
Scheduling
Anne-Marie Kermarrec

CS-460 1

Where are we?

CS-460 2

Consistency protocols
CAP Theorem

Week 9

Gossip Protocols
Week 7

Distributed/decentralized
systems

Week 8-12

Data science software stack

Data Processing

Ressource Management & Optimization

Data Storage

Distributed
File Systems

(GFS)

NoSQL DB
Dynamo Big Table

Cassandra
Week 9

Distributed
Messaging

systems
Kafka – Week 11

Structured
Data

Spark SQL

Graph Data
Pregel, GraphLab, X-

Streem, Chaos

Machine
Learning
Week 12

Batch Data
Map Reduce,
Dryad, Spark

Streaming Data
Storm, Naiad, Flink, Spark

Streaming Google Data Flow

Scheduling - Week 10Query optimization

Storage
Hierarchies
& Layouts

Transaction
Management

Query
Execution

Scheduling

• Multiple “tasks” to schedule
• The processes on a single-core OS
• The tasks of a Hadoop job
• The tasks of multiple Hadoop jobs
• The tasks of multiple frameworks

• Limited resources that these tasks require
• Processor(s)
• Memory
• (Less contentious) disk, network

• Scheduling goals
1. Good throughput or response time for tasks (or jobs)
2. High utilization of resources
3. Share resources

CS-460 3

Single processor scheduling

CS-460 4

Task 1

10

Task 2
5

Task 3
3

Arrival Times → 0 6 8

Processor

Task Length Arrival

1 10 0

2 5 6

3 3 8

Which tasks run when?

CS-460 5

Task 1 Task 2 Task 3

Time → 0 6 8 10 15 18

Processor Task Length Arrival

1 10 0

2 5 6

3 3 8

• Maintain tasks in a queue in order of arrival
• When processor free, dequeue head and schedule it

FIFO Scheduling (First In First Out)

FIFO/FCFS Performance

• Average completion time may be high

• For our example on previous slides,
• Average completion time of FIFO/FCFS =

 (Task 1 + Task 2 + Task 3)/3

= (10+15+18)/3

= 43/3

= 14.33

CS-460 6

STF Scheduling (Shortest Task First)

Task 1Task 2Task 3

Time → 0 3 8 18

Processor Task Length Arrival

1 10 0

2 5 0

3 3 0

• Maintain all tasks in a queue, in increasing order of running time
• When processor free, dequeue head and scheduleCS-460 7

STF is Optimal

• Average completion of STF is the shortest among all scheduling
approaches

• Average completion time of STF =
 (Task 1 + Task 2 + Task 3)/3

= (18+8+3)/3

= 29/3

= 9.66

(versus 14.33 for FIFO/FCFS)

• In general, STF is a special case of priority scheduling
• Instead of using time as priority, scheduler could use user-provided priority

CS-460 8

Round-Robin Scheduling

Time → 0 6 8

Processor

Task Length Arrival

1 10 0

2 5 6

3 3 8

• Use a quantum (say 1 time unit) to run portion of task at queue head
• Pre-empts processes by saving their state, and resuming later
• After pre-empting, add to end of queue

Task 1

15 (Task 3 done)

…

CS-460 9

Round-Robin vs. STF/FIFO

• Round-Robin preferable for
• Interactive applications

• User needs quick responses from system

• FIFO/STF preferable for Batch applications
• User submits jobs, goes away, comes back to get result

CS-460 10

Summary

• Single processor scheduling algorithms
• FIFO/FCFS

• Shortest task first (optimal)

• Priority

• Round-robin

• What about cloud scheduling?

CS-460 11

Goals of Cloud Computing Scheduling

• Running multiple frameworks on a single cluster.

• Maximize utilization and share data between frameworks.

• Two main resource management systems:

• Yarn: cluster management system designed for Hadoop workloads

• Mesos: manage a variety of different workloads, including
Hadoop, Spark, and containerized applications

CS-460 12

Schedule frameworks: Global scheduler

• Job requirements
• Response time

• Throughput

• Availability

• Job execution plan
• Task DAG

• Inputs/outputs

• Estimates
• Task duration

• Input sizes

• Transfer sizes
CS-460 13

Global scheduler

Advantages
• Can achieve optimal schedule

Disadvantages
• Complexity: hard to scale and ensure resilience

• Hard to anticipate future frameworks requirements.

• Need to refactor existing frameworks.

CS-460 14

Mesos
“A Platform for Fine-‐Grained Resource
Sharing in the Data Center “ Benjamin Hindman, Andy Konwinski, Matei Zaharia,
Ali Ghodsi, Anthony Joseph, Randy Katz, Scott Shenker, Ion Stoica
University of California, Berkeley

Usenix 2011

CS-460 15

Mesos

CS-460 16

Coexistence of multiple applications
• Ex: FB->Business intelligence, spam detection, ad optimization
• Production job, machine learning ranging from multi-hour computation to 1 mn

ad-hoc query
Platform for sharing resources of commodity clusters between multiple diverse
frameworks

Mesos model

• A framework (e.g., Hadoop, Spark)
manages and runs one or more
jobs.

• A job consists of one or more
tasks.

• A task (e.g., map, reduce) consists
of one or more processes running
on same machine.

• Short duration of tasks: exploit
data locality

CS-460 17

CDF of job and task durations in Facebook’s Hadoop
data warehouse

Challenges

• Various scheduling needs of frameworks
• Programming model, scheduling needs, task dependencies, data placement,

etc.

• Fault-tolerant & high availability

• Avoids the complexity of a central scheduler

CS-460 18

CS-460 19

“A Platform for Fine-‐Grained Resource Sharing in the Data Center “ Benjamin Hindman, Andy Konwinski, Matei Zaharia,
Ali Ghodsi, Anthony Joseph, Randy Katz, Scott Shenker, Ion Stoica. Usenix 2011

Ressource offers

• Delegates control over scheduling to the frameworks
• Offer available resources to frameworks, let them pick which resources to

use and which tasks to launch
• Keeps Mesos simple, lets it support future frameworks

• High utilization of resources
• Support diverse frameworks (current & future)
• Scalability to 10,000’s of nodes
• Reliability in face of failures

Resulting design: Small microkernel-like core that pushes scheduling logic to
frameworks

CS-460 20

Distributed scheduler

CS-460 21

Distributed scheduler

• Master sends resource offers to frameworks

• Frameworks select which offers to accept and which tasks to run

• Unit of allocation: resource offer
• Vector of available resources on a node

• For example, node1: (1CPU; 1GB), node2: (4CPU; 16GB)

CS-460 22

Distributed scheduler

Advantages
• Simple: easier to scale and make resilient

• Easy to port existing frameworks, support new ones

Disadvantages
• May not always lead to optimal

• In practice meet goals such as data locality almost perfectly

CS-460 23

Mesos architecture

CS-460 24

Slaves continuously
send status updates
about resources to the
Master

Framework

scheduler selects

resources and

provides tasks.

Pluggable
scheduler picks
framework to send
an offer to.

Framework

executors launch

tasks.

Mesos vs Static Partitioning

• Compared performance with statically partitioned
cluster where each framework gets 25% of nodes

Framework Speedup on Mesos

Facebook Hadoop Mix 1.14×

Large Hadoop Mix 2.10×

Spark 1.26×

Torque / MPI 0.96×

From Arka Bhattacharya CS-460 25

• Ran 16 instances of Hadoop on a shared HDFS cluster

• Used delay scheduling in Hadoop to get locality (wait a
short time to acquire data-local nodes)

Data Locality with Resource Offers

1.7×

From Arka Bhattacharya CS-460 26

Scalability

• Mesos only performs inter-framework scheduling (e.g.
fair sharing), which is easier than intra-framework
scheduling

0

0.2

0.4

0.6

0.8

1

-10000 10000 30000 50000

Ta
sk

 S
ta

rt
 O

ve
rh

ea
d

 (s
)

Number of Slaves

Result:
Scaled to 50,000
emulated slaves,
200 frameworks,
100K tasks

From Arka Bhattacharya CS-460 27

Who is using Mesos

• Apple uses it to power the back end of SIRI

• Netflix uses it for batch and stream processing, anomaly detection,
machine learning

• Twitter uses it for analytics and ads

CS-460 28

Resource allocation in Mesos
How to allocate resources of different types?

CS-460 29

Single Resource: Fair Sharing

n users want to share a resource, e.g., CPU.
• Solution: allocate each 1/n of the shared resource.

Generalized by max-min fairness.
• Handles if a user wants less than its fair share.

• E.g., user A wants no more than 20%.

Generalized by weighted max-min fairness
• Give weights to users according to importance.

• E.g., user A gets weight 1, user B weight 2.

CS-460 30

Max-min fairness: example

• 1 resource: CPU

• Total resources: 20 CPU

• User A has x tasks and wants (1CPU) per task

• User B has y tasks and wants (2CPU) per task

 max(x; y) (maximize allocation)

 subject to

 x + 2y = 20 (CPU constraint)

 x = 2y

 So x = 10, y = 5

CS-460 31

Properties of Max-Min Fairness

Share guarantee
• Each user can get at least 1/n of the resource.

• But will get less if her demand is less.

 Strategy proof
• Users are not better off by asking for more than they need.

• Users have no reason to lie.

Max-Min fairness is the only reasonable mechanism with these two
properties.

Widely used: OS, networking, datacenters, can be used in Mesos

CS-460 32

When is Max-Min Fairness NOT Enough?

Need to schedule multiple, heterogeneous resources, e.g.,

CPU, memory, etc.

CS-460 33

Problem

• Single resource example
• 1 resource: CPU

• User A wants 1CPU per task

• User B wants 2CPU per task

• Multi-resource example
• 2 resources: CPUs and mem

• User A wants 1CPU; 2GB per task

• User B wants 2CPU; 4GB per task

CS-460 34

A Natural Policy (1/2)

Fairness: give weights to resources (e.g., 1 CPU = 1 GB) and equalize total value given to each user.

• Total resources: 28 CPU and 56 GB RAM (e.g., 1 CPU = 2 GB = 1$)

• User A has x tasks and wants 1CPU; 2GB per task

• User B has y tasks and wants 1CPU; 4GB per task

• Asset fairness yields

max(x; y)

x + y <= 28 (CPU constraints)

2x + 4y <= 56 (Memory constraint)

2x = 3y (every user spends the same 1 CPU = 2 GB)

CS-460 35

User A: x = 12: (43%CPU; 43%GB (86%))

User B: y = 8: (28%CPU; 57%GB (85%))

A Natural Policy (2/2)

• Problem: violates share guarantee.
• User A: x = 12: (43%CPU; 43%GB (86%))
• User B: y = 8: (28%CPU; 57%GB (85%))

• User A gets less than 50% of both CPU and
RAM.

• Better off in a separate cluster with half the
resources

CS-460 36

Challenge: Can we find a fair sharing policy that provides
Share guarantee & Strategy-proofness
Can we generalize max-min fairness to multiple resources?

Dominant-Resource Fair Scheduling

CS-460 37

• Proposed by researchers from U. California Berkeley

• Proposes notion of fairness across jobs with multi-resource
requirements

• They showed that DRF is
• Fair for multi-tenant systems

• Strategy-proof: tenant cannot benefit by lying

• Envy-free: tenant cannot envy another tenant’s allocations

Dominant Resource Fairness (DRF)

CS-460 38

• DRF is
• Usable in scheduling VMs in a cluster

• Usable in scheduling Hadoop in a cluster

• DRF used in Mesos

• DRF-like strategies also used some cloud computing
company’s distributed OS’s

Where is DRF Useful?

CS-460 39

Dominant Resource Fairness (DRF) (1/2)

• Dominant resource of a user: the resource that user has the biggest
share of.
• Total resources: 8CPU; 5GB

• User A allocation: 2CPU; 1GB
• 2/8 = 25% CPU and 1/5 = 20% RAM

• Dominant resource of User A is CPU (25% > 20%)

• Dominant share of a user: the fraction of the dominant resource she
is allocated.
• User A dominant share is 25%.

CS-460 40

Dominant Resource Fairness (DRF) (2/2)

• Apply max-min fairness to dominant shares: give every user an equal share of her dominant resource.

• Equalize the dominant share of the users.

• Total resources: (9CPU; 18GB)

• User A wants (1CPU; 4GB) for each task; Dominant resource: RAM (1/9 < 4/18) 22% RAM

• User B wants (3CPU; 1GB) for each task; Dominant resource: CPU (3/9 > 1/18) 33% CPU

• x is the number of tasks allocated to User A, y to User B

CS-460 41

max(x; y) subject to

x + 3y <= 9 (CPU constraints)

4x + y <=18 (Memory constraints)

4x/18 = 3y/9 (equalize dominant shares)

User A: x = 3: (33%CPU; 66%GB)
User B: y = 2: (66%CPU; 16%GB)

User A
User B

Algorithm

CS-460 42

CS-460 43

Step 0: No tasks assigned.
•Dominant shares: A = 0%, B = 0%
Step 1: Assign 1 task to User A (lowest dominant share)
•A: 1 CPU, 4 GB → dominant share = 4/18 = 22.2%
•B: 0 → 0%
•Next: assign to User B
Step 2: Assign 1 task to User B
•A: 1 CPU, 4 GB → 22.2%
•B: 3 CPU, 1 GB → 3/9 = 33.3%
•Next: A (smaller dominant share)
Step 3: A gets 2nd task
•A: 2 CPU, 8 GB → 8/18 = 44.4%
•B: 3 CPU, 1 GB → 33.3%
•Next: B

User A wants (1CPU; 4GB)
User B wants (3CPU; 1GB)

Total resources: (9CPU; 18GB)

Step 4: B gets 2nd task
•A: 2 CPU, 8 GB → 44.4%
•B: 6 CPU, 2 GB → 6/9 = 66.6%
•Next: A
Step 5: A gets 3rd task
•A: 3 CPU, 12 GB → 12/18 = 66.6%
•B: 6 CPU, 2 GB → 66.6%
•Equal! Can’t go further without exceeding total resources.

• At the end of the schedule
• User A gets (3CPU,12GB)

• User B gets (6CPU, 2GB)

• Corresponds to the solution

• User A: x = 3: (33%CPU; 66%GB)

• User B: y = 2: (66%CPU; 16%GB)

Example

CS-460 44

• For a given job, the % of its dominant resource type that it
gets cluster-wide, is the same for all jobs
• Job 1’s % of RAM = Job 2’s % of CPU

• Can be written as linear equations, and solved

DRF Fairness

CS-460 45

• DRF generalizes to multiple jobs

• DRF also generalizes to more than 2 resource types
• CPU, RAM, Network, Disk, etc.

• DRF ensures that each job gets a fair share of that type of
resource which the job desires the most
• Hence fairness

Other DRF Details

CS-460 46

• Scheduling very important problem in cloud computing
• Limited resources, lots of jobs requiring access to these resources

• Single-processor scheduling
• FIFO/FCFS, STF, Priority, Round-Robin

• Centralized Scheduler (Hadoop)

• Two-level Scheduler (Mesos, Yarn)

• Distributed Scheduler (Sparrow)

• Hybrid Scheduling (Omega, Hawk)

Summary: Scheduling

CS-460 47

References

• B. Hindman et al., “Mesos: A Platform for Fine-Grained Resource Sharing in the Data Center",
USENIX 2011

• A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, I. Stoica. “Dominant Resource
Fairness: Fair Allocation of Multiple Resource Types”. NSDI 2011

• V. Vavilapalli et al., “Apache hadoop yarn: Yet another resource negotiator", ACM Cloud
Computing 2013

• P Delgado, F Dinu, AM Kermarrec, W Zwaenepoel, “Hawk: Hybrid datacenter scheduling”, USENIX
ATC, 2015

CS-460 48

Hawk: Hybrid Datacenter
Scheduling
Usenix, ATC 2015

CS-460 49

Centralized Schedulers

CS-460 50

Centralized Schedulers

CS-460 51

Good placement

High scheduling latency

Distributed Scheduling

CS-460 52

Distributed Scheduling

CS-460 53

Good Scheduling latency

Sub-optimal placement

Hybrid Scheduling

CS-460 54

Hawk: Hybrid Scheduling

• Long jobs -> centralized

• Short jobs -> distributed

CS-460 55

Hawk: Hybrid Scheduling

CS-460 56

Hawk: Rationale

CS-460 57

CS-460 58

CS-460 59

Long jobs: minority but take most of the
resources

CS-460 60

CS-460 61

Long jobs: good placement
Short jobs: good scheduling latency

Hawk

• Sparrow: random placement
[Sparrow: Distributed, Low Latency Scheduling. Kay Ousterhout, Patrick Wendell, Matei Zaharia, Ion
Stoica, University of California, Berkeley, SOSP 2013]

• Randomized work Stealing

• Cluster partitioning

CS-460 62

Sparrow

CS-460 63

Sparrow

CS-460 64

High load + heterogeneity ->
head-of-line blocking

Hawk: work stealing

CS-460 65

Hawk: work stealing

CS-460 66

Hawk: work stealing

CS-460 67

Under high load -> high probablity
of contacting high-loaded nodes

Steal from them

Hawk: cluster partitioning

CS-460 68

Hawk: cluster partitioning

CS-460 69

References

• B. Hindman et al., “Mesos: A Platform for Fine-Grained Resource Sharing in the Data Center",
USENIX 2011

• A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, I. Stoica. “Dominant Resource
Fairness: Fair Allocation of Multiple Resource Types”. NSDI 2011

• V. Vavilapalli et al., “Apache hadoop yarn: Yet another resource negotiator", ACM Cloud
Computing 2013

• P Delgado, F Dinu, AM Kermarrec, W Zwaenepoel, “Hawk: Hybrid datacenter scheduling”, USENIX
ATC, 2015

Thanks to Indranil Gupta and to Amir H. Payberah

CS-460 70

	Slide 1: Scheduling
	Slide 2: Where are we?
	Slide 3: Scheduling
	Slide 4: Single processor scheduling
	Slide 5: FIFO Scheduling (First In First Out)
	Slide 6: FIFO/FCFS Performance
	Slide 7
	Slide 8: STF is Optimal
	Slide 9
	Slide 10: Round-Robin vs. STF/FIFO
	Slide 11: Summary
	Slide 12: Goals of Cloud Computing Scheduling
	Slide 13: Schedule frameworks: Global scheduler
	Slide 14: Global scheduler
	Slide 15: Mesos
	Slide 16: Mesos
	Slide 17: Mesos model
	Slide 18: Challenges
	Slide 19
	Slide 20: Ressource offers
	Slide 21: Distributed scheduler
	Slide 22: Distributed scheduler
	Slide 23: Distributed scheduler
	Slide 24: Mesos architecture
	Slide 25: Mesos vs Static Partitioning
	Slide 26: Data Locality with Resource Offers
	Slide 27: Scalability
	Slide 28: Who is using Mesos
	Slide 29: Resource allocation in Mesos
	Slide 30: Single Resource: Fair Sharing
	Slide 31: Max-min fairness: example
	Slide 32: Properties of Max-Min Fairness
	Slide 33: When is Max-Min Fairness NOT Enough?
	Slide 34: Problem
	Slide 35: A Natural Policy (1/2)
	Slide 36: A Natural Policy (2/2)
	Slide 37
	Slide 38
	Slide 39
	Slide 40: Dominant Resource Fairness (DRF) (1/2)
	Slide 41: Dominant Resource Fairness (DRF) (2/2)
	Slide 42: Algorithm
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48: References
	Slide 49: Hawk: Hybrid Datacenter Scheduling
	Slide 50: Centralized Schedulers
	Slide 51: Centralized Schedulers
	Slide 52: Distributed Scheduling
	Slide 53: Distributed Scheduling
	Slide 54: Hybrid Scheduling
	Slide 55: Hawk: Hybrid Scheduling
	Slide 56: Hawk: Hybrid Scheduling
	Slide 57: Hawk: Rationale
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62: Hawk
	Slide 63: Sparrow
	Slide 64: Sparrow
	Slide 65: Hawk: work stealing
	Slide 66: Hawk: work stealing
	Slide 67: Hawk: work stealing
	Slide 68: Hawk: cluster partitioning
	Slide 69: Hawk: cluster partitioning
	Slide 70: References

