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Modern Web Workloads

• Web-based applications cause spikes
• Data: large and unstructured
• Random reads and writes; sometimes write-heavy (e.g., finance apps)
• Joins infrequent

Challenges with RDBMS
• Not designed for distributed environments
• Scaling SQL is expensive and inefficient
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👉 This shift in workload 
demands gave rise to NoSQL



NoSQL
= Not only SQL

Avoids:
• Strict ACID compliance
• Complex joins and relational 

schemes

Provides:
• Scalability
• Easy and frequent changes to DB
• Large data volumes
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⚠ No free lunch

Weaker consistency 
guarantees, limited query 

expressiveness



Availability
• Data replication improves availability in case of failures
• By storing the same data in more than one site or node
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Replicated

Replicated

Replicated



The CAP Theorem*
In a distributed system you can satisfy at most 2 
out of 3 guarantees:

1. Consistency: every read receives the most recent 
write or an error

2. Availability: every request received by a non-failing 
node in the system must result in a (timely) response

3. Partition tolerance: the system continues to operate 
despite an arbitrary number of messages being 
dropped (or delayed) by the network

CS-460 6

* Proposed by Eric Brewer (Berkeley) in 2000, proved by Gilbert (NUS) and Lynch (MIT) in 2002



Why does Consistency Matter?

Consistency: every read receives the most recent write or an error
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Use Case What you expect (consistency) What could go wrong 
(inconsistency)

🏦 Banking app Transfer €500 via your phone, it instantly shows up 
on your desktop app too.

Your balance looks updated on 
your phone but not on your 
desktop.

✈ Booking a flight A seat is shown as unavailable right after someone 
else books it.

Two users book the same seat at 
once.

🛒 Online shopping You remove an item from your shopping cart and 
it’s instantly reflected everywhere.

You get charged for the same item 
because a device has stale cart 
data.



Why does Availability Matter?
Availability: every request received by a non-failing node in the system must
result in a (timely) response
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Reliability

Users expect services 
to work 24/7

• A 500ms delay on 
Amazon → 20% 
revenue loss

• If checkout fails, 
users can abandon 
their purchase

Speed = Money

Latency kills 
engagement

• Amazon: every 
extra 100ms → 
millions lost

• Google: longer load 
time → fewer 
searches → lost 
revenue

Cognitive Drift

Humans are impatient

• 1s of delay and 
users mentally 
move on

• Responsiveness is 
key to user flow 
and retention



Why does Partition Tolerance Matter?
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Partition tolerance: the system continues to operate despite an arbitrary 
number of messages being dropped (or delayed) by the network

Event Example Impact

Internet router outage Data center ISP failure Servers are not reachable anymore

Undersea cable cut SEA-ME-WE 5 cable incident (2024) Connectivity loss between regions

DNS outage Dyn DDOS attack (2016) Users can’t resolve hostnames

BGP configuration error Facebook outage (2021) Outage of Facebook and 
subsidiaries

Take-away: parNNons actually happen in real-world seOngs



CAP Combinations

CS-460 10

CA: Consistency + Availability AP: Availability + Partition 
Tolerance

CP: Consistency + Partition 
Tolerance

✅ Strong consistency ✅ Always available ✅ Strong consistency

✅ Always available ✅ Operational under partitions ✅ Operational under partitions

❌ Fails on partition ❌May return stale data ❌May deny some requests

💡Cannot exist in practical 
distributed settings

💡Example: Cassandra 💡Example: ZooKeeper



CAP in Practice

• 2 out of 3 is somewhat misleading
• Partition tolerance is non-negotiable in real systems, we need it
• So the real choice is between Consistency and Availability

• Traditional RDBMSs → Consistency, Partition Tolerance
• NoSQL → Availability, Partition Tolerance
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💡 Availability prioriNzes user experience, consistency prioriNzes correctness



ACID vs. BASE – The Tradeoff in Modern 
Systems

• You can’t have ACID properties and high 
availability under network partitions
• BASE systems embrace this, trading strict 

consistency for availability and scalability
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💡 ACID is like a strict 
accountant, BASE is like 

a bar tab.



BASE Properties

• Basic Availability
• Possibilities of faults but not a

fault of the whole system

• Soft-state
• Copies of a data item may be

inconsistent

• Eventually consistent
• Copies becomes consistent at

some later time if there are no
more updates to that data item
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[https://www.guru99.com/sql-vs-nosql.html]



Key Takeways

1. Choose the right guarantee for the right task (CP vs. AP)
2. Partition tolerance is non-negotiable in the CAP theorem
3. ACID for RDBMS, BASE for NoSQL systems
4. Different applications might need different consistency guarantees
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Key-value stores 
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Serving Today’s Workloads
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🏎 Performance

• Speed (req/s.)
• Scale out, not up

🛡 Reliability

• Avoid single point of 
failure

⚙ Efficiency

• Low total cost of operation
• Fewer system administrators

📈 Scalability

• Need to serve many 
users



The Key-value Abstraction (1/2)

CS-460 18

Key Value
post_id (x.com, facebook.com) Post content, author, timestamp
item_id (amazon.com) Name, price, stock info
flight_no (expedia.com) Route, availability, price
account_no (bank.com) Balance, transactions, owner

Key-value is a powerful abstraction powering the modern web



The Key-value Abstraction (2/2)

• A dictionary-like data structure
• Supports insert, lookup, and delete by key
• Example: a local hash table

• But now, distributed across many machines
• Designed to handle web-scale workloads

• Like Distributed Hash tables (DHTs) in P2P systems

• Key-value solutions reuse many techniques from DHTs
• Consistent hashing, replication, partitioning, …
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❓How can we 
effectively locate and 

retrieve a key in a large, 
distributed database?



Key-value/NoSQL Data Model
• Core opera[ons: get(key) and put(key, value)

• Storage model: tables, but more flexible
• Called column families (Cassandra), tables (Hbase), collec3ons (MongoDB)

• Unlike tradi[onal RDBMS tables:
• May be schema-less: each row can have different columns
• Does not always support joins or foreign keys
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Design of a real key-value store, 
Cassandra

Released in 2008, a`er Dynamo (2007) and BigTable (2006)
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Cassandra
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• A distributed key-value store
• Many companies use Cassandra in their production clusters
• IBM, Adobe, HP, eBay, Ericsson, Symantec, Twitter, Spotify, Netflix

• Scalable data model: data split across nodes
• CAP: availability and partition tolerance



Objectives

• Distributed storage system 
• Targets large amount of unstructured data
• Intended to run in a datacenter (and also across DCs) across many 

commodity servers
• No single point of failure
• Originally designed at Facebook
• Open-sourced later, today an Apache project (2010)

• But: does not support joins, limited support for transac5ons and 
aggrega5on
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Data model (1/4)

• Table in Cassandra: distributed map indexed by a key (can be nested)

• Row: idenRfied by a Unique Key (Primary key)
• Keyspace: A logical container for column families that defines the 

replicaRon strategy and other configuraRon opRons
• Column Family: A logical grouping of columns with a shared key, contains 

Supercolumns or Columns

• Column: basic data structures with a name, type, value, Rmestamp
• Supercolumn: stores a map of sub-columns. Columns that are likely to be 

queried together should be placed in the same column family
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Data model (2/4)
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settings
settings name value timestamp

column

column family

keyspace

type



Data model (3/4)
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Feature RDBMS Cassandra
Organization Database → table → row Keyspace → column family 

→ column
Row structure Fixed schema Dynamic columns
Column data Name, type, value Name, type, value, 

timestamp
Schema changes Typically requires 

downtime
During runtime

Data model Normalized with JOINs Denormalized



Data model (4/4)
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Column 1 Column 2 Column 3

row data row data row data
Key 1

Key 2

Simple Column family

Key 1

Super Column 1

Column 1 Column 4

row data row data

Super Column family

Column 1 Column 2

row data row data

Super Column 2

Column 3 Column 4

row data row data



Facebook example

• Facebook maintains a per-user index of all messages exchanged 
between senders and receivers
• Two kind of search features enabled in 2008
• Search by term
• Search by user: given a user’s name, returns all the messages sent/received 

by that user
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Facebook term search

• Primary key: UserID
• Words of messages: super columns
• Columns within the super columns: individual message identifiers 

(messageId) of the messages that contains the word
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MmsgIDi MmsgIDj MmsgIDk …

Super Column 1: Term1

MmsgIDt MmsgIDj MmsgIDk …

Super Column  K : Termk

Row Key
<user id>

Super Column 1 Super Column k

Column Family (user 1)

Super Column 1 Super Column k

Column Family (user 2)



Facebook Inbox search

• Primary key: UserID
• Recipients ID’s: super columns
• Columns within the super columns: messageId
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MmsgIDi MmsgIDj MmsgIDk …

Super Column 1: User ID1

MmsgIDt MmsgIDj MmsgIDk …

Super Column  R :User IDR

Row Key
<user id>

Super Column 1 Super Column k

Column Family 1

Super Column 1 Super Column k

Column Family 2



Schema
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MmsgIDi MmsgIDj MmsgIDk …

Super Column 1: Term1

MmsgIDt MmsgIDj MmsgIDk …

Super Column  K : Termk

MmsgIDi MmsgIDj MmsgIDk …

Super Column 1: UserID1

MmsgIDt MmsgIDj MmsgIDk …

Super Column  R :UserID R

Row Key
<user id>

Super Column 1 Super Column k

Column Family 1

Super Column 1 Super Column k

Column Family 2

Term Search

Interactions



Example
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M M AB …

Super Column Hello

M M M …

Super Column  World

AB M M …

Super Column Bob

M M M …

Super Column  Jack

Alice
Super Column 

Hello

Column Family Terms

Super Column 
Bob

Column Family Inter.

Alice sends “Hello” to Bob (msgID: AB)



Cassandra Architecture

• Decentralized, peer-to-peer architecture

• Easy to scale: add/remove nodes

• Read/write requests can go to any replica node

• Reads and write have a configurable consistency level
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Cassandra Architecture

1. Partitioning
2. Load balancing
3. Replication
4. Writes and reads
5. Data structures
6. Membership management
7. Consistency
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💡 Using terms node and 
replica interchangably



Cassandra: Partioning
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1

2

3

4

• Nodes are conceptually 
ordered on a clockwise ring
• Each node is responsible for 

the region of the ring 
between itself and its 
predecessor
• Example of a write without 

replication (right)

0-32

32-64

96-128

64-96

Write
“user123”

1
2

H(“user123”) = 68

3
Route write

to responsible
node

💡 Cassandra uses a ring-based DHT but 
without finger tables or rouNng

Token range: [0-128]



Cassandra: Load balancing

• Random partitioning leads to non-
uniform data and load distribution
• Cassandra assumes homogeneous 

nodes’ performance

• How is it addressed
• Lightly loaded nodes move on the 

ring to alleviate loaded ones
• Virtual nodes
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1

2

3

4

0-32

32-64

96-128

64-96

Token range: [0-128]

Popular
key range

Overloaded

1



Cassandra: Replication

• Replication factor N: determines 
how many copies of the data 
exist
• Each data item is replicated at N

nodes
• Various replication strategies
• Example with N=2 (right)
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1

2

3

4

0-32

32-64

96-128

64-96

Write
“user123”

1
2

H(“user123”) = 35

3
Route write to 

responsible nodes



Cassandra: Replication Strategies
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SimpleStrategy NetworkTopologyStrategy
Used for single DC and rack For deployment across different DCs
Easy setup Tunable replication factor per DC

CREATE KEYSPACE cluster1 WITH 
replication = {'class’: 
'SimpleStrategy', 
'replication_factor': 2};

CREATE KEYSPACE cluster1 WITH 
replication = {'class': 
'NetworkTopologyStrategy', 
'east': 2, 'west': 3};

👉 SimpleStrategy: random partitioner or byte-ordered (ideal for range queries)



Cassandra: Writes (1/2) 

• Coordinator: acts as a proxy between clients and 
replicas
• Writes need to be lock-free and fast (no reads or 

disk seeks)
• Client sends write to one coordinator node in a 

Cassandra cluster 
• Coordinator may be per-key, or per-client, or per-

query
• Per-key coordinator ensures writes for that key are 

serialized
• When X replicas respond, coordinator returns an 

acknowledgement to the client
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Client

Coordinator

R1 Rn…

Write request

Replica set



Cassandra: Writes (2/2)

• Always writable: Hinted Handoff mechanism
• If any replica is down, the coordinator writes to 

all other replicas, and keeps the write locally 
unNl the down replica comes back up.
• When all replicas are down, the coordinator 

(front end) buffers writes (for up to a few hours). 
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📦 Real-world analogy: accepting parcels of 
neighbors who are not at home

Client

Coordinator

R1 R3

Write request for R3

R2

Reconcile later



Cassandra: lightweight transactions

• Ensures sequential transaction execution
• Implemented using Paxos consensus
• At the cost of performance
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Cassandra: Data structures
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Client request

Memtable
(in memory)Commit Log SSTables

Asynchronous flush

Transacjonal log, used
for recovery in case of 

failures

Write at a replica node

• Write-back cache of data partitions 
that can be searched by key.

• In-memory representation of multiple 
key-value pairs

• Append-only data structure (fast)

Sorted String Tables (disk): 
• Persistent, ordered immutable 

map from keys to values, where 
both keys and values are arbitrary 
byte strings

• Uses Bloom filters

1
2

3



Cassandra: Memtables flushes

• Background thread keeps checking the size of all memtables
• When a new Memtable is created, the previous one marked for 

flushing
• Node’s global memory threshold have been reached
• Commit log is full

• Another thread flushes all the marked Memtables
• Commit log segments of the flushed Memtable are marked for 

recycling
• A Bloom filter and index are created 
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Bloom Filters
• Compact way of representing a set of items
• Checking for existence (membership) in set is cheap
• Probability of false positives: an item not in set may return true as being in set
• Never false negatives

Example FP rate:
• m=4 hash functions
• 100 items in filter
• 3200 bits
• FP rate = 0.02%
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Cassandra: Reads 
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1

2

3

4

0-32

32-64

96-128

64-96

Read
“user123”

1

2 H(“user123”) = 35

3
Route read to 

X replicas

4
Replicas respond

to coordinator

Client

Return latest-
timestamped 

value 
5• Coordinator can contact X replicas

• Checks consistency in the 
background, initiating a read repair
if any two values are different
• This mechanism seeks to eventually 

bring all replicas up to date

• At a replica: read looks at 
Memtables first, and then SSTables
• A row may be split across multiple 

SSTables



Cassandra: Membership Management (1/2)

• Any server in the cluster could be the coordinator
• So every server needs to maintain a list of all the other servers that 

are currently in the cluster: full membership
• Membership needs to be updated automatically as servers join, leave, 

and fail
• Membership Protocol
• Efficient anti-entropy gossip-based protocol
• P2P protocol to discover and share location and state information about other 

nodes in a Cassandra cluster
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Cassandra: Membership Management (2/2)

1

1 10120 66

2 10103 62

3 10098 63

4 10111 65

2

4
3Protocol: 

•Nodes periodically gossip their membership list

•On receipt, the local membership list is updated, as shown

•If any heartbeat older than Δfail, node is marked as failed

1 10118 64

2 10110 64

3 10090 58

4 10111 65

1 10120 70

2 10110 64

3 10098 63

4 10111 65

Current time: 70 at node 2

(asynchronous clocks)

Address
Heartbeat Counter

Time (local)
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Cassandra uses gossip-based cluster membership



Cassandra: Consistency

• Cassandra has tunable consistency levels
• Client chooses a consistency level for each read/write operation
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Level Behavior Remarks
ANY Contact any node Fast; low consistency
ALL Contact all replicas Slow; strong consistency
ONE Contact at least one replica Faster than all
QUORUM Contact quorum across 

replicas in DCs
LOCAL_QUORUM Wait for quorum in first DC 

client contacts
Faster than QUORUM



Quorum-based protocols
In Cassandra, the coordinator must contact a quorum of replicas to read or write data
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Let:
N = # of replicas

R = # of nodes in read 
quorum

W = # of nodes in write 
quorum

Constraints (for strong consistency):

R + W > N

✅ Ensures most recent write is always read

Quorum = Getting agreement from a committee – you don’t need everyone, just a majority



Quorums: example
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Let:
N = 5
R = 3
W = 3

✅ Strong consistency
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1

2

3

5

4

Read
quorum:
{1,2,3}

Write
quorum:
{2,4,5}

Will return latest value

💡 Trade-off consistency 
and availability



Quorums: write-write 
conflicts
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Let:
N = 5
W = 3

✅Write-write conflicts can be 
detected and resolved
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1

2

3

5

4

Write
Quorum 1:

{1,2,3}

Write
Quorum 2:

{2,4,5}

Can ignore older write

Constraints (to detect write-write 
conflicts):

W > N / 2



Quorum Trade-offs
• In Cassandra, values of R and W are configurable per query
• No need for strong consistency sometimes → eventual consistency

53
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Goal Choose: Why?
Consistency High R and W Ensures quorum overlap
Write 
availability

Lower W Less nodes need to acknowledge a write

Low read 
latency

Lower R Faster reply collection by coordinator



Key features of Cassandra
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54Distributed and
decentralized

Always 
available 
with 
tunable 
consistency

Fault-tolerant

High write
throughput

Fast and linear 
scalability

Multiple Data
Center Support

• NoSQL appropriate 
datastructures for many 
Big Data applications
• Distributed key-value 

stored widely used in 
production
• Uses many algorithms 

from P2P systems and 
distributed computing



Key Takeaways
1. Designing distributed systems is all about trade-offs
2. Designing for scale requires rethinking consistency
3. Key-value abstractions power modern web applications

55
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