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Scheduling

* Multiple “tasks” to schedule
* The processes on a single-core OS
* The tasks of a Hadoop job
* The tasks of multiple Hadoop jobs
* The tasks of multiple frameworks

* Limited resources that these tasks require
* Processor(s)
* Memory
* (Less contentious) disk, network

* Scheduling goals
1.Good throughput or response time for tasks (or jobs)
2. High utilization of resources
3.Share resources



EPFL
Single processor scheduling

Processor
Task_| Length | Arrval
1 10 0)

2 5 6
3 3 8

Arrival Times 2> 0 6 8
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EPFL
FIFO Scheduling (First In First Out)

2 5 6
3 3 3

Vv

Time - O 6 8 10 15 18
* Maintain tasks in a queue in order of arrival
 When processor free, dequeue head and schedule it 5
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FIFO/FCFS Performance

* Average completion time may be high

* For our example on previous slides,

* Average completion time of FIFO/FCFS =
(Task 1 + Task 2 + Task 3)/3

(10+15+18)/3

43/3

14.33
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STF Scheduling (Shortest Task First)

Vv

Time 2 O 3 8 18
* Maintain all tasks in a queue, in increasing order of running time
 When processor free, dequeue head and‘schedule 7
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STF is Optimal

* Average completion of STF is the shortest among all scheduling
approaches

* Average completion time of STF =
(Task 1 + Task 2 + Task 3)/3
= (18+8+3)/3
= 29/3
= 9.66
(versus 14.33 for FIFO/FCFS)

* In general, STF is a special case of priority scheduling
* |Instead of using time as priority, scheduler could use user-provided priority
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Round-Robin Scheduling

Task_| Length | Al
1 10 0

2 5 6
3 3 8
Time =2 O 6 8 15 (Task 3 done)

 Use a quantum (say 1 time unit) to run portion of task at queue head
* Pre-empts processes by saving their state, and resuming later
* After pre-empting, add to end of queue - 9
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Round-Robin vs. STF/FIFO

* Round-Robin preferable for

* Interactive applications
e User needs quick responses from system

* FIFO/STF preferable for Batch applications
* User submits jobs, goes away, comes back to get result
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Summary

* Single processor scheduling algorithms
* FIFO/FCFS
e Shortest task first (optimal)
* Priority
* Round-robin

* What about cloud scheduling?

CS-460
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Goals of Cloud Computing Scheduling

* Running multiple frameworks on a single cluster.
* Maximize utilization and share data between frameworks.

* TWo main resource management systems:

* Yarn: cluster management system designed for Hadoop workloads

* Mesos: manage a variety of different workloads, including
Hadoop, Spark, and containerized applications
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Schedule frameworks: Global scheduler

* Job requirements
* Response time
* Throughput

] . Organization policies ‘

* Availability Resource availability mmmp

* Job execution plan Job requirements M-
Job execution plan ‘

TaSk DAG Estimates -

* Inputs/outputs

* Estimates
e Task duration
* Input sizes
* Transfer sizes

CS-460
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Global scheduler

Advantages
* Can achieve optimal schedule

Disadvantages
 Complexity: hard to scale and ensure resilience
* Hard to anticipate future frameworks requirements.
* Need to refactor existing frameworks.



Vlesos

“A Platform for Fine--Grained Resource

Sharing in the Data Center “ Benjamin Hindman, Andy Konwinski, Matei Zaharia,
Ali Ghodsi, Anthony Joseph, Randy Katz, Scott Shenker, lon Stoica
University of California, Berkeley

Usenix 2011
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Mesos

Coexistence of multiple applications
 Ex: FB->Business intelligence, spam detection, ad optimization
*  Production job, machine learning ranging from multi-hour computation to 1 mn
ad-hoc query
Platform for sharing resources of commodity clusters between multiple diverse
frameworks

Mesos

CS-460 16
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Mesos model

* A framework (e.g., Hadoop, Spark)

manages and runs one or more
jobs.

* A job consists of one or more
tasks.

* A task (e.g., map, reduce) consists
of one or more processes running

on same machine.

* Short duration of tasks: exploit
data locality

CDF

data warehouse

CS-460
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Challenges

 Various scheduling needs of frameworks

* Programming model, scheduling needs, task dependencies, data placement,
etc.

* Fault-tolerant & high availability
* Avoids the complexity of a central scheduler



33%
17%
0%

100%

33%
50%

17%
0%

0%

Shared cluster

33%
17% |
o R A

“A Platform for Fine--Grained Resource Sharing in the Data Center “ Benjamin Hindman, Andy Konwinski, Matei Zaharia,
Ali Ghodsi, Anthony Joseph, Randy Katz, Scott Shenker, lon Stoica. Usenix 2011
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Ressource offers

* Delegates control over scheduling to the frameworks

e Offer available resources to frameworks, let them pick which resources to
use and which tasks to launch

* Keeps Mesos simple, lets it support future frameworks
High utilization of resources

Support diverse frameworks (current & future)

Scalability to 10,000’s of nodes

Reliability in face of failures

Resulting design: Small microkernel-like core that pushes scheduling logic to
frameworks



=PrL
Distributed scheduler

Organization
policies

Task

Resource schedule

availability

Framework
schedule

CS-460
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Distributed scheduler

* Master sends resource offers to frameworks
* Frameworks select which offers to accept and which tasks to run

* Unit of allocation: resource offer

e Vector of available resources on a node
* For example, nodel: (1CPU; 1GB), node2: (4CPU; 16GB)
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Distributed scheduler

Advantages

e Simple: easier to scale and make resilient
* Easy to port existing frameworks, support new ones

Disadvantages

* May not always lead to optimal
* |In practice meet goals such as data locality almost perfectly
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Mesos architecture

Pluggable
scheduler picks
framework to send
an offer to.

Slaves continuously
send status updates
about resources to the
Master

Framework 1

Framework 2

Job 1

Job 2 Job 1 Job 2

FW Scheduler

FW Scheduler

<s1, 4cpu, 4gb, .. >( 2

<task1, s1, 2cpu, 1gb, ... >
<task2, s1, 1cpu, 2gb, ... >

——%

Allocation Mesos
module master

<s1, 4cpu, 4gb, ... > ( 1

<

<fw1, task1, Z2cpu, 1gb, ... >
<fw1, task2, 1cpu, 2gb, ... >

| Slave 2

Executor

Task Task
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Mesos vs Static Partitioning

 Compared performance with statically partitioned
cluster where each framework gets 25% of nodes

Framework Speedup on Mesos

Facebook Hadoop Mix 1.14 X
Large Hadoop Mix 2.10 X
Spark 1.26 X
Torque [ MPI 0.96 X

From Arka Bhattacharya CS-460

25



EPFL

Data Locality with Resource Offers

e Ran 16 instances of Hadoop on a shared HDFS cluster

» Used delay scheduling in Hadoop to get locality (wait a
short time to acquire data-local nodes)

600
500
400
300
200
100

0

From Arka Bhattacharya

Job Duration (s)

1 I
1.7 X
1T .- v
Static Mesos

Partitioning

CS-460
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From Arka Bhattacharya

Scalability

* Mesos only performs inter-framework scheduling (e.g.
fair sharing), which is easier than intra-framework

scheduling

Result:

Scaled to 50,000
emulated slaves,
200 frameworks,
100K tasks

[

o
®©

o
o)

o
I

o
N

Task Start Overhead (s)
@)

-10000 10000 30000

Number of Slaves

50000
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Who is using Mesos

* Apple uses it to power the back end of SIRI

* Netflix uses it for batch and stream processing, anomaly detection,
machine learning

e Twitter uses it for analytics and ads

Deployments

A
T

-
OpenTable

CONVIVA

Xogito

CS-460



Resource allocation in Mesos

How to allocate resources of different types?
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Single Resource: Fair Sharing

n users want to share a resource, e.g., CPU.
* Solution: allocate each 1/n of the shared resource.

Generalized by max-min fairness.
* Handles if a user wants less than its fair share.
* E.g., user A wants no more than 20%.

Generalized by weighted max-min fairness

* Give weights to users according to importance.
* E.g., user A gets weight 1, user B weight 2.

CS-460
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Max-min fairness: example

1 resource: CPU

Total resources: 20 CPU
User A has x tasks and wants (1CPU) per task

User B has y tasks and wants (2CPU) per task

max(x; y) (maximize allocation)
subject to

x + 2y = 20 (CPU constraint)
X =2y
So x=10,y=5
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Properties of Max-Min Fairness

Share guarantee

* Each user can get at least 1/n of the resource.
e But will get less if her demand is less.

Strategy proof

e Users are not better off by asking for more than they need.
e Users have no reason to lie.

Max-Min fairness is the only reasonable mechanism with these two
properties.

Widely used: OS, networking, datacenters, can be used in Mesos



When is Max-Min Fairness NOT Enough?

Need to schedule multiple, heterogeneous resources, e.g.,

CPU, memory, etc.
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Problem

 Single resource example
* 1 resource: CPU
e User A wants 1CPU per task
* User B wants 2CPU per task

* Multi-resource example
e 2 resources: CPUs and mem
* User A wants 1CPU; 2GB per task
* User B wants 2CPU; 4GB per task

CS-460
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A Natural Policy (1/2)

Fairness: give weights to resources (e.g., 1 CPU =1 GB) and equalize total value given to each user.

* Total resources: 28 CPU and 56 GB RAM (e.g., 1 CPU =2 GB = 19)
* User A has x tasks and wants 1CPU; 2GB per task
e User B hasy tasks and wants 1CPU; 4GB per task

* Asset fairness yields
max(x; y)
X +y <= 28 (CPU constraints)
2x + 4y <= 56 (Memory constraint)
2x = 3y (every user spends the same 1 CPU=2GB)

User A: x =12: (43%CPU; 43%GB (86%) )
User B:y = 8: (28%CPU; 57%GB (85%))

CS-460
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A Natural Policy (2/2)

* Problem: violates share guarantee.
« UserA: x=12: (43%CPU; 43%GB (86%) )
. User B:y = 8: (28%CPU:; 57%GB (85%))

e User A gets less than 50% of both CPU and
RAM.

* Better off in a separate cluster with half the
resources

Challenge: Can we find a fair sharing policy that provides
Share guarantee & Strategy-proofness
Can we generalize max-min fairness to multiple resources?

CS-460
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Dominant-Resource Fair Scheduling

CS-460
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Dominant Resource Fairness (DRF)

* Proposed by researchers from U. California Berkeley

* Proposes notion of fairness across jobs with multi-resource
requirements

* They showed that DRF is

* Fair for multi-tenant systems
» Strategy-proof: tenant cannot benefit by lying
* Envy-free: tenant cannot envy another tenant’s allocations
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Where is DRF Useful?

* DRFis
e Usable in scheduling VMs in a cluster
e Usable in scheduling Hadoop in a cluster

* DRF used in Mesos

* DRF-like strategies also used some cloud computing
company’s distributed OS’s
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Dominant Resource Fairness (DRF) (1/2)

* Dominant resource of a user: the resource that user has the biggest
share of.
* Total resources: 8CPU; 5GB

e User A allocation: 2CPU; 1GB
e 2/8=25%CPUand 1/5=20% RAM
* Dominant resource of User A is CPU (25% > 20%)

* Dominant share of a user: the fraction of the dominant resource she
is allocated.

e User A dominant share is 25%.



EPFL
Dominant Resource Fairness (DRF) (2/2)

* Apply max-min fairness to dominant shares: give every user an equal share of her dominant resource.
e Equalize the dominant share of the users.

* Total resources: (9CPU; 18GB)

* User A wants (1CPU; 4GB) for each task; Dominant resource: RAM ( 1/9 < 4/18 ) 22% RAM

* User B wants (3CPU; 1GB) for each task; Dominant resource: CPU ( 3/9>1/18) 33% CPU

* xisthe number of tasks allocated to User A, y to User B

max(X; y) subject to 100% |
X + 3y <= 9 (CPU constraints)
4x +y <=18 (Memory constraints) . ?
4x/18 = 3y/9 (equalize dominant shares)

User A: x = 3: (33%CPU; 66%GB) :
User B: y = 2: (66%CPU; 16%GB) W . 6 CPUs

CPU mem
(9 total) (18 total)

O User A
B UserB

{ 66%

CS-460 41
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Algorithm

Algorithm 1 DRF pseudo-code

R={ri,- - ,"m) > total resource capacities
C = (c1, ++,cm) > consumed resources, initially O
s; (1 =1..n) D> user’s dominant shares, initially O
Ui = (u;1, - ,uim) (@ =1..n) >resources given to

user 1, initially 0

pick user ¢ with lowest dominant share s;
D; <+ demand of user 7’s next task
if C + D; < R then

C=C+D;, > update consumed vector
U, =U; + D; > update ¢’s allocation vector
si = maxjLy{u;;/T;}

else
return > the cluster 1s full

end if

CS-460
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P
I—PI L User A wants (1CPU; 4GB)

User B wants (3CPU; 1GB) Total resources: (9CPU; 18GB)

Step 0: No tasks assigned. Step 4: B gets 2nd task

Dominant shares: A=0%, B=0% *A: 2 CPU, 8 GB - 44.4%

Step 1: Assign 1 task to User A (lowest dominant share) *B: 6 CPU, 2 GB - 6/9 = 66.6%

*A: 1 CPU, 4 GB - dominant share =4/18 = 22.2% *Next: A

*B:0 2> 0% Step 5: A gets 3rd task

*Next: assign to User B *A: 3 CPU, 12 GB > 12/18 = 66.6%

Step 2: Assign 1 task to User B *B: 6 CPU, 2 GB - 66.6%

*A: 1 CPU,4 GB = 22.2% *Equal! Can’t go further without exceeding total resources.

*B:3CPU,1GB - 3/9=33.3%
*Next: A (smaller dominant share)
Step 3: A gets 2nd task

*A: 2 CPU, 8 GB - 8/18 = 44.4%
*B: 3 CPU, 1 GB - 33.3%

*Next: B



=PrFL
Example

* At the end of the schedule
e User A gets (3CPU,12GB)
e User B gets (6CPU, 2GB)

* Corresponds to the solution
« UserA: x =3: (33%CPU; 66%GB)
 UserB:y=2:(66%CPU; 16%GB)

CS-460
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DRF Fairness

* For a given job, the % of its dominant resource type that it
gets cluster-wide, is the same for all jobs
e Job 1’s % of RAM =Job 2’s % of CPU

e Can be written as linear equations, and solved
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Other DRF Details

* DRF generalizes to multiple jobs

* DRF also generalizes to more than 2 resource types
 CPU, RAM, Network, Disk, etc.

* DRF ensures that each job gets a fair share of that type of
resource which the job desires the most
* Hence fairness
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Summary: Scheduling

* Scheduling very important problem in cloud computing
* Limited resources, lots of jobs requiring access to these resources

* Single-processor scheduling
* FIFO/FCFS, STF, Priority, Round-Robin

* Centralized Scheduler (Hadoop)
* Two-level Scheduler (Mesos, Yarn)
* Distributed Scheduler (Sparrow)
e Hybrid Scheduling (Omega, Hawk)
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Centralized Schedulers

Job 2 | Job 1
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Centralized Schedulers

Good placement

High scheduling latency
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Distributed Scheduling
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distributed
scheduler 1

distributed
scheduler 2

distributed
scheduler N
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Distributed Scheduling

@: distributed
scheduler 1

distributed
scheduler 2

T

Good Scheduling latency

Sub-optimal placement
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Hybrid Scheduling

1)

Job M

Job 2

l Job N
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Hawk: Hybrid Scheduling

* Long jobs -> centralized
e Short jobs -> distributed

CS-460
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Hawk: Hybrid Scheduling

distributed

Job 2 —— i
a2l - scheduler1

cluster
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Hawk: Rationale

Typical production workloads

—_—

few

many

CS-460
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Percentage of long jobs

100

80
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40

20

c B m - - N
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Percentage of task-seconds for long jobs

100
80
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40
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0
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Source: Design Insights for MapReduce from Diverse Production Workloads, Chen et al 2012
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Percentage of long jobs Percentage of task-seconds for long jobs
100 100
80
Long jobs: minority but take most of the 60
resources

40
20
— 0

\& 0 59 O A o

& & < & x° .\'3°°

© & Y & &
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Source: Design Insights for MapReduce from Diverse Production Workloads, Chen et al 2012
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Bulk of
resources
- good

placement

Few jobs =
reasonable
scheduling

Few resources

Late|.1§y -> can trade
sensitive : : not-so-good
— Fast. placemen
scheduling
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Bulk of
resources
- good

placement

Few jobs =
reasonable
scheduling

Long jobs: good placement
Short jobs: good scheduling latency

Few resources
-> can trade
not-so-good

placemen

Latency
sensitive

- Fast
scheduling

{\g Short jobN —— distributed N
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Hawk

e Sparrow: random placement

[Sparrow: Distributed, Low Latency Scheduling. Kay Ousterhout, Patrick Wendell, Matei Zaharia, lon
Stoica, University of California, Berkeley, SOSP 2013]

 Randomized work Stealing
* Cluster partitioning
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Sparrow

~ distributed T
scheduler K’@

Random
placement:

Low likelihood on
finding a free node
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Hawk: work stealing

Free node!!

CS-460
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Hawk: work stealing

2. Random node:
send short jobs
reservation in queue

1. Free node:
contact random
node for probes!

CS-460
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Hawk: work stealing

2. Random node:
send short jobs
reservatioas

Under high load -> high probablity |

of contacting high-loaded nodes
Steal from them

1. Free node:
contact random
node for probes!

CS-460
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Hawk: cluster partitioning

No coordination,
challenge: no free
nodes for mice!

“; distributed
- scheduler

Reserved nodes:
small cluster
partition

68
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Hawk: cluster partitioning

"““Ishort jobs schedule anywhere.

I
!
!
!
!
L

Long jobs only in non-reserved nodes.
TH Reserved nodes:
\® ‘/@‘ = | small cluster

partition

No coordination,
challenge: no free
nodes for mice!

\
\
\

‘\ distributed
\ scheduler
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