=PrL

Scheduling

Anne-Marie Kermarrec

CCCCCC

=PrL
Where are we?

Gossip Protocols
Week 7

Consistency protocols
CAP Theorem
Week 9

Distributed/decentralized
systems
Week 8-12

Transaction
Management

Query
Execution

Storage
Hierarchies
& Layouts

Data science software stack

Data Processing
Graph Data Structured Machine
Pregel, GraphLab, X- Data Learning
Streem, Chaos Spark SQL Week 12

Batch Data Streaming Data
Map Reduce, Storm, Naiad, Flink, Spark
Dryad, Spark Streaming Google Data Flow

Data Storage

NoSQL DB Distributed
Dynamo Big Table Messaging
Cassandra systems
Week 9 Kafka — Week 11

Distributed
File Systems
(GFS)

Ressource Management & Optimization

Query optimization Scheduling - Week 10

=PrL
Scheduling

* Multiple “tasks” to schedule
* The processes on a single-core OS
* The tasks of a Hadoop job
* The tasks of multiple Hadoop jobs
* The tasks of multiple frameworks

* Limited resources that these tasks require
* Processor(s)
* Memory
* (Less contentious) disk, network

* Scheduling goals
1.Good throughput or response time for tasks (or jobs)
2. High utilization of resources
3.Share resources

EPFL
Single processor scheduling

Processor
Task_| Length | Arrval
1 10 0)

2 5 6
3 3 8

Arrival Times 2> 0 6 8

CS-460 4

EPFL
FIFO Scheduling (First In First Out)

2 5 6
3 3 3

Vv

Time - O 6 8 10 15 18
* Maintain tasks in a queue in order of arrival
 When processor free, dequeue head and schedule it 5

=PrL

FIFO/FCFS Performance

* Average completion time may be high

* For our example on previous slides,

* Average completion time of FIFO/FCFS =
(Task 1 + Task 2 + Task 3)/3

(10+15+18)/3

43/3

14.33

EPFL
STF Scheduling (Shortest Task First)

Vv

Time 2 O 3 8 18
* Maintain all tasks in a queue, in increasing order of running time
 When processor free, dequeue head and‘schedule 7

=PrL
STF is Optimal

* Average completion of STF is the shortest among all scheduling
approaches

* Average completion time of STF =
(Task 1 + Task 2 + Task 3)/3
= (18+8+3)/3
= 29/3
= 9.66
(versus 14.33 for FIFO/FCFS)

* In general, STF is a special case of priority scheduling
* |Instead of using time as priority, scheduler could use user-provided priority

EPFL
Round-Robin Scheduling

Task_| Length | Al
1 10 0

2 5 6
3 3 8
Time =2 O 6 8 15 (Task 3 done)

 Use a quantum (say 1 time unit) to run portion of task at queue head
* Pre-empts processes by saving their state, and resuming later
* After pre-empting, add to end of queue - 9

=PrL
Round-Robin vs. STF/FIFO

* Round-Robin preferable for

* Interactive applications
e User needs quick responses from system

* FIFO/STF preferable for Batch applications
* User submits jobs, goes away, comes back to get result

=PrL
Summary

* Single processor scheduling algorithms
* FIFO/FCFS
e Shortest task first (optimal)
* Priority
* Round-robin

* What about cloud scheduling?

CS-460

11

=PrL

Goals of Cloud Computing Scheduling

* Running multiple frameworks on a single cluster.
* Maximize utilization and share data between frameworks.

* TWo main resource management systems:

* Yarn: cluster management system designed for Hadoop workloads

* Mesos: manage a variety of different workloads, including
Hadoop, Spark, and containerized applications

=PrL

Schedule frameworks: Global scheduler

* Job requirements
* Response time
* Throughput

] . Organization policies ‘

* Availability Resource availability mmmp

* Job execution plan Job requirements M-
Job execution plan ‘

TaSk DAG Estimates -

* Inputs/outputs

* Estimates
e Task duration
* Input sizes
* Transfer sizes

CS-460

Global
Scheduler

-Task schedule

13

=PrL
Global scheduler

Advantages
* Can achieve optimal schedule

Disadvantages
 Complexity: hard to scale and ensure resilience
* Hard to anticipate future frameworks requirements.
* Need to refactor existing frameworks.

Vlesos

“A Platform for Fine--Grained Resource

Sharing in the Data Center “ Benjamin Hindman, Andy Konwinski, Matei Zaharia,
Ali Ghodsi, Anthony Joseph, Randy Katz, Scott Shenker, lon Stoica
University of California, Berkeley

Usenix 2011

CS-460

15

=Pr-L
Mesos

Coexistence of multiple applications
 Ex: FB->Business intelligence, spam detection, ad optimization
* Production job, machine learning ranging from multi-hour computation to 1 mn
ad-hoc query
Platform for sharing resources of commodity clusters between multiple diverse
frameworks

Mesos

CS-460 16

=PrL

Mesos model

* A framework (e.g., Hadoop, Spark)

manages and runs one or more
jobs.

* A job consists of one or more
tasks.

* A task (e.g., map, reduce) consists
of one or more processes running

on same machine.

* Short duration of tasks: exploit
data locality

CDF

data warehouse

CS-460

0.9
0.8
0.7

06 |
05
04
03
0.2 |
0.1

MapReduce Jobs
Map & Reduce Tasks

10

100

1000 10000

Duration (s)

CDF of job and task durations in Facebook’s Hadoop

100000

=PrL
Challenges

 Various scheduling needs of frameworks

* Programming model, scheduling needs, task dependencies, data placement,
etc.

* Fault-tolerant & high availability
* Avoids the complexity of a central scheduler

33%
17%
0%

100%

33%
50%

17%
0%

0%

Shared cluster

33%
17% |
o R A

“A Platform for Fine--Grained Resource Sharing in the Data Center “ Benjamin Hindman, Andy Konwinski, Matei Zaharia,
Ali Ghodsi, Anthony Joseph, Randy Katz, Scott Shenker, lon Stoica. Usenix 2011

CS-460 19

=P-L
Ressource offers

* Delegates control over scheduling to the frameworks

e Offer available resources to frameworks, let them pick which resources to
use and which tasks to launch

* Keeps Mesos simple, lets it support future frameworks
High utilization of resources

Support diverse frameworks (current & future)

Scalability to 10,000’s of nodes

Reliability in face of failures

Resulting design: Small microkernel-like core that pushes scheduling logic to
frameworks

=PrL
Distributed scheduler

Organization
policies

Task

Resource schedule

availability

Framework
schedule

CS-460

21

=PrL
Distributed scheduler

* Master sends resource offers to frameworks
* Frameworks select which offers to accept and which tasks to run

* Unit of allocation: resource offer

e Vector of available resources on a node
* For example, nodel: (1CPU; 1GB), node2: (4CPU; 16GB)

=PrL
Distributed scheduler

Advantages

e Simple: easier to scale and make resilient
* Easy to port existing frameworks, support new ones

Disadvantages

* May not always lead to optimal
* |In practice meet goals such as data locality almost perfectly

EPFL

Mesos architecture

Pluggable
scheduler picks
framework to send
an offer to.

Slaves continuously
send status updates
about resources to the
Master

Framework 1

Framework 2

Job 1

Job 2 Job 1 Job 2

FW Scheduler

FW Scheduler

<s1, 4cpu, 4gb, .. >(2

<task1, s1, 2cpu, 1gb, ... >
<task2, s1, 1cpu, 2gb, ... >

——%

Allocation Mesos
module master

<s1, 4cpu, 4gb, ... > (1

<

<fw1, task1, Z2cpu, 1gb, ... >
<fw1, task2, 1cpu, 2gb, ... >

| Slave 2

Executor

Task Task

CS-460

Framework
scheduler selects
resources and
provides tasks.

Framework
executors launch
tasks.

24

=PFL
Mesos vs Static Partitioning

 Compared performance with statically partitioned
cluster where each framework gets 25% of nodes

Framework Speedup on Mesos

Facebook Hadoop Mix 1.14 X
Large Hadoop Mix 2.10 X
Spark 1.26 X
Torque [MPI 0.96 X

From Arka Bhattacharya CS-460

25

EPFL

Data Locality with Resource Offers

e Ran 16 instances of Hadoop on a shared HDFS cluster

» Used delay scheduling in Hadoop to get locality (wait a
short time to acquire data-local nodes)

600
500
400
300
200
100

0

From Arka Bhattacharya

Job Duration (s)

1 I
1.7 X
1T .- v
Static Mesos

Partitioning

CS-460

26

=Pr-L

From Arka Bhattacharya

Scalability

* Mesos only performs inter-framework scheduling (e.g.
fair sharing), which is easier than intra-framework

scheduling

Result:

Scaled to 50,000
emulated slaves,
200 frameworks,
100K tasks

[

o
®©

o
o)

o
I

o
N

Task Start Overhead (s)
@)

-10000 10000 30000

Number of Slaves

50000

CS-460 27

=PrL
Who is using Mesos

* Apple uses it to power the back end of SIRI

* Netflix uses it for batch and stream processing, anomaly detection,
machine learning

e Twitter uses it for analytics and ads

Deployments

A
T

-
OpenTable

CONVIVA

Xogito

CS-460

Resource allocation in Mesos

How to allocate resources of different types?

CCCCCC

=PrL
Single Resource: Fair Sharing

n users want to share a resource, e.g., CPU.
* Solution: allocate each 1/n of the shared resource.

Generalized by max-min fairness.
* Handles if a user wants less than its fair share.
* E.g., user A wants no more than 20%.

Generalized by weighted max-min fairness

* Give weights to users according to importance.
* E.g., user A gets weight 1, user B weight 2.

CS-460

CPU

100% %

0% .

100%

30

=PrL

Max-min fairness: example

1 resource: CPU

Total resources: 20 CPU
User A has x tasks and wants (1CPU) per task

User B has y tasks and wants (2CPU) per task

max(x; y) (maximize allocation)
subject to

x + 2y = 20 (CPU constraint)
X =2y
So x=10,y=5

=PrL
Properties of Max-Min Fairness

Share guarantee

* Each user can get at least 1/n of the resource.
e But will get less if her demand is less.

Strategy proof

e Users are not better off by asking for more than they need.
e Users have no reason to lie.

Max-Min fairness is the only reasonable mechanism with these two
properties.

Widely used: OS, networking, datacenters, can be used in Mesos

When is Max-Min Fairness NOT Enough?

Need to schedule multiple, heterogeneous resources, e.g.,

CPU, memory, etc.

=PrL
Problem

 Single resource example
* 1 resource: CPU
e User A wants 1CPU per task
* User B wants 2CPU per task

* Multi-resource example
e 2 resources: CPUs and mem
* User A wants 1CPU; 2GB per task
* User B wants 2CPU; 4GB per task

CS-460

100% —=

100%o1

50%b

————————

0%

34

=PrL
A Natural Policy (1/2)

Fairness: give weights to resources (e.g., 1 CPU =1 GB) and equalize total value given to each user.

* Total resources: 28 CPU and 56 GB RAM (e.g., 1 CPU =2 GB = 19)
* User A has x tasks and wants 1CPU; 2GB per task
e User B hasy tasks and wants 1CPU; 4GB per task

* Asset fairness yields
max(x; y)
X +y <= 28 (CPU constraints)
2x + 4y <= 56 (Memory constraint)
2x = 3y (every user spends the same 1 CPU=2GB)

User A: x =12: (43%CPU; 43%GB (86%))
User B:y = 8: (28%CPU; 57%GB (85%))

CS-460

35

=PrL
A Natural Policy (2/2)

* Problem: violates share guarantee.
« UserA: x=12: (43%CPU; 43%GB (86%))
. User B:y = 8: (28%CPU:; 57%GB (85%))

e User A gets less than 50% of both CPU and
RAM.

* Better off in a separate cluster with half the
resources

Challenge: Can we find a fair sharing policy that provides
Share guarantee & Strategy-proofness
Can we generalize max-min fairness to multiple resources?

CS-460

36

=PrL

Dominant-Resource Fair Scheduling

CS-460

37

cPi-L
Dominant Resource Fairness (DRF)

* Proposed by researchers from U. California Berkeley

* Proposes notion of fairness across jobs with multi-resource
requirements

* They showed that DRF is

* Fair for multi-tenant systems
» Strategy-proof: tenant cannot benefit by lying
* Envy-free: tenant cannot envy another tenant’s allocations

=PrL

Where is DRF Useful?

* DRFis
e Usable in scheduling VMs in a cluster
e Usable in scheduling Hadoop in a cluster

* DRF used in Mesos

* DRF-like strategies also used some cloud computing
company’s distributed OS’s

=PrL
Dominant Resource Fairness (DRF) (1/2)

* Dominant resource of a user: the resource that user has the biggest
share of.
* Total resources: 8CPU; 5GB

e User A allocation: 2CPU; 1GB
e 2/8=25%CPUand 1/5=20% RAM
* Dominant resource of User A is CPU (25% > 20%)

* Dominant share of a user: the fraction of the dominant resource she
is allocated.

e User A dominant share is 25%.

EPFL
Dominant Resource Fairness (DRF) (2/2)

* Apply max-min fairness to dominant shares: give every user an equal share of her dominant resource.
e Equalize the dominant share of the users.

* Total resources: (9CPU; 18GB)

* User A wants (1CPU; 4GB) for each task; Dominant resource: RAM (1/9 < 4/18) 22% RAM

* User B wants (3CPU; 1GB) for each task; Dominant resource: CPU (3/9>1/18) 33% CPU

* xisthe number of tasks allocated to User A, y to User B

max(X; y) subject to 100% |
X + 3y <= 9 (CPU constraints)
4x +y <=18 (Memory constraints) . ?
4x/18 = 3y/9 (equalize dominant shares)

User A: x = 3: (33%CPU; 66%GB) :
User B: y = 2: (66%CPU; 16%GB) W . 6 CPUs

CPU mem
(9 total) (18 total)

O User A
B UserB

{ 66%

CS-460 41

=PrL
Algorithm

Algorithm 1 DRF pseudo-code

R={ri,- - ,"m) > total resource capacities
C = (c1, ++,cm) > consumed resources, initially O
s; (1 =1..n) D> user’s dominant shares, initially O
Ui = (u;1, - ,uim) (@ =1..n) >resources given to

user 1, initially 0

pick user ¢ with lowest dominant share s;
D; <+ demand of user 7’s next task
if C + D; < R then

C=C+D;, > update consumed vector
U, =U; + D; > update ¢’s allocation vector
si = maxjLy{u;;/T;}

else
return > the cluster 1s full

end if

CS-460

42

P
I—PI L User A wants (1CPU; 4GB)

User B wants (3CPU; 1GB) Total resources: (9CPU; 18GB)

Step 0: No tasks assigned. Step 4: B gets 2nd task

Dominant shares: A=0%, B=0% *A: 2 CPU, 8 GB - 44.4%

Step 1: Assign 1 task to User A (lowest dominant share) *B: 6 CPU, 2 GB - 6/9 = 66.6%

*A: 1 CPU, 4 GB - dominant share =4/18 = 22.2% *Next: A

*B:0 2> 0% Step 5: A gets 3rd task

*Next: assign to User B *A: 3 CPU, 12 GB > 12/18 = 66.6%

Step 2: Assign 1 task to User B *B: 6 CPU, 2 GB - 66.6%

*A: 1 CPU,4 GB = 22.2% *Equal! Can’t go further without exceeding total resources.

*B:3CPU,1GB - 3/9=33.3%
*Next: A (smaller dominant share)
Step 3: A gets 2nd task

*A: 2 CPU, 8 GB - 8/18 = 44.4%
*B: 3 CPU, 1 GB - 33.3%

*Next: B

=PrFL
Example

* At the end of the schedule
e User A gets (3CPU,12GB)
e User B gets (6CPU, 2GB)

* Corresponds to the solution
« UserA: x =3: (33%CPU; 66%GB)
 UserB:y=2:(66%CPU; 16%GB)

CS-460

44

=PrL
DRF Fairness

* For a given job, the % of its dominant resource type that it
gets cluster-wide, is the same for all jobs
e Job 1’s % of RAM =Job 2’s % of CPU

e Can be written as linear equations, and solved

=PrL

Other DRF Details

* DRF generalizes to multiple jobs

* DRF also generalizes to more than 2 resource types
 CPU, RAM, Network, Disk, etc.

* DRF ensures that each job gets a fair share of that type of
resource which the job desires the most
* Hence fairness

=PrFL
Summary: Scheduling

* Scheduling very important problem in cloud computing
* Limited resources, lots of jobs requiring access to these resources

* Single-processor scheduling
* FIFO/FCFS, STF, Priority, Round-Robin

* Centralized Scheduler (Hadoop)
* Two-level Scheduler (Mesos, Yarn)
* Distributed Scheduler (Sparrow)
e Hybrid Scheduling (Omega, Hawk)

=PrL
References

B. Hindman et al., “Mesos: A Platform for Fine-Grained Resource Sharing in the Data Center",
USENIX 2011

A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, . Stoica. “Dominant Resource
Fairness: Fair Allocation of Multiple Resource Types”. NSDI 2011

V. Vavilapalli et al., “Apache hadoop yarn: Yet another resource negotiator"”, ACM Cloud
Computing 2013

P Delgado, F Dinu, AM Kermarrec, W Zwaenepoel, “Hawk: Hybrid datacenter scheduling”, USENIX
ATC, 2015

Hawk: Hybrid Datacenter
Scheduling

=PrL
Centralized Schedulers

Job 2 | Job 1

CS-460

cluster

50

=PrL
Centralized Schedulers

Good placement

High scheduling latency

CS-460

cluster

= B
==l o
N

=] B
N1 =)

51

=Pr-L

Distributed Scheduling

|Job1 et
(o2} —

distributed
scheduler 1

distributed
scheduler 2

distributed
scheduler N

CS-460

cluster

T

L]/
4 4

il

'-.::1 <
\ - 2
A
\ i)

52

=PrL
Distributed Scheduling

@: distributed
scheduler 1

distributed
scheduler 2

T

Good Scheduling latency

Sub-optimal placement

CS-460 53

=PrL
Hybrid Scheduling

1)

Job M

Job 2

l Job N

CS-460

cluster

54

=PrL

Hawk: Hybrid Scheduling

* Long jobs -> centralized
e Short jobs -> distributed

CS-460

55

=Pi-L
Hawk: Hybrid Scheduling

distributed

Job 2 —— i
a2l - scheduler1

cluster

CS-460

@ distributed | gi_‘_‘_:l 3
. ~ schedulerN

56

=PrL
Hawk: Rationale

Typical production workloads

—_—

few

many

CS-460

—

S—

most resources

little resources

57

=Pr-L

Percentage of long jobs

100

80

60

40

20

c B m - - N
co°°%z Qb&:o 0&@0 ob‘b"gb Qe:°°& &

Percentage of task-seconds for long jobs

100
80
60
40
20
0
& ob&” Qbé& fb & &
& ¢ g «©

Source: Design Insights for MapReduce from Diverse Production Workloads, Chen et al 2012

CS-460 58

=Pr-L

Percentage of long jobs Percentage of task-seconds for long jobs
100 100
80
Long jobs: minority but take most of the 60
resources

40
20
— 0

\& 0 59 O A o

& & < & x° .\'3°°

© & Y & &
& ¢ g «©

Source: Design Insights for MapReduce from Diverse Production Workloads, Chen et al 2012

CS-460

59

=Pr-L

Bulk of
resources
- good

placement

Few jobs =
reasonable
scheduling

Few resources

Late|.1§y -> can trade
sensitive : : not-so-good
— Fast. placemen
scheduling

CS-460 o0

EPFL

Bulk of
resources
- good

placement

Few jobs =
reasonable
scheduling

Long jobs: good placement
Short jobs: good scheduling latency

Few resources
-> can trade
not-so-good

placemen

Latency
sensitive

- Fast
scheduling

{\g Short jobN —— distributed N

CS-460

61

=PrL
Hawk

e Sparrow: random placement

[Sparrow: Distributed, Low Latency Scheduling. Kay Ousterhout, Patrick Wendell, Matei Zaharia, lon
Stoica, University of California, Berkeley, SOSP 2013]

 Randomized work Stealing
* Cluster partitioning

=PrL
Sparrow

~ distributed T
scheduler K’@

Random
placement:

Low likelihood on
finding a free node

CS-460

63

distributed Y
S e
nad-o erog :

Random
placement:
Low likelihood on

=Pr-L

Hawk: work stealing

Free node!!

CS-460

=Pr-L

Hawk: work stealing

2. Random node:
send short jobs
reservation in queue

1. Free node:
contact random
node for probes!

CS-460

66

=Pr-L

Hawk: work stealing

2. Random node:
send short jobs
reservatioas

Under high load -> high probablity |

of contacting high-loaded nodes
Steal from them

1. Free node:
contact random
node for probes!

CS-460

67

=Pi-L
Hawk: cluster partitioning

No coordination,
challenge: no free
nodes for mice!

“; distributed
- scheduler

Reserved nodes:
small cluster
partition

68

=Pi-L
Hawk: cluster partitioning

"““Ishort jobs schedule anywhere.

I
!
!
!
!
L

Long jobs only in non-reserved nodes.
TH Reserved nodes:
\® ‘/@‘ = | small cluster

partition

No coordination,
challenge: no free
nodes for mice!

\
\
\

‘\ distributed
\ scheduler

CS-460

=PrL
References

B. Hindman et al., “Mesos: A Platform for Fine-Grained Resource Sharing in the Data Center",
USENIX 2011

A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, . Stoica. “Dominant Resource
Fairness: Fair Allocation of Multiple Resource Types”. NSDI 2011

V. Vavilapalli et al., “Apache hadoop yarn: Yet another resource negotiator"”, ACM Cloud
Computing 2013

P Delgado, F Dinu, AM Kermarrec, W Zwaenepoel, “Hawk: Hybrid datacenter scheduling”, USENIX
ATC, 2015

Thanks to Indranil Gupta and to Amir H. Payberah

	Slide 1: Scheduling
	Slide 2: Where are we?
	Slide 3: Scheduling
	Slide 4: Single processor scheduling
	Slide 5: FIFO Scheduling (First In First Out)
	Slide 6: FIFO/FCFS Performance
	Slide 7
	Slide 8: STF is Optimal
	Slide 9
	Slide 10: Round-Robin vs. STF/FIFO
	Slide 11: Summary
	Slide 12: Goals of Cloud Computing Scheduling
	Slide 13: Schedule frameworks: Global scheduler
	Slide 14: Global scheduler
	Slide 15: Mesos
	Slide 16: Mesos
	Slide 17: Mesos model
	Slide 18: Challenges
	Slide 19
	Slide 20: Ressource offers
	Slide 21: Distributed scheduler
	Slide 22: Distributed scheduler
	Slide 23: Distributed scheduler
	Slide 24: Mesos architecture
	Slide 25: Mesos vs Static Partitioning
	Slide 26: Data Locality with Resource Offers
	Slide 27: Scalability
	Slide 28: Who is using Mesos
	Slide 29: Resource allocation in Mesos
	Slide 30: Single Resource: Fair Sharing
	Slide 31: Max-min fairness: example
	Slide 32: Properties of Max-Min Fairness
	Slide 33: When is Max-Min Fairness NOT Enough?
	Slide 34: Problem
	Slide 35: A Natural Policy (1/2)
	Slide 36: A Natural Policy (2/2)
	Slide 37
	Slide 38
	Slide 39
	Slide 40: Dominant Resource Fairness (DRF) (1/2)
	Slide 41: Dominant Resource Fairness (DRF) (2/2)
	Slide 42: Algorithm
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48: References
	Slide 49: Hawk: Hybrid Datacenter Scheduling
	Slide 50: Centralized Schedulers
	Slide 51: Centralized Schedulers
	Slide 52: Distributed Scheduling
	Slide 53: Distributed Scheduling
	Slide 54: Hybrid Scheduling
	Slide 55: Hawk: Hybrid Scheduling
	Slide 56: Hawk: Hybrid Scheduling
	Slide 57: Hawk: Rationale
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62: Hawk
	Slide 63: Sparrow
	Slide 64: Sparrow
	Slide 65: Hawk: work stealing
	Slide 66: Hawk: work stealing
	Slide 67: Hawk: work stealing
	Slide 68: Hawk: cluster partitioning
	Slide 69: Hawk: cluster partitioning
	Slide 70: References

