CAP Theorem & KVS

Martijn de Vos
Week 10 - CS-460

cPrFL
Modern Web Workloads

* Web-based applications cause spikes
e Data: large and unstructured
 Random reads and writes; sometimes write-heavy (e.g., finance apps)

* Joins infrequent

Challenges with RDBMS
* Not designed for distributed environments % This shift in workload

demands gave rise to NoSQL

* Scaling SQL is expensive and inefficient

CS-460 3

EPFL
NoSQL

o

= Not only SQL rlq k
Avoids: — ¥ . mongoDB
e Strict ACID compliance HYPERTABLE
* Complex joins and relational .) i .

schemes “~ NEO4] e I’edIS
Provides: A No free lunch
* Scalability
* Easy and frequent changes to DB Weaker consistency

guarantees, limited query
expressiveness

e Large data volumes

CS-460 4

=PrFL
Availability

* Data replication improves availability in case of failures
* By storing the same data in more than one site or node

Replicated
—
" ‘

Yeplicated
/?ep//bated

CS-460

cPrFL
The CAP Theorem™

In a distributed system you can satisfy at most 2
out of 3 guarantees:

Consistency

CP

1. Consistency: every read receives the most recent
write or an error CA

2. Availability: every request received by a non-failing Availability Partition
: : : Tolerance

node in the system must result in a (timely) response

3. Partition tolerance: the system continues to operate

despite an arbitrary number of messages being
dropped (or delayed) by the network

* Proposed by Eric Brewer (Berkeley) in 2000, proved by Gilbert (NUS) and Lynch (MIT) in 2002

cPFL
Why does Consistency Matter?

Consistency: every read receives the most recent write or an error

Use Case What you expect (consistency) What could go wrong
(inconsistency)

Banking app Transfer €500 via your phone, it instantly shows up Your balance looks updated on
on your desktop app too. your phone but not on your
desktop.

* Booking a flight A seat is shown as unavailable right after someone Two users book the same seat at
else books it. once.

. Online shopping You remove an item from your shopping cart and You get charged for the same item
it’s instantly reflected everywhere. because a device has stale cart
data.

CS-460 7

cPFL
Why does Availability Matter?

Availability: every request received by a non-failing node in the system must
result in a (timely) response

/ Reliability \ / Speed = Money \ / Cognitive Drift \

Users expect services Latency kills Humans are impatient
to work 24/7 engagement

 A500ms delay on Amazon: every * 1s of delay and
Amazon - 20% extra 100ms - users mentally
revenue loss millions lost move on

* If checkout fails, * Google: longer load * Responsiveness is
users can abandon time - fewer key to user flow
their purchase searches = lost and retention

_ NN /

=PrFL
Why does Partition Tolerance Matter?

Partition tolerance: the system continues to operate despite an arbitrary
number of messages being dropped (or delayed) by the network

Internet router outage Data center ISP failure Servers are not reachable anymore

Undersea cable cut SEA-ME-WE 5 cable incident (2024) Connectivity loss between regions

DNS outage Dyn DDOS attack (2016) Users can’t resolve hostnames

BGP configuration error Facebook outage (2021) Outage of Facebook and
subsidiaries

Take-away: partitions actually happen in real-world settings

CS-460 9

cPFL
CAP Combinations

CA: Consistency + Availability AP: Availability + Partition CP: Consistency + Partition
Tolerance Tolerance

Strong consistency Always available Strong consistency
Always available Operational under partitions Operational under partitions
X Fails on partition X May return stale data X May deny some requests

. Cannot exist in practical . Example: Cassandra . Example: ZooKeeper
distributed settings

CS-460 10

=PrL
CAP In Practice

e 2 out of 3 is somewhat misleading
* Partition tolerance is non-negotiable in real systems, we need it
* So the real choice is between Consistency and Availability

* Traditional RDBMSs - Consistency, Partition Tolerance

* NoSQL - Availability, Partition Tolerance

? Availability prioritizes user experience, consistency prioritizes correctness

CS-460

11

=PFL
ACID vs. BASE — The Tradeoff in Modern
Systems

* You can’t have ACID properties and high
availability under network partitions ? AciD s like a strict

accountant, BASE is like
a bar tab.

* BASE systems embrace this, trading strict
consistency for availability and scalability

CS-460 12

cPrL
BASE Properties

* Basic Availability
* Possibilities of faults but not a
fault of the whole system

e Soft-state
* Copies of a data item may be

inconsistent

* Eventually consistent

 Copies becomes consistent at
some later time if there are no
more updates to that data item

CS-460

ACID BASE<_

vsed in many
Atomicity e NoSaL
Available
S(ij ems
Consistency Soft State
s Eventually
ot o Consistent
Durability

[https://www.guru99.com/sql-vs-nosql.html]

13

cPFL
Key Takeways

Choose the right guarantee for the right task (CP vs. AP)

Partition tolerance is non-negotiable in the CAP theorem

ACID for RDBMS, BASE for NoSQL systems

Different applications might need different consistency guarantees

B W

cPFL
References

* Theorem first presented as a conjecture by Brewer at the 2000
Symposium on Principles of Distributed Computing (PODC

* Seth Gilbert and Nancy Lynch, "Brewer's conjecture and the feasibility

of consistent, available, partition-tolerant web services", ACM SIGACT
News, Volume 33 Issue 2 (2002), pg. 51-59.

* Eric Brewer, "CAP twelve years later: How the 'rules' have changed",
Computer, Volume 45, Issue 2 (2012), pg. 23—29.

CS-460 15

https://en.wikipedia.org/wiki/Conjecture
https://en.wikipedia.org/wiki/Symposium_on_Principles_of_Distributed_Computing
http://dl.acm.org/citation.cfm?id=564601&CFID=609557487&CFTOKEN=15997970
http://dl.acm.org/citation.cfm?id=564601&CFID=609557487&CFTOKEN=15997970
http://www.infoq.com/articles/cap-twelve-years-later-how-the-rules-have-changed

Key-value stores

EPFL

Serving Today’s Workloads

=3 Performance

Speed (req/s.)
Scale out, not up

'@ Efficiency
Low total cost of operation
Fewer system administrators

¢ Reliability

* Avoid single point of
failure

il Scalability

* Need to serve many
users

CS-460

17

c=PrL
The Key-value Abstraction (1/2)

Key-value is a powerful abstraction powering the modern web

Key

post 1d (x.com, facebook.com) Post content, author, timestamp
item _1d (amazon.com) Name, price, stock info
flight no (expedia.com) Route, availability, price

account _no (bank.com) Balance, transactions, owner

CS-460 18

=PrL
The Key-value Abstraction (2/2)

A dictionary-like data structure
» Supports insert, lookup, and delete by key
 Example: a local hash table ? How can we

But now, distributed across many machines effectively locate and
retrieve a key in a large,

distributed database?

* Designed to handle web-scale workloads
Like Distributed Hash tables (DHTs) in P2P systems

* Key-value solutions reuse many techniques from DHTs

e Consistent hashing, replication, partitioning, ...

EPFL
Key-value/NoSQL Data Model

* Core operations: get(key) and put(key, value)

» Storage model: tables, but more flexible

 Called column families (Cassandra), tables (Hbase), collections (MongoDB)

e Unlike traditional RDBMS tables:

* May be schema-less: each row can have different columns

* Does not always support joins or foreign keys

Design of a real key-value store,
Cassandra

% |

cassandra
Released in 2008, after Dynamo (2007) and BigTable (2006)

CCCCCC

EPFL

Cassandra S

cassandra

Q"
N

* A distributed key-value store

* Many companies use Cassandra in their production clusters
* |IBM, Adobe, HP, eBay, Ericsson, Symantec, Twitter, Spotify, Netflix

* Scalable data model: data split across nodes
* CAP: availability and partition tolerance

CS-449 22

cPFL
Objectives

 Distributed storage system
e Targets large amount of unstructured data

* Intended to run in a datacenter (and also across DCs) across many
commodity servers

* No single point of failure
* Originally designed at Facebook
e Open-sourced later, today an Apache project (2010)

e But: does not support joins, limited support for transactions and
aggregation

EPFL
Data model (1/4)

e Table in Cassandra: distributed map indexed by a key (can be nested)
* Row: identified by a Unique Key (Primary key)

* Keyspace: A logical container for column families that defines the
replication strategy and other configuration options

* Column Family: A logical grouping of columns with a shared key, contains
Supercolumns or Columns

e Column: basic data structures with a name, type, value, timestamp

* Supercolumn: stores a map of sub-columns. Columns that are likely to be
queried together should be placed in the same column family

EPFL
Data model (2/4)

keyspace
column family

column

settings

CS-460 2

EPFL

Data model (3/4)

Feawre | RoBMs

Organization

Row structure

Column data

Schema changes

Data model

Database — table - row

Fixed schema

Name, type, value
Typically requires

downtime
Normalized with JOINs

CS-460

Keyspace - column family
— column

Dynamic columns

Name, type, value,
timestamp
During runtime

Denormalized

27

EPFL

Data model (4/4)

Simple Column family

Column 1

row data

Column 2

row data

Column 3

row data

Bl
Bl

Column 1

row data

Column 4

row data

CS-460

Super Column family

Super Column 1

Column 1 Column 2

Super Column 2

Column 3 Column 4

28

cPFL
Facebook example

* Facebook maintains a per-user index of all messages exchanged
between senders and receivers

 Two kind of search features enabled in 2008
e Search by term

» Search by user: given a user’s name, returns all the messages sent/received
by that user

cPrFL
Facebook term search

* Primary key: UserID
* Words of messages: super columns

* Columns within the super columns: individual message identifiers
(messageld) of the messages that contains the word

Super Column 1: Term1 Super Column K : Termk

msgID, msgID; msgID, msgID, msgID, msgID,
'\\ //‘

Column Family (user 1] Column Family (user 2

Row Key Al) Al)

<user id>

Super Column 1 Super Column k Super Column 1

EPFL

Facebook Inbox search

* Primary key: UserID

* Recipients ID’s: super columns

* Columns within the super columns: messageld

Row Key
<user id>

Super Column 1

Column Famlly 1 Column Famlly p

Super Column 1: UserV

msgID,;

msgID;

msgID,

Super Column R .Usglr IDR

msgID,

msgID;

msgID,

CS-460

31

cPrFL
Schema

Super Column 1: Term1 Super Column K: Termk

Term Search

msgID, msgID; msgID, msgID, msglD, msgID,
Column Family 1 Column Family 2
Row Key y y
userie | supercolin
Super Column 1 Super Column k Super Column 1
— /

]

Super Column 1: UserLgl/ Super Column R :Usg/rID R

Interactions

msgID, msgID; msgID, msgID, msgID, msgID,

CS-460 32

cPFL
Example

Alice sends “Hello” to Bob (msgID: AB)

Super Column Hello

Super Column World

Alice

Super Column
Hello

Column Family Terms

Super Column
Bob

Column Family Inter.

Super Column Bob

Super Column Jack

CS-460

33

cPrFL
Cassandra Architecture

e Decentralized, peer-to-peer architecture
* Easy to scale: add/remove nodes
* Read/write requests can go to any replica node

* Reads and write have a configurable consistency level

EPFL

Cassandra Architecture

N O Uk e

Partitioning

Load balancing
Replication

Writes and reads

Data structures
Membership management
Consistency

CS-460

? Using terms node and

replica interchangably

35

EPFL

Cassandra: Partioning ® ite

H(“user123”) = 68

* Nodes are conceptually
ordered on a clockwise ring

e Each node is responsible for 96-128
the region of the ring
between itself and its Route write
predecessor @ to responsible

node

* Example of a write without

replication (right)

® Cassandra uses a ring-based DHT but

without finger tables or routing

CS-460 36

Token range: [0-128]

EPFL

Cassandra: Load balancing

* Random partitioning leads to non-
uniform data and load distribution

* Cassandra assumes homogeneous
nodes’ performance

e How is it addressed

* Lightly loaded nodes move on the
ring to alleviate loaded ones

e Virtual nodes

CS-460

96-128

key range

Overloaded —— (W

Token range: [0-128]

0-32
Popular

37

EPFL

Cassandra: Replication @
H(“user123”) =35
* Replication factor N: determines 96-128
how many copies of the data

exist ©
Route write to
responsible nodes

* Each data item is replicated at N
nodes

* Various replication strategies
* Example with N=2 (right)

CS-460

@ Write
“user123”

cPFL
Cassandra: Replication Strategies

SimpleStrategy NetworkTopologyStrategy

Used for single DC and rack For deployment across different DCs

Easy setup Tunable replication factor per DC

CREATE KEYSPACE clusterl WITH
replication = {'class’:
'SimpleStrategy’',
'replication_factor': 2};

CREATE KEYSPACE clusterl WITH
replication = {'class':
'NetworkTopologyStrategy',
'east': 2, 'west': 3};

<" SimpleStrategy: random partitioner or byte-ordered (ideal for range queries)

EPFL
Cassandra: Writes (1/2)

* Coordinator: acts as a proxy between clients and

replicas

* Writes need to be lock-free and fast (no reads or Write request
disk seeks)

* Client sends write to one coordinator node in a Coordinator

Cassandra cluster

* Coordinator may be per-key, or per-client, or per-

query
* Per-key coordinator ensures writes for that key are
serialized

* When X replicas respond, coordinator returns an
acknowledgement to the client

Replica set

CS-460 40

EPFL
Cassandra: Writes (2/2)

Client

* Always writable: Hinted Handoff mechanism

* If any replica is down, the coordinator writes to
all other replicas, and keeps the write locally
until the down replica comes back up.

* When all replicas are down, the coordinator
(front end) buffers writes (for up to a few hours).

Write request for R,

Coordinator

|

Real-world analogy: accepting parcels of

neighbors who are not at home

Reconcile later

CS-460 41

=PrFL
Cassandra: lightweight transactions

* Ensures sequential transaction execution
* Implemented using Paxos consensus
* At the cost of performance

EPFL
Cassandra: Data structures

Write at a replica node
(3) Asynchronous flush

Client request

@

Memtable
(in memory)

Commit Log SSTables

Transactional log, used * Write-back cache of data partitions Sorted String Tables (disk):
for recovery in case of that can be searched by key. e Persistent, ordered immutable

failures * In-memory representation of multiple map from keys to values, where

key-value pairs both keys and values are arbitrary
* Append-only data structure (fast) byte strings

CS-460 e Uses Bloom filters 43

cPrFL
Cassandra: Memtables flushes

* Background thread keeps checking the size of all memtables

* When a new Memtable is created, the previous one marked for
flushing
* Node’s global memory threshold have been reached
e Commit log is full

* Another thread flushes all the marked Memtables

* Commit log segments of the flushed Memtable are marked for
recycling

* A Bloom filter and index are created

cPFL
Bloom Filters

Compact way of representing a set of items

Checking for existence (membership) in set is cheap

Probability of false positives: an item not in set may return true as being in set

Never false negatives

{x,y,2}

Example FP rate:
* m=4 hash functions
100 items in filter

- / * 3200 bits
\ S * FP rate =0.02%

CS-460 45

EPFL

Read .
Cassandra: Reads ® Client

“user123”

Return latest-
timestamped
value

(2) H(“user123”) =35
* Coordinator can contact X replicas

* Checks consistency in the
background, initiating a read repair
if any two values are different

* This mechanism seeks to eventually
bring all replicas up to date

96-128

@

Replicas respond
Route read to to coordinator
X replicas

e At a replica: read looks at
Memtables first, and then SSTables

* A row may be split across multiple
SSTables

CS-460 46

EPFL
Cassandra: Membership Management (1/2)

* Any server in the cluster could be the coordinator

* So every server needs to maintain a list of all the other servers that
are currently in the cluster: full membership

* Membership needs to be updated automatically as servers join, leave,
and fail

* Membership Protocol
 Efficient anti-entropy gossip-based protocol

e P2P protocol to discover and share location and state information about other
nodes in a Cassandra cluster

EPFL
Cassandra: Membership Management (2/2)

Cassandra uses gossip-based cluster membership

1 10120 66
2 [10103 62
3| 10098 63
4| 10111 65

T
Address / Time (local)

Heartbeat Counter

Protocol:
*Nodes periodically gossip their membership list
*On receipt, the local membership list is updated, as shown

*If any heartbeat older than Ag,;, node is marked as failed

CS-460

’

1 10118 64
2| 10110 64
3| 10090 58
4| 10111 65

1| 10120 70
2 10110 64
3 | 10098 63
4| 10111 65

Current time: 70 at node 2

(asynchronous clocks)

48

=PrFL
Cassandra: Consistency

e Cassandra has tunable consistency levels
* Client chooses a consistency level for each read/write operation

ANY Contact any node Fast; low consistency
ALL Contact all replicas Slow; strong consistency
ONE Contact at least one replica Faster than all

QUORUM Contact quorum across

replicas in DCs

LOCAL_QUORUM Wait for quorum in first DC ~ Faster than QUORUM
client contacts

CS-460 49

cPFL
Quorum-based protocols

In Cassandra, the coordinator must contact a quorum of replicas to read or write data

Let: Constraints (for strong consistency):
N = # of replicas
R = # of nodes in read R+W>N
guorum
W = # of nodes in write __
quorum Ensures most recent write is always read

Quorum = Getting agreement from a committee — you don’t need everyone, just a majority

CS-460 50

EPFL

QU orums: exam p ‘ e Will return latest value

Write
guorum:
{2,4,5}

Let:
N=5 Read
R=3 guorum:
W =3 {1,2,3}
Strong consistency

? Trade-off consistency

and availability

CS-460 51

=PrL
Quorums: write-write Can ignore older write
conflicts | Write

Quorum 2:

Let: Write {2;415}
N=5 Quorum 1:
W =3 {1,2,3}

Constraints (to detect write-write

conflicts):

W>N/2

Write-write conflicts can be
detected and resolved

CS-460 52

cPrFL
Quorum Trade-offs

* In Cassandra, values of R and W are configurable per query
* No need for strong consistency sometimes - eventual consistency

Goal lchoose: lwhyp

Consistency High Rand W Ensures quorum overlap

Write Lower W Less nodes need to acknowledge a write
availability

Low read Lower R Faster reply collection by coordinator

latency

CS-460 53

cPFL
Key features of Cassandra

Distributed and

decentralized
Fault-tolerant

Multiple Data

Center Support \W/ Q%‘gi% Always

available
cassandra with
tunable
Fast and linear consistency
scalability

High write
throughput

CS-460

* NoSQL appropriate
datastructures for many
Big Data applications

* Distributed key-value
stored widely used in
production

e Uses many algorithms
from P2P systems and
distributed computing

cPFL
Key Takeaways

1. Designing distributed systems is all about trade-offs
2. Designing for scale requires rethinking consistency
3. Key-value abstractions power modern web applications

55

cPFL
References

e Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan
Kakulapati, Avinash Lakshman, Alex Pilchin, Swaminathan
Sivasubramanian, Peter VVosshall, Werner Vogels:

Dynamo: amazon's highly available key-value store. SOSP 2007

* Avinash Lakshman, Prashant Malik: Cassandra: a decentralized
structured storage system. ACM SIGOPS Oper. Syst. Rev. 44(2): 35-40
(2010)

CS-460 56

https://dblp.org/pid/48/6538.html
https://dblp.org/pid/92/3883.html
https://dblp.org/pid/98/2015.html
https://dblp.org/pid/76/4775.html
https://dblp.org/pid/76/4775.html
https://dblp.org/pid/34/3015.html
https://dblp.org/pid/65/4806.html
https://dblp.org/pid/65/4806.html
https://dblp.org/pid/97/7007.html
https://dblp.org/pid/v/WernerVogels.html
https://dblp.org/db/conf/sosp/sosp2007.html
https://dblp.org/pid/05/7214.html
https://dblp.org/db/journals/sigops/sigops44.html

