
Distributed Learning
Akash Dhasade, Anne-Marie Kermarrec

Akash Dhasade, Anne-Marie Kermarrec - CS 460 119/05/2025

Where are we?

Akash Dhasade, Anne-Marie Kermarrec - CS 460 2

Consistency protocols
CAP Theorem

Gossip Protocols

Distributed/decentralized
systems

Data science software stack

Data Processing

Ressource Management & Optimization

Data Storage

Distributed
File Systems

(GFS)

NoSQL DB
Dynamo
Big Table

Cassandra

Distributed
Messaging

systems
Kafka

Structured
Data

Spark SQL

Graph Data
Pregel, GraphLab, X-

Streem, Chaos

Machine
Learning

Batch Data
Map Reduce,
Dryad, Spark

Streaming Data
Storm, Naiad, Flink, Spark

Streaming Google Data Flow

Scheduling (Mesos)Query optimization

Storage
Hierarchies
& Layouts

Transaction
Management

Query
Execution

19/05/2025

Machine Learning

Web search, spam detection, recommendation systems, advertizing, voice
recognition, image classification, document analysis, NLP

Learn models from examples: training data

Can be expressed with an objective function

Learning algorithm typically minimizes
an objective function

Starts from an initial model

Iteratively refines this model

Stops when optimal solution found or considered converged

19/05/2025 Akash Dhasade, Anne-Marie Kermarrec - CS 460 3

Challenges

• Training Data is Large – 1TB to 1PB

• Complex Models with Billions and Trillions of Parameters

• GPT-3: 175 billion

• GPT-4: > 1 trillion

• No single machine can process such large models

Akash Dhasade, Anne-Marie Kermarrec - CS 460 419/05/2025

Distributed machine Learning

• Datacenters
• Model parallelism

• Data parallelism

• Federated learning

• Decentralized learning

19/05/2025 Akash Dhasade, Anne-Marie Kermarrec - CS 460 5

Model versus Data Parallelism

Akash Dhasade, Anne-Marie Kermarrec - CS 460 619/05/2025

Data vs Model Parallelism in TensorFlow, from Illia Polosukhin slide deck.

Model training

Akash Dhasade, Anne-Marie Kermarrec - CS 460 719/05/2025

Maximize 𝑝(3|𝑥0,𝑤) Given input

Example

Gradient Descent

Iterative optimization algorithm: iteratively adjust the parameters of a model

Step 1: Take random values for the parameters

Step 2: Compute the gradients of the function wrt the parametres

Step 3: Calculate the step size: Step Size = negative gradient (Slope) x learning rate

Step 5: Calculate the New Parameters = Old parameters – Step Size

May take very long when millions of data points. Example use 23000 genes to predict if
someone has a disease: 23000 derivatives to compute X 1M samples:
23 B terms at each step * 1000

Akash Dhasade, Anne-Marie Kermarrec - CS 460 819/05/2025

Gradient Descent

Akash Dhasade, Anne-Marie Kermarrec - CS 460 919/05/2025

Stochastic Gradient Descent (SGD)

• At each step of gradient descent, instead of processing all training
samples, randomly pick a small subset (mini-batch) of training
samples 𝑥k,𝑦k.

• Compared to gradient descent, SGD may take more steps to converge,
but each step is much faster

19/05/2025 Akash Dhasade, Anne-Marie Kermarrec - CS 460 10

Parameter server
Data Parallelism

Akash Dhasade, Anne-Marie Kermarrec - CS 460 1119/05/2025

Context

• Distributed optimization and inference for ML problems

• Cloud-computing settings
• Machines may be unreliable

• Jobs may be preempted

• Data may be lost

• Varying performance (network and computation)

Akash Dhasade, Anne-Marie Kermarrec - CS 460 1219/05/2025

Design features

General-purpose framework exploiting specific datatypes of ML problems

Parameters stored in a distributed database (KVS) accessible through the network

Akash Dhasade, Anne-Marie Kermarrec - CS 460 1319/05/2025

1. Efficient communication: asynchronous communication model

2. Elastic scalability: new nodes can be added without restarting
the running framework (use of a DHT)

3. Fault-tolerance and durability: optimized data replication
architecture for fast node failure recovery

4. Ease of use: globally shared parameters represented as linear
algebra vectors or matrices rather than individual key-value pairs

Features

Efficient
Communication

Elastic Scalability

Fault Tolerance

Ease of Use

Architecture

• Server nodes
• maintain a partition of the globally shared parameters

• communicate with each other to replicate or migrate parameters

• perform bookeeping and global aggregation steps

• Client nodes
• perform the bulk of the computation

• store locally a portion of the training data

• communicate with server nodes to update and retrieve the shared
parameters

Akash Dhasade, Anne-Marie Kermarrec - CS 460 1419/05/2025

Architecture

Akash Dhasade, Anne-Marie Kermarrec - CS 460 15

Training Data

Model

Worker Machines

Server Machines

Push
Pull

Work

Work

Resource
Manager

Server
Manager

Task
Scheduler

19/05/2025

Akash Dhasade, Anne-Marie Kermarrec - CS 460 1619/05/2025

• Workers get the Assigned training
data

• Workers Pull the Working set of
Model

• Iterate until Stop:
• Workers Compute Gradients
• Workers Push Gradients
• Servers Aggregate into current

model
• Workers Pull updated model

Shared parameters: Key-Value vectors

• Model Parameters are represented as Key – Value pairs

• Use of vector semantics to send large amount of data in bulk: Batch several key-
value pairs required to compute a vector/matrix instead of sending them one by
one

• Exploit vector/matrix structure for linear algebra operation

19/05/2025 Akash Dhasade, Anne-Marie Kermarrec - CS 460 17

Range Push and Pull

• Data communication between workers and servers: PUSH and PULL operations.

• PS minimizes network traffic by using RANGE based PUSH and PULL.

• Example: Let w denote parameters of some model

• w.push(Range, dest)

• w.pull(Range, dest)

• These methods will send/receive all existing entries of w with keys in Range

• Non blocking operations

• The caller inserts its requests in a queue and resume computation

19/05/2025 Akash Dhasade, Anne-Marie Kermarrec - CS 460 18

Synchronous Execution

Machine 1

Machine 2

Machine 3

Iteration

Iteration

Iteration

Barrier

Compute Communicate

Iteration

Iteration

Iteration

Compute

Waste

Waste

Barrier

Waste

1919/05/2025 Akash Dhasade, Anne-Marie Kermarrec - CS 460

This is conceptual

Asynchronous Execution

Machine 1

Machine 2

Machine 3

Iteration

Iteration

Iteration

Iteration

Iteration

Iteration

Enable more frequent coordination on parameter values
2019/05/2025 Akash Dhasade, Anne-Marie Kermarrec - CS 460

Flexible Consistency model

• Asynchronous communication may lead to inconsistencies

• PS provides flexible data consistencies models for applications to
select
• Eventual : the PS never stalls regardless of resource availability

• Bounded Delay

• Sequential: 0-bounded-delay, fully synchronous model

Akash Dhasade, Anne-Marie Kermarrec - CS 460 2119/05/2025

Stale synchronous parallel (SSP):

• Stale synchronous parallel (SSP):

• Global clock time t

• Parameters workers “get” can be out of date

• but can’t be older than t-τ

• τ controls “staleness”
• ∞ : fully asynchronouS

• 1: synchronous

Akash Dhasade, Anne-Marie Kermarrec - CS 460 2219/05/2025

Results from [Li et al., 2014]

19/05/2025 Akash Dhasade, Anne-Marie Kermarrec - CS 460 23

Consistent Hashing & Replication

• Use of DHT range partitioning

• Servers hashed in the ring

• Virtual servers for load balancing

• Server nodes store a replica of (Key, value)
pairs on k nodes counter clockwise to it.

19/05/2025 Akash Dhasade, Anne-Marie Kermarrec - CS 460 24

Summary

Efficient Communication:
• Batching (key,value) pairs in Linear Algebra objects

• Caching keys at worker and server nodes for local access

Flexible Consistency Models:
• Can choose between Sequential, Eventual, and Bounded delay consistency models

• Allows for tradeoffs between System Performance and Algorithmic Convergence

Fault Tolerance and Durability:
• Replication of data in Servers

• Failed workers can restart at the point of failure by using vector clocks

Ease of Use:
• Linear Algebra objects allow for intuitive implementation of tasks

19/05/2025 Akash Dhasade, Anne-Marie Kermarrec - CS 460 25

Classical Parameter Server

Akash Dhasade, Anne-Marie Kermarrec - CS 460 26

Bandwidth for Machine A=(N-1)*P where N is the number of machines and P is the total number of
parameters. The bandwidth for machine A increases as we add more machines or have more parameters.

19/05/2025

All Reduce

Akash Dhasade, Anne-Marie Kermarrec - CS 460 27

This results in a bandwidth of (N-1)*P/N for all machines, which is smaller than the one in
parameter server (N-1)*P.

19/05/2025

HPC All reduce
Images from Andrew Gibiansky

19/05/2025 Akash Dhasade, Anne-Marie Kermarrec - CS 460 28

Scatter Reduce Phase

19/05/2025 Akash Dhasade, Anne-Marie Kermarrec - CS 460 29

Partitioning of an array in N chunks

19/05/2025 Akash Dhasade, Anne-Marie Kermarrec - CS 460 30

Data transfers in the first iteration of scatter-reduce

19/05/2025 Akash Dhasade, Anne-Marie Kermarrec - CS 460 31

Intermediate sums after the first iteration of
scatter-reduce is complete

19/05/2025 Akash Dhasade, Anne-Marie Kermarrec - CS 460 32

Scatter-reduce data transfers (iteration 2)

19/05/2025 Akash Dhasade, Anne-Marie Kermarrec - CS 460 33

Scatter-reduce data transfers (iteration 3)

19/05/2025 34

Scatter-reduce data transfers
(iteration 4)

19/05/2025 35

Final state after all scatter-reduce transfers

19/05/2025 Akash Dhasade, Anne-Marie Kermarrec - CS 460 36

Allgather phase

19/05/2025 Akash Dhasade, Anne-Marie Kermarrec - CS 460 37

19/05/2025 Akash Dhasade, Anne-Marie Kermarrec - CS 460 38

19/05/2025 Akash Dhasade, Anne-Marie Kermarrec - CS 460 39

19/05/2025 Akash Dhasade, Anne-Marie Kermarrec - CS 460 40

19/05/2025 Akash Dhasade, Anne-Marie Kermarrec - CS 460 41

19/05/2025 Akash Dhasade, Anne-Marie Kermarrec - CS 460 42

Data Transfers

• Each of the N GPUs send and receive:
• N-1 times for the scatter-reduce

• N-1 times for the allgather

• Each time, the GPUs will send P / N values, where P is the total number of
values in array being summed across the different GPUs.

• Data Transferred=2(N−1)P/N

• which, crucially, is independent of the number of GPUs.

19/05/2025 Akash Dhasade, Anne-Marie Kermarrec - CS 460 43

Ring AllReduce

Akash Dhasade, Anne-Marie Kermarrec - CS 460 44

Ring AllReduce: Scatter

19/05/2025

Ring AllReduce: Scatter

Akash Dhasade, Anne-Marie Kermarrec - CS 460 4519/05/2025

Ring AllReduce: Gather

Akash Dhasade, Anne-Marie Kermarrec - CS 460 4619/05/2025

Ring AllReduce

• At each round, we have a constant bandwidth of P that does not
depend on the total number of machines N , thus more scalable.

• The limiting factor in Ring AllReduce is the number of rounds of
communication, which equals to N-1. As there are more machines, it
may take longer for each cycle.

Akash Dhasade, Anne-Marie Kermarrec - CS 460 4719/05/2025

What if one cares about privacy?

19/05/2025 Akash Dhasade, Anne-Marie Kermarrec - CS 460 48

Everybody cares

• In 2016, Uber paid $148 million to settle the investigation on a data breach
that exposed the personal information of over half a million drivers.

• In 2020, Google was fined $57 million for a GDPR violation

• Healthcare industry

• FinTech

• Autonomous cars

• Fraudulent behaviour in insurance

• IoT

• End users

19/05/2025 Akash Dhasade, Anne-Marie Kermarrec - CS 460 49

Privacy: A rising concern

• Data born at the edge

• Private data: all the photos a user takes and everything they type on
their mobile keyboard, including passwords, URLs, messages, etc.

• Data owned and processed by GAFAMs

• Users are more and more reluctant to share their data.

Akash Dhasade, Anne-Marie Kermarrec - CS 460 5019/05/2025

A shift towards distributed/decentralized
learning

Surge in data
volumes

Computational
complexity of training

Rising privacy
concerns

Federated Learning
Decentralized

Learning

Basic Principle: Let the data stay where it is, learn by exchanging gradients/models

19/05/2025 Akash Dhasade, Anne-Marie Kermarrec - CS 460 51

References

• Li et al. Scaling Distributed Machine Learning with the Parameter server. OSDI 2014

• Narayanan et al. PipeDream: generalized pipeline parallelism for DNN training. SOSP 2019

• Li et al. Parameter Server for distributed Machine Learning. Big Learning NIPS workshop, 2013

• McMahan, H. Brendan, Eider Moore, Daniel Ramage, and Seth Hampson. Communication-efficient learning of deep
networks from decentralized data. AISTATS, 2017.

• Bonawitz et al. Towards Federated Learning at Scale: System Design. SysML 2019

• Karimireddy et al. SCAFFOLD: Stochastic Controlled Averaging for Federated Learning . ICML 2020

• Li et al. Federated Optimization in Heterogeneous networks. MLSys 2020

• Jianyu Wang, Qinghua Liu, Hao Liang, Gauri Joshi, and H. Vincent Poor. Tacking the objective inconsistency in
heterogeneous federated optimization. In Advances in Neural Information Processing Systems, volume 33, pages 7611-
7623, 2020.

Some slides courtesy of Aurick Qiao, Joseph Gonzalez, Wei Dai, and Jinliang Wei , Akash Dhasade
Some slides on Federated learning inspired/borrowed from Min Du
Some pictures from Ju Yang

Akash Dhasade, Anne-Marie Kermarrec - CS 460 5219/05/2025

	Slide 1: Distributed Learning
	Slide 2: Where are we?
	Slide 3: Machine Learning
	Slide 4: Challenges
	Slide 5: Distributed machine Learning
	Slide 6: Model versus Data Parallelism
	Slide 7: Model training
	Slide 8: Gradient Descent
	Slide 9: Gradient Descent
	Slide 10: Stochastic Gradient Descent (SGD)
	Slide 11: Parameter server
	Slide 12: Context
	Slide 13: Design features
	Slide 14: Architecture
	Slide 15: Architecture
	Slide 16
	Slide 17: Shared parameters: Key-Value vectors
	Slide 18: Range Push and Pull
	Slide 19: Synchronous Execution
	Slide 20: Asynchronous Execution
	Slide 21: Flexible Consistency model
	Slide 22: Stale synchronous parallel (SSP):
	Slide 23
	Slide 24: Consistent Hashing & Replication
	Slide 25: Summary
	Slide 26: Classical Parameter Server
	Slide 27: All Reduce
	Slide 28: HPC All reduce
	Slide 29: Scatter Reduce Phase
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37: Allgather phase
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43: Data Transfers
	Slide 44: Ring AllReduce
	Slide 45: Ring AllReduce: Scatter
	Slide 46: Ring AllReduce: Gather
	Slide 47: Ring AllReduce
	Slide 48: What if one cares about privacy?
	Slide 49: Everybody cares
	Slide 50: Privacy: A rising concern
	Slide 51: A shift towards distributed/decentralized learning
	Slide 52: References

