Scala Tutorial - Quick Reference

This tutorial is a quick reference material for those who are starting or need to
refresh their Scala skills.

We strongly recommend you use IntelliJ IDEA.

Create a new source file src/main/scala/HelloWorld.scala with the following
content:

@main def helloWorld(): Unit = println("Hello World!")

Compile and run the project in IntelliJ by pressing the green arrow next to the
@main annotation

Now that you know how to execute your code, we will refresh a bit of the Scala
language and standard APL.

e Scala is object-oriented, functional, and statically typed.

e Scala runs on the JVM and interoperates with Java.

e Scala offers easy parallelism through immutable data structures.

e In Scala, all types are objects, including functions and primitive types.

Values and variables

Values (val) are immutable, whereas variables (var) are mutable.

Syntax:

val x : Int = 3
var y : Int = 4

Scala supports type inference, so that types can be omitted:

val institution = "EPFL" // immutable, institution is inferred to be a String
institution = "ETH" // error

var i = 0 // mutable, inferred to be Int

i=1// o0k

val (name, age, height) = ("John Doe", 25, 1.75)

Functions

Syntax:

def functionName (paraml: Type, param2: Type, ...): ReturnType = expression
For instance:

def square(a: Int): Int = a * a
def fact(x: Int): Int = if (x < 2) 1 else x * fact(x - 1)

https://docs.scala-lang.org/tour/unified-types.html

Scala supports type inference for the returned value. You can omit the return
type when the function is not recursive:

def square(a: Int) = a * a // 0K
def fact(x: Int) = if (x < 2) 1 else x * fact(x - 1)
// error: recursive method fact needs result type

Larger blocks of code are generally enclosed by curly brackets

def quadRoots(a: Float, b: Float, c: Float) = { // with brackets
val deltaRoot = math.sqrt(b * b - 4 * a * c)
((-b + deltaRoot) / (2 * a), (-b - deltaRoot) / (2 * a))

}

If there is no returned value, you can use the Unit type (equivalent to void in
Java or C):

def nicePrint(str: String): Unit = println(s">>> ${str} <<<")

Notice the ‘s’ in front of the string literal, which enables string interpolation.
This is similar to Python’s f-strings.

Nested functions: you can declare functions inside functions.

def factorial(i: Imt): Int = {
def fact(i: Int, accumulator: Int): Int = {
if (i < 2)
accumulator
else
fact(i - 1, i * accumulator)
}
fact(i, 1)
}

Unlike the previous fact implementation, this one is tail recursive, i.e., it
executes in constant stack space because the same amount of stack memory is
used across the recursive calls.

Higher order functions

Higher order functions are functions that take other functions as arguments or
that return a function as a result.

For instance, sum computes the sum of all values between from and to after
applying an arbitrary function £ to each value.

def sum(from: Int, to: Int, f: Int => Int): Int = {
if (from > to) 0 else f(from) + sum(from + 1, to, f)
}
def sumOfSquares(from: Int, to: Int) = sum(from, to, square)
def sumOfFactorials(from: Int, to: Int) = sum(from, to, factorial)

https://docs.scala-lang.org/scala3/book/string-interpolation.html
https://en.wikipedia.org/wiki/Tail_call

Anonymous functions can be passed as arguments as well:

sum(1l, 5, x => x *¥ X * X) // Int = 225

Classes and objects

e A Class can be defined in one line. Its attributes may have default values,
and it can be instantiated with new.

class Point(val x: Int = 0, val y: Int = 0)
val origin = new Point // Point = Point@129a3c4b

By default, var or val attributes are public, but they can be explicitly set
to private. The default toString method prints a hash of the object. If one
wants a nicer print, it must be overridden.

class Point(val x: Int = 0, val y: Int = 0) {
override def toString: String = s"($x, $y)"

}

val origin = new Point // Point = (0, 0)

¢ Singleton objects have only one instance, and are defined by the keyword
object.

object Logger {

def info(message: String) = println(s"INFO: $message")
}
Logger.info("running...") // INFO: running. ..

o Companion objects are singleton objects with the same name as a corre-
sponding class. They both can access all members of the companion.

class Circle(val radius: Double) {
import Circle._
def area: Double = calculateArea(radius)
}
object Circle {
private def calculateArea(r: Double): Double = 3.1415 * r * r
}
val circle = new Circle(5.0)
circle.area // Double = 78.53750000000001

Case classes are like normal classes. The difference is that all attributes are
public val by default, and you do not need to use the new operator to instantiate
them. They are convenient for immutable structures and pattern matching. They
also override toString by default. They cannot be extended, as they are implicitly
final.

case class Person(name: String, age: Int)
val someone = Person("John Doe'", 25)

val personString = someone.toString
println(personString) // prints Person("John Doe', 25)

Pattern matching

Pattern matching is somewhat similar to switch/case constructions in Java/C,
but more powerful. It checks whether a value matches (keyword match) some
pattern and executes the corresponding case code.

import scala.util.Random
val x: Int = Random.nextInt(10)

x match {
case e if e , 2 == 0 => "even"
case _ => "odd"

}

Enums are especially useful for pattern matching:

enum Notification {
// equivalent to an abstract class (Notification) extended by two case classes.
// the scala comptler also knows that the two subclasses are *exhaustivex,
// there is no other subclass of Notification.
case Email(sender: String, title: String, body: String)
case SMS(caller: String, message: String)

// you can define methods in enums, just like Java abstract classes
def extractSource: String = {
this match {
case Email(sender, _, _) => sender
case SMS(caller, _) => caller
b
b
X

def notifyAbout(notification: Notification): String =
notification match {
case Email (sender, title, _) => s"You got an email from $sender with title: $title"
case SMS(number, _) => s"You got an SMS from $number!"

}

val someSms = SMS("12345", "Are you there?")

val someEmail = Email("alice@wonderland.com", "meeting", "Let's meet?")
println(notifyAbout (someSms))

println(notifyAbout (someEmail))

println(someEmail.extractSource)

Collections

« We will look into a few Scala collections:
— Array, Vector, List, Set, Map, Tuples

At the same time, we will use some common higher-order functions to manipulate
them:

o Transformations: map, flatMap
o Partitioning: groupBy

¢ Reduction: reduce

¢ Combination: zip

o Filtering: filter

Array and Vector

Arrays (API) are mutable, indexed collections of values, whereas Vectors (API)
are immutable. They provide random access and updates in constant time.

val numbers = Array(1l, 2, 3, 4)
val first = numbers(0) // read the first element
numbers (3) = 100 // replace the 4th array element with 100.

map is a higher-order function that maps each element of a collection into
another, possibly of a different type. Here is its signature in the Array class:

def map[B](f: (A) => B): Array[B]

Now, suppose that we want a collection with the cubes of our Array. We could
obtain it like this:

numbers.map(x => x * x * x) // Array[Int] = Array(1, 8, 27, 1000000)

filter selects all elements that satisfy a predicate provided as an argument. Here
is its signature in the Vector class:

def filter(p: A => Boolean): Vector[A]
We could filter the prime numbers from a collection like this:

def isPrime(n: Int): Boolean =
''((2 until n-1) exists (n % _ == 0))
(2 to 50).filter(isPrime) // Vector(2, 3, ..., 43, 47)

reduce is a higher-order function that applies a pair-wise associative operation
to all elements of a collection and returns a single value. Here is its signature:

def reducel[A] (op: (A, A) => A): A

https://www.scala-lang.org/api/3.x/scala/Array.html
https://www.scala-lang.org/api/3.x/scala/collection/immutable/Vector.html

Let’s say now that we want to obtain the multiplication among all the elements
in the numbers collection:

numbers.reduce((a, b) => a * b) // Int = 600
Here is another way of defining sumOfSquares that was shown before:

def sumOfSquares(from: Int, to: Int) =
(from to to).map(x => x * x).reduce(_ + _)

List

Lists represent ordered collections (API). They have O(1) time complexity for
prepend and head/tail access, whereas the other operations are usually O(n) in
the number of elements in the list.

Nil is the empty List. :: is a right-associative operator that prepends an
element to the List.

val mainList = List(3, 2, 1)
val another = 3 :: 2 :: 1 :: Nil

mainlList eq another // Boolean = false. They are different objects
mainlist == another // Boolean = true. They contain the same things
val with4 = 4 :: mainList // re-uses immutable mainList.

val shorter = mainList.tail // does not alloc anything

mainlList.reverse // 0(n) time complexity

flatMap, like map, iterates through all the elements of a collection and maps
them into something else. The difference is that flatMap may generate collections
for each element, and the result will be flattened, i.e., instead of a List of lists, the
result of flatMap will be a flat List containing all the elements of the mapped
collections. Here is its signature in the List class:

final def flatMap[B](f: A => GenTraversableOnce[B]): List[B]

Suppose that we have three lines of a file within a List. flatMap could be used
to obtain a single List with all the words in the file.

val linel "Let it snow, let it snow, let it snow."
val line2 = "Do or do not. There is no try."

val line3 = "A horse is a horse, of course, of course."
val file = List(linel, line2, line3)

val wordsInFile = file.flatMap(line => line.toLowerCase.split("\W+"))

Set

A Set is a collection that contains no duplicate elements (API).

https://www.scala-lang.org/api/3.x/scala/collection/immutable/List.html
https://www.scala-lang.org/api/3.x/scala/collection/Set.html

val myset = Set(1, 2, 2, 3, 3, 3) // scala.collection.immutable.Set[Int] = Set(1,

If we want to find out how many unique words we have in our file example, we
could do:

wordsInFile.toSet.size // Int = 1/

Tuples

Tuples (API) are immutable values with a fixed number of elements (up to 22),
each with their own type. Each individual element is named _ 1, 2, 3, and
so on. Case classes are an alternative to tuples if you prefer more meaningful
names.

val triplet = ("John Doe", 25, 1.75)
println(s"${triplet._1} is ${triplet._2} years old and ${triplet._3}m tall")

zip merges a collection with another by combining their elements in pairs (i.e.,
tuples of two elements). Its signature in the List class is:

def zip[B] (that: Iterable[B]): List[(A, B)]
For example,

val names = List("Alice", "Bob", "Charlie", "Dave", "Eve")
val grades = List(6, 4.5, 5.25, 5.5, 4)

val results = names zip grades

// List((Alice,6.0), (Bob,4.5),

// (Charlie,5.25), (Dave,5.5), (Eve,4.0))

If one of the lists is longer than the other, the extra elements will be ignored.

Map
A Map (API) maps keys into values.

val resultsMap = results.toMap
resultsMap("Bob") // Double = 4.5

groupBy partitions a collection into a map of collections according to a discrim-
inator function. Here is its signature in the List class:

def groupBy[K] (f: (A) => K): Map[K, List[Al]

Using the identity function as a discriminator gives a map where the keys are
unique elements of the original collection and values are collections containing
all the occurrences for each given key.

val groupedWords = wordsInFile.groupBy(x => x)

3)

https://www.scala-lang.org/api/3.x/scala/Tuple.html
https://www.scala-lang.org/api/3.x/scala/collection/Map.html

Loops
Like Java, you can use while, do while, and for.

val letters = ('a' to 'e').toVector
var i = 0
while (i < letters.size) {
println(letters(i))
i=1i+1

do {
i=1-1
println(letters(i))
} while(i > 0)

for (1 <- letters) println(l)

For comprehensions offer a concise notation to what would be nested loops in
imperative languages. They have the form for (enumeratorl; enumerator2;
[filter]) yield expression and result in a collection of elements.

Additional Resources

e Scala API

e Scala docs

e Sbt docs

e Coursera series of courses about Functional Programming in Scala. It is
possible to audit the courses for free if you do not need/want a certificate.

https://docs.scala-lang.org/scala3/book/control-structures.html#for-loops
https://www.scala-lang.org/api/3.x/
https://docs.scala-lang.org/
https://www.scala-sbt.org/1.x/docs/
https://www.coursera.org/specializations/scala#courses

	Scala Tutorial - Quick Reference
	Values and variables
	Syntax:

	Functions
	Syntax:

	Higher order functions
	Classes and objects
	Pattern matching
	Collections
	Array and Vector
	List
	Set
	Tuples
	Map
	Loops
	Additional Resources

