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Scheduling

• Multiple “tasks” to schedule
• The processes on a single-core OS
• The tasks of a Hadoop job
• The tasks of multiple Hadoop jobs
• The tasks of multiple frameworks

• Limited resources that these tasks require
• Processor(s)
• Memory
• (Less contentious) disk, network

• Scheduling goals
1. Good throughput or response time for tasks (or jobs)
2. High utilization of resources
3. Share resources
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Single processor scheduling
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10

Task 2
5

Task 3
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Arrival Times →   0             6      8

Processor

Task Length Arrival

1 10 0

2 5 6

3 3 8

Which tasks run when?
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Task 1 Task 2 Task 3

Time  →     0             6      8                  10                  15           18

Processor Task Length Arrival

1 10 0

2 5 6

3 3 8

• Maintain tasks in a queue in order of arrival
• When processor free, dequeue head and schedule it

FIFO Scheduling (First In First Out)



FIFO/FCFS Performance

• Average completion time may be high

• For our example on previous slides,
• Average completion time of FIFO/FCFS = 

     (Task 1 + Task 2 + Task 3)/3

=    (10+15+18)/3

=    43/3

=    14.33
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STF Scheduling (Shortest Task First)

Task 1Task 2Task 3

Time  →     0             3                       8                                       18

Processor Task Length Arrival

1 10 0

2 5 0

3 3 0

• Maintain all tasks in a queue, in increasing order of running time
• When processor free, dequeue head and scheduleCS-460 7



STF is Optimal

• Average completion of STF is the shortest among all scheduling 
approaches

• Average completion time of STF = 
     (Task 1 + Task 2 + Task 3)/3

=    (18+8+3)/3

=    29/3

=    9.66

(versus 14.33 for FIFO/FCFS)

• In general, STF is a special case of priority scheduling
• Instead of using time as priority, scheduler could use user-provided priority
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Round-Robin Scheduling

Time  →     0                         6           8

Processor

Task Length Arrival

1 10 0

2 5 6

3 3 8

• Use a quantum (say 1 time unit) to run portion of task at queue head
• Pre-empts processes by saving their state, and resuming later
• After pre-empting, add to end of queue

Task 1

15 (Task 3 done)

…
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Round-Robin vs. STF/FIFO

• Round-Robin preferable for 
• Interactive applications

• User needs quick responses from system

• FIFO/STF preferable for Batch applications
• User submits jobs, goes away, comes back to get result
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Summary

• Single processor scheduling algorithms
• FIFO/FCFS

• Shortest task first (optimal)

• Priority

• Round-robin

• What about cloud scheduling?
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Goals of Cloud Computing Scheduling

• Running multiple frameworks on a single cluster.

• Maximize utilization and share data between frameworks.

• Two main resource management systems:

• Yarn: cluster management system designed for Hadoop workloads 

• Mesos: manage a variety of different workloads, including 
Hadoop, Spark, and containerized applications
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Schedule frameworks: Global scheduler

• Job requirements
• Response time

• Throughput

• Availability

• Job execution plan
• Task DAG

• Inputs/outputs

• Estimates
• Task duration

• Input sizes

• Transfer sizes
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Global scheduler

Advantages
• Can achieve optimal schedule

Disadvantages
• Complexity: hard to scale and ensure resilience

• Hard to anticipate future frameworks requirements.

• Need to refactor existing frameworks.
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Mesos
“A Platform for Fine-‐Grained Resource
Sharing in the Data Center “ Benjamin Hindman, Andy Konwinski, Matei Zaharia,
Ali Ghodsi, Anthony Joseph, Randy Katz, Scott Shenker, Ion Stoica
University of California, Berkeley

Usenix 2011
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Mesos
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Coexistence of multiple applications 
• Ex: FB->Business intelligence, spam detection, ad optimization
• Production job, machine learning ranging from multi-hour computation to 1 mn 

ad-hoc query
Platform for sharing  resources of commodity clusters  between multiple diverse 
frameworks



Mesos model

• A framework (e.g., Hadoop, Spark) 
manages and runs one or more 
jobs.

• A job consists of one or more 
tasks.

• A task (e.g., map, reduce) consists 
of one or more processes running 
on same machine.

• Short duration of tasks: exploit 
data locality
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CDF of job and task durations in Facebook’s Hadoop 
data warehouse



Challenges

• Various scheduling needs of frameworks
• Programming model, scheduling needs, task dependencies, data placement, 

etc.

• Fault-tolerant & high availability

• Avoids the complexity of a central scheduler
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“A Platform for Fine-‐Grained Resource Sharing in the Data Center “ Benjamin Hindman, Andy Konwinski, Matei Zaharia,
Ali Ghodsi, Anthony Joseph, Randy Katz, Scott Shenker, Ion Stoica. Usenix 2011



Ressource offers

• Delegates control over scheduling to the frameworks
• Offer available resources to frameworks, let them pick which resources to 

use and which tasks to launch
• Keeps Mesos simple, lets it support future frameworks

• High utilization of resources
• Support diverse frameworks (current & future)
• Scalability to 10,000’s of nodes
• Reliability in face of failures

Resulting design: Small microkernel-like core that pushes scheduling logic to 
frameworks
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Distributed scheduler
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Distributed scheduler

• Master sends resource offers to frameworks

• Frameworks select which offers to accept and which tasks to run

• Unit of allocation: resource offer
• Vector of available resources on a node

• For example, node1: (1CPU; 1GB), node2: (4CPU; 16GB)
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Distributed scheduler

Advantages
• Simple: easier to scale and make resilient

• Easy to port existing frameworks, support new ones

Disadvantages
• May not always lead to optimal

• In practice meet goals such as data locality almost perfectly
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Mesos architecture
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Mesos vs Static Partitioning

• Compared performance with statically partitioned 
cluster where each framework gets 25% of nodes

Framework Speedup on Mesos

Facebook Hadoop Mix 1.14×

Large Hadoop Mix 2.10×

Spark 1.26×

Torque / MPI 0.96×

From Arka Bhattacharya CS-460 25



• Ran 16 instances of Hadoop on a shared HDFS cluster

• Used delay scheduling in Hadoop to get locality (wait a 
short time to acquire data-local nodes)

Data Locality with Resource Offers

1.7×

From Arka Bhattacharya CS-460 26



Scalability

• Mesos only performs inter-framework scheduling (e.g. 
fair sharing), which is easier than intra-framework 
scheduling
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Result: 
Scaled to 50,000 
emulated slaves,
200 frameworks,
100K tasks

From Arka Bhattacharya CS-460 27



Who is using Mesos

• Apple uses it to power the back end of SIRI

• Netflix uses it for batch and stream processing, anomaly detection, 
machine learning

• Twitter uses it for analytics and ads
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Resource allocation in Mesos
How to allocate resources of different types?
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Single Resource: Fair Sharing

n users want to share a resource, e.g., CPU.
• Solution: allocate each 1/n of the shared resource.

Generalized by max-min fairness.
• Handles if a user wants less than its fair share.

• E.g., user A wants no more than 20%.

Generalized by weighted max-min fairness
• Give weights to users according to importance.

• E.g., user A gets weight 1, user B weight 2.
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Max-min fairness: example

• 1 resource: CPU

•  Total resources: 20 CPU

• User A has x tasks and wants (1CPU) per task

• User B has y tasks and wants (2CPU) per task

  max(x; y) (maximize allocation)

  subject to

   x + 2y = 20 (CPU constraint)

   x = 2y

          So  x = 10, y = 5
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Properties of Max-Min Fairness

Share guarantee
• Each user can get at least 1/n of the resource.

• But will get less if her demand is less.

 Strategy proof
• Users are not better off by asking for more than they need.

• Users have no reason to lie.

Max-Min fairness is the only reasonable mechanism with these two 
properties.

Widely used: OS, networking, datacenters, can be used in Mesos
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When is Max-Min Fairness NOT Enough?

Need to schedule multiple, heterogeneous resources, e.g.,

CPU, memory, etc.
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Problem

• Single resource example
• 1 resource: CPU

• User A wants 1CPU per task

• User B wants 2CPU per task

• Multi-resource example
• 2 resources: CPUs and mem

• User A wants 1CPU; 2GB per task

• User B wants 2CPU; 4GB per task
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A Natural Policy (1/2)

Fairness: give weights to resources (e.g., 1 CPU = 1 GB) and equalize total value given to each user.

• Total resources: 28 CPU and 56 GB RAM (e.g., 1 CPU = 2 GB = 1$)

• User A has x tasks and wants 1CPU; 2GB per task

• User B has y tasks and wants 1CPU; 4GB per task

• Asset fairness yields

max(x; y)

x + y <= 28 (CPU constraints)

2x + 4y <= 56 (Memory constraint)

2x = 3y (every user spends the same 1 CPU = 2 GB )
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User A: x = 12: (43%CPU; 43%GB (86%) )

User B: y = 8: (28%CPU; 57%GB (85%))



A Natural Policy (2/2)

• Problem: violates share guarantee.
• User A: x = 12: (43%CPU; 43%GB (86%) )
• User B: y = 8: (28%CPU; 57%GB (85%))

• User A gets less than 50% of both CPU and 
RAM.

• Better off  in a separate cluster with half the 
resources
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Challenge: Can we find a fair sharing policy that provides 
Share guarantee & Strategy-proofness
Can we generalize max-min fairness to multiple resources?



Dominant-Resource Fair Scheduling
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• Proposed by researchers from U. California Berkeley

• Proposes notion of fairness across jobs with multi-resource 
requirements

• They showed that DRF is
• Fair for multi-tenant systems

• Strategy-proof: tenant cannot benefit by lying

• Envy-free: tenant cannot envy another tenant’s allocations

Dominant Resource Fairness (DRF)
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• DRF is
• Usable in scheduling VMs in a cluster

• Usable in scheduling Hadoop in a cluster

• DRF used in Mesos

• DRF-like strategies also used some cloud computing 
company’s distributed OS’s

Where is DRF Useful?
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Dominant Resource Fairness (DRF) (1/2)

• Dominant resource of a user: the resource that user has the biggest 
share of.
• Total resources: 8CPU; 5GB

• User A allocation: 2CPU; 1GB
•  2/8 = 25% CPU and  1/5 = 20% RAM

• Dominant resource of User A is CPU (25% > 20%)

• Dominant share of a user: the fraction of the dominant resource she 
is allocated.
• User A dominant share is 25%.
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Dominant Resource Fairness (DRF) (2/2)

• Apply max-min fairness to dominant shares: give every user an equal share of her dominant resource.

• Equalize the dominant share of the users.

• Total resources: (9CPU; 18GB)

• User A wants (1CPU; 4GB) for each task; Dominant resource: RAM ( 1/9 < 4/18 ) 22% RAM

• User B wants (3CPU; 1GB) for each task; Dominant resource: CPU ( 3/9 > 1/18 ) 33% CPU

• x is the number of tasks allocated to  User A, y to User B
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max(x; y) subject to

x + 3y <=  9 (CPU constraints)

4x + y <=18 (Memory constraints)

4x/18 = 3y/9 (equalize dominant shares)

User A: x = 3: (33%CPU; 66%GB)
User B: y = 2: (66%CPU; 16%GB)

User A
User B



Algorithm
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Step 0: No tasks assigned.
•Dominant shares: A = 0%, B = 0%
Step 1: Assign 1 task to User A (lowest dominant share)
•A: 1 CPU, 4 GB → dominant share = 4/18 = 22.2%
•B: 0 → 0%
•Next: assign to User B
Step 2: Assign 1 task to User B
•A: 1 CPU, 4 GB → 22.2%
•B: 3 CPU, 1 GB → 3/9 = 33.3%
•Next: A (smaller dominant share)
Step 3: A gets 2nd task
•A: 2 CPU, 8 GB → 8/18 = 44.4%
•B: 3 CPU, 1 GB → 33.3%
•Next: B

User A wants (1CPU; 4GB)
User B wants (3CPU; 1GB) 

Total resources: (9CPU; 18GB)

Step 4: B gets 2nd task
•A: 2 CPU, 8 GB → 44.4%
•B: 6 CPU, 2 GB → 6/9 = 66.6%
•Next: A
Step 5: A gets 3rd task
•A: 3 CPU, 12 GB → 12/18 = 66.6%
•B: 6 CPU, 2 GB → 66.6%
•Equal! Can’t go further without exceeding total resources.



• At the end of the schedule
• User A gets (3CPU,12GB)

• User B gets (6CPU, 2GB)

• Corresponds to the solution 

• User A: x = 3: (33%CPU; 66%GB)

• User B: y = 2: (66%CPU; 16%GB)

Example
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• For a given job, the % of its dominant resource type that it 
gets cluster-wide, is the same for all jobs
• Job 1’s % of RAM = Job 2’s % of CPU

• Can be written as linear equations, and solved

DRF Fairness
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• DRF generalizes to multiple jobs

• DRF also generalizes to more than 2 resource types 
• CPU, RAM, Network, Disk, etc.

• DRF ensures that each job gets a fair share of that type of 
resource which the job desires the most
• Hence fairness

Other DRF Details
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• Scheduling very important problem in cloud computing 
• Limited resources, lots of jobs requiring access to these resources

• Single-processor scheduling
• FIFO/FCFS, STF, Priority, Round-Robin

• Centralized Scheduler (Hadoop)

• Two-level Scheduler (Mesos, Yarn)

• Distributed Scheduler (Sparrow)

• Hybrid Scheduling (Omega, Hawk)

Summary: Scheduling 
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Hawk: Hybrid Datacenter 
Scheduling
Usenix, ATC 2015
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Centralized Schedulers
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Centralized Schedulers
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Good placement

High scheduling latency



Distributed Scheduling
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Distributed Scheduling
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Good Scheduling latency

Sub-optimal placement



Hybrid Scheduling
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Hawk: Hybrid Scheduling

• Long jobs -> centralized

• Short jobs -> distributed
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Hawk: Hybrid Scheduling
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Hawk: Rationale
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Long jobs: minority but take most of the 
resources
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Long jobs: good placement
Short jobs: good scheduling latency



Hawk

• Sparrow: random placement
[Sparrow: Distributed, Low Latency Scheduling. Kay Ousterhout, Patrick Wendell, Matei Zaharia, Ion 
Stoica, University of California, Berkeley, SOSP 2013]

• Randomized work Stealing

• Cluster partitioning
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Sparrow
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Sparrow
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High load + heterogeneity -> 
head-of-line blocking



Hawk: work stealing
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Hawk: work stealing
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Hawk: work stealing
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Under high load -> high probablity 
of contacting high-loaded nodes

Steal from them



Hawk: cluster partitioning
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Hawk: cluster partitioning
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