
CAP Theorem & KVS
Martijn de Vos

Week 10 - CS-460

CS-460 1

Modern Web Workloads

• Web-based applications cause spikes
• Data: large and unstructured
• Random reads and writes; sometimes write-heavy (e.g., finance apps)
• Joins infrequent

Challenges with RDBMS
• Not designed for distributed environments
• Scaling SQL is expensive and inefficient

CS-460 3

👉 This shift in workload
demands gave rise to NoSQL

NoSQL
= Not only SQL

Avoids:
• Strict ACID compliance
• Complex joins and relational

schemes

Provides:
• Scalability
• Easy and frequent changes to DB
• Large data volumes

CS-460 4

⚠ No free lunch

Weaker consistency
guarantees, limited query

expressiveness

Availability
• Data replication improves availability in case of failures
• By storing the same data in more than one site or node

CS-460 5

Replicated

Replicated

Replicated

The CAP Theorem*
In a distributed system you can satisfy at most 2
out of 3 guarantees:

1. Consistency: every read receives the most recent
write or an error

2. Availability: every request received by a non-failing
node in the system must result in a (timely) response

3. Partition tolerance: the system continues to operate
despite an arbitrary number of messages being
dropped (or delayed) by the network

CS-460 6

* Proposed by Eric Brewer (Berkeley) in 2000, proved by Gilbert (NUS) and Lynch (MIT) in 2002

Why does Consistency Matter?

Consistency: every read receives the most recent write or an error

CS-460 7

Use Case What you expect (consistency) What could go wrong
(inconsistency)

🏦 Banking app Transfer €500 via your phone, it instantly shows up
on your desktop app too.

Your balance looks updated on
your phone but not on your
desktop.

✈ Booking a flight A seat is shown as unavailable right after someone
else books it.

Two users book the same seat at
once.

🛒 Online shopping You remove an item from your shopping cart and
it’s instantly reflected everywhere.

You get charged for the same item
because a device has stale cart
data.

Why does Availability Matter?
Availability: every request received by a non-failing node in the system must
result in a (timely) response

CS-460 8

Reliability

Users expect services
to work 24/7

• A 500ms delay on
Amazon → 20%
revenue loss

• If checkout fails,
users can abandon
their purchase

Speed = Money

Latency kills
engagement

• Amazon: every
extra 100ms →
millions lost

• Google: longer load
time → fewer
searches → lost
revenue

Cognitive Drift

Humans are impatient

• 1s of delay and
users mentally
move on

• Responsiveness is
key to user flow
and retention

Why does Partition Tolerance Matter?

CS-460 9

Partition tolerance: the system continues to operate despite an arbitrary
number of messages being dropped (or delayed) by the network

Event Example Impact

Internet router outage Data center ISP failure Servers are not reachable anymore

Undersea cable cut SEA-ME-WE 5 cable incident (2024) Connectivity loss between regions

DNS outage Dyn DDOS attack (2016) Users can’t resolve hostnames

BGP configuration error Facebook outage (2021) Outage of Facebook and
subsidiaries

Take-away: parNNons actually happen in real-world seOngs

CAP Combinations

CS-460 10

CA: Consistency + Availability AP: Availability + Partition
Tolerance

CP: Consistency + Partition
Tolerance

✅ Strong consistency ✅ Always available ✅ Strong consistency

✅ Always available ✅ Operational under partitions ✅ Operational under partitions

❌ Fails on partition ❌May return stale data ❌May deny some requests

💡Cannot exist in practical
distributed settings

💡Example: Cassandra 💡Example: ZooKeeper

CAP in Practice

• 2 out of 3 is somewhat misleading
• Partition tolerance is non-negotiable in real systems, we need it
• So the real choice is between Consistency and Availability

• Traditional RDBMSs → Consistency, Partition Tolerance
• NoSQL → Availability, Partition Tolerance

CS-460 11

💡 Availability prioriNzes user experience, consistency prioriNzes correctness

ACID vs. BASE – The Tradeoff in Modern
Systems

• You can’t have ACID properties and high
availability under network partitions
• BASE systems embrace this, trading strict

consistency for availability and scalability

CS-460 12

💡 ACID is like a strict
accountant, BASE is like

a bar tab.

BASE Properties

• Basic Availability
• Possibilities of faults but not a

fault of the whole system

• Soft-state
• Copies of a data item may be

inconsistent

• Eventually consistent
• Copies becomes consistent at

some later time if there are no
more updates to that data item

CS-460 13

[https://www.guru99.com/sql-vs-nosql.html]

Key Takeways

1. Choose the right guarantee for the right task (CP vs. AP)
2. Partition tolerance is non-negotiable in the CAP theorem
3. ACID for RDBMS, BASE for NoSQL systems
4. Different applications might need different consistency guarantees

CS-460 14

References
• Theorem first presented as a conjecture by Brewer at the 2000

Symposium on Principles of Distributed Compu[ng (PODC
• Seth Gilbert and Nancy Lynch, "Brewer's conjecture and the feasibility

of consistent, available, par[[on-tolerant web services", ACM SIGACT
News, Volume 33 Issue 2 (2002), pg. 51–59.
• Eric Brewer, "CAP twelve years later: How the 'rules' have changed",

Computer, Volume 45, Issue 2 (2012), pg. 23–29.

CS-460 15

https://en.wikipedia.org/wiki/Conjecture
https://en.wikipedia.org/wiki/Symposium_on_Principles_of_Distributed_Computing
http://dl.acm.org/citation.cfm?id=564601&CFID=609557487&CFTOKEN=15997970
http://dl.acm.org/citation.cfm?id=564601&CFID=609557487&CFTOKEN=15997970
http://www.infoq.com/articles/cap-twelve-years-later-how-the-rules-have-changed

Key-value stores

CS-460 16

Serving Today’s Workloads

CS-460 17

🏎 Performance

• Speed (req/s.)
• Scale out, not up

🛡 Reliability

• Avoid single point of
failure

⚙ Efficiency

• Low total cost of operation
• Fewer system administrators

📈 Scalability

• Need to serve many
users

The Key-value Abstraction (1/2)

CS-460 18

Key Value
post_id (x.com, facebook.com) Post content, author, timestamp
item_id (amazon.com) Name, price, stock info
flight_no (expedia.com) Route, availability, price
account_no (bank.com) Balance, transactions, owner

Key-value is a powerful abstraction powering the modern web

The Key-value Abstraction (2/2)

• A dictionary-like data structure
• Supports insert, lookup, and delete by key
• Example: a local hash table

• But now, distributed across many machines
• Designed to handle web-scale workloads

• Like Distributed Hash tables (DHTs) in P2P systems

• Key-value solutions reuse many techniques from DHTs
• Consistent hashing, replication, partitioning, …

CS-460 19

❓How can we
effectively locate and

retrieve a key in a large,
distributed database?

Key-value/NoSQL Data Model
• Core opera[ons: get(key) and put(key, value)

• Storage model: tables, but more flexible
• Called column families (Cassandra), tables (Hbase), collec3ons (MongoDB)

• Unlike tradi[onal RDBMS tables:
• May be schema-less: each row can have different columns
• Does not always support joins or foreign keys

CS-460 20

Design of a real key-value store,
Cassandra

Released in 2008, a`er Dynamo (2007) and BigTable (2006)

CS-460 21

Cassandra

CS-449 22

• A distributed key-value store
• Many companies use Cassandra in their production clusters
• IBM, Adobe, HP, eBay, Ericsson, Symantec, Twitter, Spotify, Netflix

• Scalable data model: data split across nodes
• CAP: availability and partition tolerance

Objectives

• Distributed storage system
• Targets large amount of unstructured data
• Intended to run in a datacenter (and also across DCs) across many

commodity servers
• No single point of failure
• Originally designed at Facebook
• Open-sourced later, today an Apache project (2010)

• But: does not support joins, limited support for transac5ons and
aggrega5on

CS-460 24

Data model (1/4)

• Table in Cassandra: distributed map indexed by a key (can be nested)

• Row: idenRfied by a Unique Key (Primary key)
• Keyspace: A logical container for column families that defines the

replicaRon strategy and other configuraRon opRons
• Column Family: A logical grouping of columns with a shared key, contains

Supercolumns or Columns

• Column: basic data structures with a name, type, value, Rmestamp
• Supercolumn: stores a map of sub-columns. Columns that are likely to be

queried together should be placed in the same column family

CS-460 25

Data model (2/4)

CS-460 26

settings
settings name value timestamp

column

column family

keyspace

type

Data model (3/4)

CS-460 27

Feature RDBMS Cassandra
Organization Database → table → row Keyspace → column family

→ column
Row structure Fixed schema Dynamic columns
Column data Name, type, value Name, type, value,

timestamp
Schema changes Typically requires

downtime
During runtime

Data model Normalized with JOINs Denormalized

Data model (4/4)

CS-460 28

Column 1 Column 2 Column 3

row data row data row data
Key 1

Key 2

Simple Column family

Key 1

Super Column 1

Column 1 Column 4

row data row data

Super Column family

Column 1 Column 2

row data row data

Super Column 2

Column 3 Column 4

row data row data

Facebook example

• Facebook maintains a per-user index of all messages exchanged
between senders and receivers
• Two kind of search features enabled in 2008
• Search by term
• Search by user: given a user’s name, returns all the messages sent/received

by that user

CS-460 29

Facebook term search

• Primary key: UserID
• Words of messages: super columns
• Columns within the super columns: individual message identifiers

(messageId) of the messages that contains the word

CS-460 30

MmsgIDi MmsgIDj MmsgIDk …

Super Column 1: Term1

MmsgIDt MmsgIDj MmsgIDk …

Super Column K : Termk

Row Key
<user id>

Super Column 1 Super Column k

Column Family (user 1)

Super Column 1 Super Column k

Column Family (user 2)

Facebook Inbox search

• Primary key: UserID
• Recipients ID’s: super columns
• Columns within the super columns: messageId

CS-460 31

MmsgIDi MmsgIDj MmsgIDk …

Super Column 1: User ID1

MmsgIDt MmsgIDj MmsgIDk …

Super Column R :User IDR

Row Key
<user id>

Super Column 1 Super Column k

Column Family 1

Super Column 1 Super Column k

Column Family 2

Schema

CS-460 32

MmsgIDi MmsgIDj MmsgIDk …

Super Column 1: Term1

MmsgIDt MmsgIDj MmsgIDk …

Super Column K : Termk

MmsgIDi MmsgIDj MmsgIDk …

Super Column 1: UserID1

MmsgIDt MmsgIDj MmsgIDk …

Super Column R :UserID R

Row Key
<user id>

Super Column 1 Super Column k

Column Family 1

Super Column 1 Super Column k

Column Family 2

Term Search

Interactions

Example

CS-460 33

M M AB …

Super Column Hello

M M M …

Super Column World

AB M M …

Super Column Bob

M M M …

Super Column Jack

Alice
Super Column

Hello

Column Family Terms

Super Column
Bob

Column Family Inter.

Alice sends “Hello” to Bob (msgID: AB)

Cassandra Architecture

• Decentralized, peer-to-peer architecture

• Easy to scale: add/remove nodes

• Read/write requests can go to any replica node

• Reads and write have a configurable consistency level

CS-460 34

Cassandra Architecture

1. Partitioning
2. Load balancing
3. Replication
4. Writes and reads
5. Data structures
6. Membership management
7. Consistency

CS-460 35

💡 Using terms node and
replica interchangably

Cassandra: Partioning

CS-460 36

1

2

3

4

• Nodes are conceptually
ordered on a clockwise ring
• Each node is responsible for

the region of the ring
between itself and its
predecessor
• Example of a write without

replication (right)

0-32

32-64

96-128

64-96

Write
“user123”

1
2

H(“user123”) = 68

3
Route write

to responsible
node

💡 Cassandra uses a ring-based DHT but
without finger tables or rouNng

Token range: [0-128]

Cassandra: Load balancing

• Random partitioning leads to non-
uniform data and load distribution
• Cassandra assumes homogeneous

nodes’ performance

• How is it addressed
• Lightly loaded nodes move on the

ring to alleviate loaded ones
• Virtual nodes

CS-460 37

1

2

3

4

0-32

32-64

96-128

64-96

Token range: [0-128]

Popular
key range

Overloaded

1

Cassandra: Replication

• Replication factor N: determines
how many copies of the data
exist
• Each data item is replicated at N

nodes
• Various replication strategies
• Example with N=2 (right)

CS-460 3838

1

2

3

4

0-32

32-64

96-128

64-96

Write
“user123”

1
2

H(“user123”) = 35

3
Route write to

responsible nodes

Cassandra: Replication Strategies

CS-460 39

SimpleStrategy NetworkTopologyStrategy
Used for single DC and rack For deployment across different DCs
Easy setup Tunable replication factor per DC

CREATE KEYSPACE cluster1 WITH
replication = {'class’:
'SimpleStrategy',
'replication_factor': 2};

CREATE KEYSPACE cluster1 WITH
replication = {'class':
'NetworkTopologyStrategy',
'east': 2, 'west': 3};

👉 SimpleStrategy: random partitioner or byte-ordered (ideal for range queries)

Cassandra: Writes (1/2)

• Coordinator: acts as a proxy between clients and
replicas
• Writes need to be lock-free and fast (no reads or

disk seeks)
• Client sends write to one coordinator node in a

Cassandra cluster
• Coordinator may be per-key, or per-client, or per-

query
• Per-key coordinator ensures writes for that key are

serialized
• When X replicas respond, coordinator returns an

acknowledgement to the client
CS-460 40

Client

Coordinator

R1 Rn…

Write request

Replica set

Cassandra: Writes (2/2)

• Always writable: Hinted Handoff mechanism
• If any replica is down, the coordinator writes to

all other replicas, and keeps the write locally
unNl the down replica comes back up.
• When all replicas are down, the coordinator

(front end) buffers writes (for up to a few hours).

CS-460 41

📦 Real-world analogy: accepting parcels of
neighbors who are not at home

Client

Coordinator

R1 R3

Write request for R3

R2

Reconcile later

Cassandra: lightweight transactions

• Ensures sequential transaction execution
• Implemented using Paxos consensus
• At the cost of performance

CS-460 42

Cassandra: Data structures

CS-460 43

Client request

Memtable
(in memory)Commit Log SSTables

Asynchronous flush

Transacjonal log, used
for recovery in case of

failures

Write at a replica node

• Write-back cache of data partitions
that can be searched by key.

• In-memory representation of multiple
key-value pairs

• Append-only data structure (fast)

Sorted String Tables (disk):
• Persistent, ordered immutable

map from keys to values, where
both keys and values are arbitrary
byte strings

• Uses Bloom filters

1
2

3

Cassandra: Memtables flushes

• Background thread keeps checking the size of all memtables
• When a new Memtable is created, the previous one marked for

flushing
• Node’s global memory threshold have been reached
• Commit log is full

• Another thread flushes all the marked Memtables
• Commit log segments of the flushed Memtable are marked for

recycling
• A Bloom filter and index are created

CS-460 44

Bloom Filters
• Compact way of representing a set of items
• Checking for existence (membership) in set is cheap
• Probability of false positives: an item not in set may return true as being in set
• Never false negatives

Example FP rate:
• m=4 hash functions
• 100 items in filter
• 3200 bits
• FP rate = 0.02%

CS-460 45

Cassandra: Reads

CS-460 46

1

2

3

4

0-32

32-64

96-128

64-96

Read
“user123”

1

2 H(“user123”) = 35

3
Route read to

X replicas

4
Replicas respond

to coordinator

Client

Return latest-
timestamped

value
5• Coordinator can contact X replicas

• Checks consistency in the
background, initiating a read repair
if any two values are different
• This mechanism seeks to eventually

bring all replicas up to date

• At a replica: read looks at
Memtables first, and then SSTables
• A row may be split across multiple

SSTables

Cassandra: Membership Management (1/2)

• Any server in the cluster could be the coordinator
• So every server needs to maintain a list of all the other servers that

are currently in the cluster: full membership
• Membership needs to be updated automatically as servers join, leave,

and fail
• Membership Protocol
• Efficient anti-entropy gossip-based protocol
• P2P protocol to discover and share location and state information about other

nodes in a Cassandra cluster

CS-460 47

Cassandra: Membership Management (2/2)

1

1 10120 66

2 10103 62

3 10098 63

4 10111 65

2

4
3Protocol:

•Nodes periodically gossip their membership list

•On receipt, the local membership list is updated, as shown

•If any heartbeat older than Δfail, node is marked as failed

1 10118 64

2 10110 64

3 10090 58

4 10111 65

1 10120 70

2 10110 64

3 10098 63

4 10111 65

Current time: 70 at node 2

(asynchronous clocks)

Address
Heartbeat Counter

Time (local)

CS-460 48

Cassandra uses gossip-based cluster membership

Cassandra: Consistency

• Cassandra has tunable consistency levels
• Client chooses a consistency level for each read/write operation

CS-460 49

Level Behavior Remarks
ANY Contact any node Fast; low consistency
ALL Contact all replicas Slow; strong consistency
ONE Contact at least one replica Faster than all
QUORUM Contact quorum across

replicas in DCs
LOCAL_QUORUM Wait for quorum in first DC

client contacts
Faster than QUORUM

Quorum-based protocols
In Cassandra, the coordinator must contact a quorum of replicas to read or write data

CS-460 50

Let:
N = # of replicas

R = # of nodes in read
quorum

W = # of nodes in write
quorum

Constraints (for strong consistency):

R + W > N

✅ Ensures most recent write is always read

Quorum = Getting agreement from a committee – you don’t need everyone, just a majority

Quorums: example

51

Let:
N = 5
R = 3
W = 3

✅ Strong consistency

CS-460

1

2

3

5

4

Read
quorum:
{1,2,3}

Write
quorum:
{2,4,5}

Will return latest value

💡 Trade-off consistency
and availability

Quorums: write-write
conflicts

52

Let:
N = 5
W = 3

✅Write-write conflicts can be
detected and resolved

CS-460

1

2

3

5

4

Write
Quorum 1:

{1,2,3}

Write
Quorum 2:

{2,4,5}

Can ignore older write

Constraints (to detect write-write
conflicts):

W > N / 2

Quorum Trade-offs
• In Cassandra, values of R and W are configurable per query
• No need for strong consistency sometimes → eventual consistency

53
CS-460 53

Goal Choose: Why?
Consistency High R and W Ensures quorum overlap
Write
availability

Lower W Less nodes need to acknowledge a write

Low read
latency

Lower R Faster reply collection by coordinator

Key features of Cassandra

CS-460

54Distributed and
decentralized

Always
available
with
tunable
consistency

Fault-tolerant

High write
throughput

Fast and linear
scalability

Multiple Data
Center Support

• NoSQL appropriate
datastructures for many
Big Data applications
• Distributed key-value

stored widely used in
production
• Uses many algorithms

from P2P systems and
distributed computing

Key Takeaways
1. Designing distributed systems is all about trade-offs
2. Designing for scale requires rethinking consistency
3. Key-value abstractions power modern web applications

55
CS-460 55

References

• Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan
Kakulapati, Avinash Lakshman, Alex Pilchin, Swaminathan
Sivasubramanian, Peter Vosshall, Werner Vogels:
Dynamo: amazon's highly available key-value store. SOSP 2007
• Avinash Lakshman, Prashant Malik: Cassandra: a decentralized

structured storage system. ACM SIGOPS Oper. Syst. Rev. 44(2): 35-40
(2010)

CS-460 56

https://dblp.org/pid/48/6538.html
https://dblp.org/pid/92/3883.html
https://dblp.org/pid/98/2015.html
https://dblp.org/pid/76/4775.html
https://dblp.org/pid/76/4775.html
https://dblp.org/pid/34/3015.html
https://dblp.org/pid/65/4806.html
https://dblp.org/pid/65/4806.html
https://dblp.org/pid/97/7007.html
https://dblp.org/pid/v/WernerVogels.html
https://dblp.org/db/conf/sosp/sosp2007.html
https://dblp.org/pid/05/7214.html
https://dblp.org/db/journals/sigops/sigops44.html

