+u32+-:4+n::,,]+c:1 dytdy+dp+di+d, | Epteyte te,
I
a,+ag+as+a, bs+b+bg Ca+Cy | dy+dg+dy+d,+d, |e[,+134+eI +8,+€5 |
J
aj+ag+ay+ag+a, | by+b +bg+by C3+Co+Cy dy+d; |eﬂ+e_1+e1+ez+eal

Akash Dhasade, Anne-Marie Kermarrec - CS 460

39

=Pr-L

|:511+1aﬂ,+;3t2+aa+a4 h2+h1+b3+h4+hu| C3+C5+C4+Cy d,+d;+d, |eﬂ+e_¢+e1+ez+eal
|a1 +aﬂ+az+aﬂ+a4| by+by+bs+by+by | Ca3+Cy+Cy+Cy+Cy | d,+d;+dy+d, ept+e +e,

g

a-l +au+a2 I b2+b1+b3+b4+bu |C3+CE+64+EU+C1 | d4+d3+ﬂn+dl+d2 | E'U+E'4+E'1 +EE

g

a,+agt+a,+a, by+b4+by I Cq+Cy+Cy+Cot+Cy I dy+dg+dg+d;+d; |em+{ﬂ;4+e1 +€5+€4 I
a,+ag+ay,+as+a, | bo+b,+bs+b, C3+Co+Cy | dy+dg+dy+d;+dy |n.=,~ﬂ+n.=,~_ﬂr+le:1 +92+93|

19/05/2025 Akash Dhasade, Anne-Marie Kermarrec - CS 460

40

=Pr-L

19/05/2025

|a1 +aﬂ+a2+a3+a4| bo+b+bs+btby I C4+C5+C4+Cy I dy+dz+dy+d+ds

4

| a,+ag+a,+ay+a, | by+b;+bs+b,+by | Cq+Cy+Cy+Co+Cy I d,+d,+dy+d, | B+, +8 +Ex+Ey |

g

Bg+e,+e,+E,

egt+e,t+e; "'92"'93'

| El1 +EG+EZ+33+34 | b2 + bn‘ BB b3+ b-4+ bﬂ | C3+CE +C4+l:ﬂ+|:-| I d 4+d 3+d U‘l‘d 1 +d2

g

a,+ag+a,+ag | bo+b,+bs+b,+bg Ic3+c2+c: 4+C+Cy | dy+dg+dg+d,+d, |aﬂ-,ﬂ+ed+e1 +8,+€4 |

g

eg+e,+e, "'92"'33'

Akash Dhasade, Anne-Marie Kermarrec - CS 460

41

=Pr-L

19/05/2025

|a1 +agt+ay+ayt+a, I by+by+bs+b+b, Ic3+c2+c: 4+CptCy I dy+dg+dg+dy+d, Ir—';ﬂ+r—;-_1+e1 +8y+85 |

I 31 +Bﬂ+32+33+a4 I b2+b-| +b3+b4+b_n CE+C2+{:4+CD+C1 I d4+d3+dﬂ+d1 +d2 I E‘U+E‘4+E1 +EE+EE |

| aj+agta,+as+a,

|a1 +agtay+as+a, | by+b,+bg+b,+b, Ic3+c2+c4+cﬂ+c1 I d+dy+dg+d,+d, Ir—z,,:,+eﬂ+t=,-1 +8,+64 |

Akash Dhasade, Anne-Marie Kermarrec - CS 460

42

=PrL
Data Transfers

e Each of the N GPUs send and receive:
 N-1 times for the scatter-reduce
* N-1 times for the allgather

* Each time, the GPUs will send P / N values, where P is the total number of
values in array being summed across the different GPUs.

e Data Transferred=2(N-1)P/N
* which, crucially, is independent of the number of GPUs.

=Pir-L
Ring AllReduce

Machine D Machine C

19/05/2025

Akash Dhasade, Anne-Marie Kermarrec - CS 460

44

=PrL
Ring AllReduce: Scatter

step 1 step 2

Machine Machine C Machine D

step 3 step 4

b Machine D Machine C Machine D Machine C
,;“

— 7 —)

19/05/2025 Akash Dhasade, Anne-Marie Kermarrec - CS 460

=Pr-L

Ring AllIReduce: Gather

step 1

l Machine A J
s

Machine D

step 2

Machine B

Machine A Machine B

S,

Machine C

Machine D
S

3

S2 S,

step 3

‘ S

Machine A
S

3

Machine D

55

step 4

S

Machine B
mE .

-

Machine A

Machine B

Machine C

Machine D Machine C

s,

19/05/2025

Akash Dhasade, Anne-Marie Kermarrec - CS 460

46

=Pir-L
Ring AllReduce

e At each round, we have a constant bandwidth of P that does not
depend on the total number of machines N, thus more scalable.

* The limiting factor in Ring Al
communication, which equa
may take longer for each cyc

Reduce is the number of rounds of
s to N-1. As there are more machines, it
e.

=Pr-L

What it one cares about privacy?

19/05/2025 Akash Dhasade, Anne -Marie Kermarrec - CS 460

=Pir-L
Everybody cares

* In 2016, Uber paid $148 million to settle the investigation on a data breach
that exposed the personal information of over half a million drivers.

* In 2020, Google was fined $57 million for a GDPR violation
* Healthcare industry

* FinTech

e Autonomous cars

* Fraudulent behaviour in insurance

* loT

* End users

c=PrL
Privacy: A rising concern

e Data born at the edge

* Private data: all the photos a user takes and everything they type on
their mobile keyboard, including passwords, URLs, messages, etc.

e Data owned and processed by GAFAMs
e Users are more and more reluctant to share their data.

=PrL , L .
A shift towards distributed/decentralized

earning

Surge in data Computational

Rising privacy
volumes complexity of training

concerns

Decentralized

Federated Learning Learning

Basic Principle: Let the data stay where it is, learn by exchanging gradients/models

19/05/2025 Akash Dhasade, Anne-Marie Kermarrec - CS 460 51

=PrL
References

* Lietal. Scaling Distributed Machine Learning with the Parameter server. OSDI 2014
* Narayanan et al. PipeDream: generalized pipeline parallelism for DNN training. SOSP 2019
* Lietal Parameter Server for distributed Machine Learning. Big Learning NIPS workshop, 2013

* McMahan, H. Brendan, Eider Moore, Daniel Ramage, and Seth Hampson. Communication-efficient learning of deep
networks from decentralized data. AISTATS, 2017.

* Bonawitz et al. Towards Federated Learning at Scale: System Design. SysML 2019
* Karimireddy et al. SCAFFOLD: Stochastic Controlled Averaging for Federated Learning . ICML 2020
* Liet al. Federated Optimization in Heterogeneous networks. MLSys 2020

* Jianyu Wang, Qinghua Liu, Hao Liang, GauriJoshi, and H. Vincent Poor. Tacking the objective inconsistency in
heterogeneous federated optimization. In Advances in Neural Information Processing Systems, volume 33, pages 7611-
7623, 2020.

Some slides courtesy of Aurick Qiao, Joseph Gonzalez, Wei Dai, and Jinliang Wei , Akash Dhasade
Some slides on Federated learning inspired/borrowed from Min Du
Some pictures from Ju Yang

	Slide 1: Distributed Learning
	Slide 2: Where are we?
	Slide 3: Machine Learning
	Slide 4: Challenges
	Slide 5: Distributed machine Learning
	Slide 6: Model versus Data Parallelism
	Slide 7: Model training
	Slide 8: Gradient Descent
	Slide 9: Gradient Descent
	Slide 10: Stochastic Gradient Descent (SGD)
	Slide 11: Parameter server
	Slide 12: Context
	Slide 13: Design features
	Slide 14: Architecture
	Slide 15: Architecture
	Slide 16
	Slide 17: Shared parameters: Key-Value vectors
	Slide 18: Range Push and Pull
	Slide 19: Synchronous Execution
	Slide 20: Asynchronous Execution
	Slide 21: Flexible Consistency model
	Slide 22: Stale synchronous parallel (SSP):
	Slide 23
	Slide 24: Consistent Hashing & Replication
	Slide 25: Summary
	Slide 26: Classical Parameter Server
	Slide 27: All Reduce
	Slide 28: HPC All reduce
	Slide 29: Scatter Reduce Phase
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37: Allgather phase
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43: Data Transfers
	Slide 44: Ring AllReduce
	Slide 45: Ring AllReduce: Scatter
	Slide 46: Ring AllReduce: Gather
	Slide 47: Ring AllReduce
	Slide 48: What if one cares about privacy?
	Slide 49: Everybody cares
	Slide 50: Privacy: A rising concern
	Slide 51: A shift towards distributed/decentralized learning
	Slide 52: References

