CS460 Projects Overview

9 PF
'J E L



'l

Project TAs




AAS 2Pl
Logistics

Two projects. Grading is equally weighted
1. Query execution & Optimization with Calcite
2. Recommendation Serving with Spark
Projects are Individual

— Do not share code: We will run plagiarism detection tools

— AI code generation is not allowed. No ChatGPT/Claude/Copilot etc
Graded automatically with tests

— Only write code in src/main/scala

— Last commit before deadline on main branch will be graded
Project IDE: Intelli] Idea

— Free community edition

— ultimate edition on academic license (epfl.ch email)
Programming Language: Scala




AN Pl
Timeline

Project registration for repos on Moodle 3.03
Project 1: Query execution & Optimization

- Released ~10.03

- Due 17.04

Project 2: Recommendation Serving

- Released ~28.04 (just after easter holidays)
- Due 30.05




= T~ v = B
Project 1 Learning Goals

- Apache Calcite

- Extensible framework for query optimization and execution

- Database internals concepts
- Volcano/iterator (tuple-at-a-time) processing model
- Late tuple materialization
- Query plan optimization rules



= N~ v = B
Project 2 Learning Goals

e Apache Spark

— Unified engine for large-scale data analytics/science and machine learning

e Data Management / Data Science concepts
— Loading / Caching/ Pre-processing
— Data partitioning
— Predictive analytics / Recommender systems / Machine learning



AN 2P~
Final Remarks

- You will not have to implement a full system from scratch
- just the functionality in isolation

- You can run tests locally with Intellij (src/main/test)
- IMPORTANT: Do not edit build files/interfaces

- Auto-grader will fail if you change any interface definition in the skeleton
- Only the latest commit in the main branch will be graded

- Register for the projects on Moodle before 3.03



AAS g Pr-l
Project 1




Ane =P~

Task 1: Volcano engine

e open(): initialize operator state
e next(): process and return next tuple (or EOF)

e close(): finalize execution aTd clean u| jonn

open(): open child

open(): start scan

Maria
John

Gage>30

I

sCan

next():

next():

25
33

Maria

John

33

close(): close child

33

close(): nothing



= N~ v = B
Task 1: Volcano engine (cont)

 Implement Scan, Select, Project, Join, Aggregate, Sort

e Please read documentation from parent classes
e First implement correctly, then optimize



= N~ v = B
Task 2: Late materialization (naive)

e No need to reconstruct full tuple on scan

— As long as we keep virtual IDs, we can process columns individually and stitch
them later

e The task involves:
— stitching
— interfacing with operators that do not support late materialization

— late materialization-aware operators

e Operators use volcano model in this task as well



= N~ v = B
Task 2.A: Stitch and Drop

4 John 33
0age>30 Maria 25
f John 33
drop .
1 Maria 25
4 2 John | 33
stitch
scan scan
1 Maria 1 25

2 John 2 33 12



= N~ v = B
Task 2.B: Late materialization operators
4

John 33
drop
4 2 John 33
stitch

SCan SCan

1 Maria 1 25
2 John 2 33 13



AN o pP-l
Task 3: Optimization for Late materialization

e If virtual ID defines tuples position, stitching is unnecessary.
We can fetch missing attributes on-demand.

— This way, we can avoid scanning the full column

e The task has two goals:

— Implement operator that fetches missing attributes
— Implement optimization rules in order to inject the operator to plans



Ane =P~

Task 3.A: Fetch Operator
A

No need to scan full “name” column
Fetch values for virtual IDs that satisfy filter

drop

John 33

1

2 John 33

fetch

t

0age>30

t

sCan

25
33 15



'l

Task 3.B: Optimization Rules
) )

drop drop

sCan

Pattern matching: stitch with scan as left child

16



AAS g Pr-l
Project 2

17



QAAS ;b
Project 2 Highlights

e Three milestones (single-deadline for all)
1. Data loading & Simple data analysis

2. Movie-ratings pipeline
e Aggregations & Incremental maintenance
3. Prediction serving (recommender system)

e Similarity based recommender: Locality-Sensitive Hashing & Collaborative Filtering

e Dataset: Movielens

— Three sizes:
e Small for development/debugging
e Medium for testing/ automatic-testing on Gitlab
e Large for hands-on experience with cluster



RATINGS

|

The Usecase

R

Qe streaming appl ication>
< Batch processing >}

I

Your code
goes here m

NOILVANININODOId

19

'l




AAS g Pr-l
The Data Processing Pipelines

e Movielens data + simulated ratings
e Loading data with Spark (milestone 1)

e From user ratings to average ratings (milestone 2)
— Average ratings from log
— Updates on log propagated to average ratings
* From movie keywords to recommendations (milestone 3)

— LSH: Similarity-search based on keywords
— Collaborative filtering through spark mllib

You will not have to implement a full system, just the functionality in isolation

20



	Default Section
	Slide 1: CS460 Projects Overview
	Slide 2: Project TAs
	Slide 3: Logistics
	Slide 4: Timeline
	Slide 5: Project 1 Learning Goals
	Slide 6: Project 2 Learning Goals
	Slide 7: Final Remarks
	Slide 8: Project 1
	Slide 9: Task 1: Volcano engine
	Slide 10: Task 1: Volcano engine (cont)
	Slide 11: Task 2: Late materialization (naïve)
	Slide 12: Task 2.A: Stitch and Drop
	Slide 13: Task 2.B: Late materialization operators
	Slide 14: Task 3: Optimization for Late materialization
	Slide 15: Task 3.Α: Fetch Operator
	Slide 16: Task 3.B: Optimization Rules
	Slide 17: Project 2
	Slide 18: Project 2 Highlights
	Slide 19: The Usecase
	Slide 20: The Data Processing Pipelines


