
CS460 Projects Overview



Project TAs

2

Hamish (TA)Yi (TA) 



Logistics
Two projects. Grading is equally weighted

1. Query execution & Optimization with Calcite

2. Recommendation Serving with Spark

Projects are Individual

– Do not share code: We will run plagiarism detection tools

– AI code generation is not allowed. No ChatGPT/Claude/Copilot etc

Graded automatically with tests

– Only write code in src/main/scala

– Last commit before deadline on main branch will be graded

Project IDE: IntelliJ Idea

– Free community edition

– ultimate edition on academic license (epfl.ch email)

Programming Language: Scala

3



Timeline

Project registration for repos on Moodle 3.03

Project 1: Query execution & Optimization

- Released ~10.03

- Due 17.04

Project 2: Recommendation Serving

- Released ~28.04 (just after easter holidays)

- Due 30.05

4



Project 1 Learning Goals

- Apache Calcite
- Extensible framework for query optimization and execution

- Database internals concepts 
- Volcano/iterator (tuple-at-a-time) processing model 

- Late tuple materialization 

- Query plan optimization rules 

5



Project 2 Learning Goals

• Apache Spark
– Unified engine for large-scale data analytics/science and machine learning

• Data Management / Data Science concepts
– Loading / Caching/ Pre-processing

– Data partitioning

– Predictive analytics / Recommender systems / Machine learning



Final Remarks

- You will not have to implement a full system from scratch
- just the functionality in isolation 

- You can run tests locally with Intellij (src/main/test)

- IMPORTANT: Do not edit build files/interfaces
- Auto-grader will fail if you change any interface definition in the skeleton

- Only the latest commit in the main branch will be graded

- Register for the projects on Moodle before 3.03

7



Project 1

8



Task 1: Volcano engine

• open(): initialize operator state

• next(): process and return next tuple (or EOF)

• close(): finalize execution and clean up

9

σage>30

scan

open(): open child

open(): start scan

Maria 25

John 33

next():

next():

next():

Maria 25

John 33

John 33

close(): nothing

close(): close child



Task 1: Volcano engine (cont)

• Implement Scan, Select, Project, Join, Aggregate, Sort

• Please read documentation from parent classes

• First implement correctly, then optimize



Task 2: Late materialization (naïve)

• No need to reconstruct full tuple on scan
– As long as we keep virtual IDs, we can process columns individually and stitch 

them later 

• The task involves:
– stitching

– interfacing with operators that do not support late materialization

– late materialization-aware operators

• Operators use volcano model in this task as well



Task 2.A: Stitch and Drop

12

σage>30

scan

1 25

2 33

stitch

scan

1 Maria

2 John

drop
1 Maria 25

2 John 33

Maria 25

John 33

John 33



Task 2.B: Late materialization operators

13

scan

1 25

2 33

stitch

scan

1 Maria

2 John

drop

2 John 33

John 33

2 33

σage>30



Task 3: Optimization for Late materialization

• If virtual ID defines tuples position, stitching is unnecessary. 
We can fetch missing attributes on-demand.
– This way, we can avoid scanning the full column

• The task has two goals:
– Implement operator that fetches missing attributes

– Implement optimization rules in order to inject the operator to plans



Task 3.Α: Fetch Operator

15

scan

1 25

2 33

fetch

drop

2 John 33

John 33

2 33

σage>30

No need to scan full “name” column
Fetch values for virtual IDs that satisfy filter



Task 3.B: Optimization Rules

16

scan

fetch

drop

scan

stitch

drop

scan

Pattern matching: stitch with scan as left child

onMatch: replace matched pattern



Project 2

17



Project 2 Highlights

• Three milestones (single-deadline for all)
1. Data loading & Simple data analysis

2. Movie-ratings pipeline

• Aggregations & Incremental maintenance

3. Prediction serving (recommender system)

• Similarity based recommender: Locality-Sensitive Hashing & Collaborative Filtering

• Dataset: Movielens
– Three sizes: 

• Small for development/debugging

• Medium for testing/ automatic-testing on Gitlab

• Large for hands-on experience with cluster



The Usecase

19

Movie streaming application

Batch processing

Your code
goes here

R
A

T
IN

G
S

R
E

C
O

M
M

E
N

D
A

T
IO

N
S



The Data Processing Pipelines

• MovieLens data + simulated ratings

• Loading data with Spark (milestone 1)

• From user ratings to average ratings (milestone 2)
– Average ratings from log

– Updates on log propagated to average ratings

• From movie keywords to recommendations (milestone 3)
– LSH: Similarity-search based on keywords

– Collaborative filtering through spark mllib

You will not have to implement a full system, just the functionality in isolation

20


	Default Section
	Slide 1: CS460 Projects Overview
	Slide 2: Project TAs
	Slide 3: Logistics
	Slide 4: Timeline
	Slide 5: Project 1 Learning Goals
	Slide 6: Project 2 Learning Goals
	Slide 7: Final Remarks
	Slide 8: Project 1
	Slide 9: Task 1: Volcano engine
	Slide 10: Task 1: Volcano engine (cont)
	Slide 11: Task 2: Late materialization (naïve)
	Slide 12: Task 2.A: Stitch and Drop
	Slide 13: Task 2.B: Late materialization operators
	Slide 14: Task 3: Optimization for Late materialization
	Slide 15: Task 3.Α: Fetch Operator
	Slide 16: Task 3.B: Optimization Rules
	Slide 17: Project 2
	Slide 18: Project 2 Highlights
	Slide 19: The Usecase
	Slide 20: The Data Processing Pipelines


