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Stream Processing

e Stream processing continuously incorporates new data to compute a
result.

* The input data is unbounded.
* A series of events, no predetermined beginning or end.

» User applications can compute various queries over this stream of
events.
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Use cases

Fraud detection systems
Trading systems (examine price changes and execute trades)
Military and intelligence systems

Advertizement systems and recommenders

* Data analytics
* Recommenders

Real-time analytics

* Rate of certain events e.g. tracking a running count of each type of event, or aggregating
them into hourly windows

* Compute rolling average of a value
* Compare current statistics



cPrL
Stream Processing versus DBMS

* Database Management Systems (DBMS): data-at-rest analytics
* Store and index data before processing it.
* Process data only when explicitly asked by the users

* Stream Processing Systems (SPS): data-in-motion analytics
* Processing information as it flows, without (or with) storing them persistently.

Index

Data Queries

Data
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Stream processing versus batch processing

* Advantages of stream processing
* Near real-time results
* Do not need to accumulate data for processing
e Streaming operators typically require less memory

* Disadvantages of stream processing
* Some operators are harder to implement with streaming
e Stream algorithms are often approximations
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Example

 Recommender system

* Every time someone loads a page; a viewed page event generates several
events.

* That may lead to any of the following:
 Store the message in Cassandra/MongoDB for future analysis
Count page views and update a dashboard
Trigger an alert if a page view fails
Send an email notification to another user
Compute analytics

Compute recommendations
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Messaging System

* Disseminate streams of events from
various producers to various consumers.

* Messaging system is an approach to notify
consumers about new events.

b |V| essda gl N g Syste ms Data Producers Data Consumers
* Direct messaging ETL

* Pub/Sub systems } EE . Compt)lex
even
\ C processing
3

User Transactions
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Direct Messaging

* Necessary in latency critical applications (e.g., remote surgery).

* A producer sends a message containing the event, which is pushed to
consumers.
* Both consumers and producers have to be online at the same time.

lllllllll
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Direct Messaging

* |ssues when consumer crashes or temporarily goes offline.

* Producers may send messages faster than the consumers can process.
* Dropping messages
* Backpressure

* Message brokers can log events to process at a later time.

CS-460
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Publish-subscribe systems

T~

Publishers

Pub-sub System Subscribers

/

Pub-sub System
* Asynchronous (loosely coupled) event notification system

* A set of Subscribers/consumers register their interest (subscriptions)

Storage and

* A set of Publishers/producers issue some events (events) management of
* Publish-subscribe system subscriptions
1. Manages users subscriptions (subscribe/uns

2. Matches published events against subscriptions ubscribe)
3. Disseminate events to matching subscribers (and no others)

* Flexible and seamless messaging substrate for applications Event
dissemination
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Example

Publisher

| T —
e

2

e NMonde.fr

Pub-sub System

Storage and
management of
subscriptions
(subscribe/uns
ubscribe)

Event
dissemination

Prominent way of disseminating information

e Social networks

* RSS feeds

* Recommendation systems

CS-460
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Update Profile in Cassandra

Update Dashboard

Compute recommendation
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Decoupling in time, space and
synchronization

Pub-sub System

Publisher

Storage and

management of

Publisher

subscriptions

(subscribe/uns
ubscribe)

Publisher

Publisher

Event
dissemination

the interacting parties do not need to know each other.
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Decoupling in time, space and
synchronization

Publisher

Publisher

Publisher

Publisher

Pub-sub System

Storage and

Subscriber

management of

subscriptions

Subscriber

(subscribe/uns

ubscribe)

Subscriber

Subscriber

Event
dissemination
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Decoupling in time, space and

synchronization

Pub-sub System

management of
subscriptions

Publish() (subscribe/uns

ubscribe)

Event
dissemination

Synchronization decoupling: producers are not blocked upon publication, subscribers are asynchronously notified
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Pub-sub systems: expressiveness

* Differences in subscription expressiveness

* Topic-based ~ Application-level multicast
topic=houses_sales

* Content-based
e Attribute-based
sl=(city=Rennes) (capacity=2_Bedrooms)
* Range queries
sl=(city=Rennes || Saint Malo) &&
(capacity=3_Bedrooms || price < 500,000 EUR)

CS-460
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Pub/Sub architecture

e Centralized Broker model

* Consists of multiple publishers and multiple subscribers and centralized
broker

e Subscribers/Publishers will contact 1 broker, and do not need to have
knowledge about others.

* E.g. CORBA event services, IMS, JEDI etc...



cPFL
Distributed/decentralized architectures

e Distributed model
* A set of nodes act as brokers (Siena, Kafka)

* Decentralized model
* Each node can be publisher, subscriber or broker.
 DHT are employed to locate nodes in the network.
* E.g. Java distributed event service/Tera

 Topic-based pub-sub: Equivalent/related to application-level multicast
(ALM)
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ALM on structured overlay networks

* Overlay network used for group naming and group localization

* Flooding-based multicast [CAN multicast]:
* Creation of a specific network for each group
* Message flooded along the overlay links

* Tree-based multicast [Bayeux, Scribe]
* Creation of a tree per group
* Flooding along the tree branches
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Scribe

Multicast protocol
Membership management

P2P Infrastructure

Infernet

SCRIBE

______ {

PASTRY

TCP/IP
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Scribe: design

* Goals
* Group creation
* Membership maintenance
* Messages dissemination within a group

* Construction of a multicast tree on top of a Pastry-like infrastructure
* Creation of a tree per group
* The tree root is the peer hosting the key associated to that group
* The tree is formed as the union of routes from every member to the root
* Reverse path forwarding
* Messages flooded along the tree branches

21



Scribe: group (topic) creation

Create(#G)

* Each group is assigned an identifier
groupld = Hash(name)

* Multicast tree root : node which
nodeld is the numerically closest to

the groupld

* Create(group): P2P routing using
the groupeld as the key

CS-460 22
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One tree per topic

e join(group): message sent through Pastry using groupeld as the key

* Multicast tree: union of Pastry routes from the root to each group

* Low latency: leverages Pastry proximity routing
* Low network link stress: most packets are replicated low in the tree

CS-460
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Scribe : join(group)

1000 0111

CS-460
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Scribe: message dissemination

Multicast(group, m)

* Routing through Pastry to
the root key=groupeld

* Flooding along the tree
branches from the root to
the leaves

CS-460
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Reliability

« best effort » reliability guarantee

* Tree maintenance when failures are detected
e Stronger guarantee may also be implemented

Node failure
* Parents periodically send heartbeat messages to their descendants in the tree
* When such messages are missed, nodes join the group again

Local reconfiguration

Pastry routes around failures
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Tree maintenance

Root
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Tree maintenance

New root

Fauljy root
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Load balancing

* Specific algorithm to limit the load on each node
 Size of forwarding tables

* Specific algorithm to remove the forwarders-only peers from the tree
* small-size groups

29



=PFL

Scribe performance

* Discrete event simulator

e Evaluation metrics
* Relative delay penalty
* RMD: max delayapp-mcast / Max delayip.meast
* RAD: avg delayapp-meast / avg delayip.meast
* Stress on each network link

* Load on each node
* Number of entries in the routing table
* Number of entries in the forwarding tables

* Experimental set-up

* Georgia Tech Transit-stub model (5050 core routers)
100 000 nodes chosen at random among 500 000
Zipf distribution for 1500 groups
Bandwidth not modeled

CS-460

30



=PFL
Group distribution

Update
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Delay/IP

CDF of Groups

1500

1200

900

600

300

— RMD
— RAD
Mean = 1.81
Median =1.65
2 3 4

Delay penalty
CS-460

32



cPFL
Load balancing

25000

20000

15000

10000

Number of nodes

5000

10

15 20 25
Number of forwarding tables
CS-460

30

35

40

33



Load balancing

Number of nodes
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Network load

Number of network links
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Summary

e Generic P2P infrastructures
* Good support for large-scale distributed applications
* ALM Infrastructure

e Scribe exhibits good performances/IP multicast
* Large size groups
* Large number of groups
* Good load-balancing properties
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§8 kafkao

Kafka: A distributed messaging system for log processing

Developed by LinkedIn, now Apache, written in Scala and Java

CS-460
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Kaftka

 Kafka is a distributed, topic-based, partitioned, replicated commit log
service.

* Fast

Web logs

e Scalable

Transactions Warehouse
* Durable
* Distributed

* A log-based message broker

Metrics Alerting

Audit logs

* Distributed stream processing software

CS-460
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Katka adoption and use cases

* Widely spread across industries such as healthcare, finance, retail, and
manufacturing ("50 000 companies in 2025).

* LinkedIn: activity streams, operational metrics, data bus
* 400 nodes, 18k topics, 220B msg/day (peak 3.2M msg/s)

* Tesla: stream processing to handle trillions of 10T events daily, uses Kafka to
ingest, process, and analyze data from its vehicle fleet in real time

* Netflix: real-time monitoring and event processing

* X: as part of their Storm real-time data pipelines

» Spotify: log delivery (from 4h down to 10s), Hadoop

e Airbnb, Cisco, Gnip, InfoChimps, Ooyala, Square, Uber, JPMorgan,...
* Mediego©



=PFL
Kaftka in a nutshell

* Producers write data to
brokers.

 Consumers read data from
brokers (Pull model)

e Distributed, run in a cluster

* The data
* Data is stored in topics.

* Topics are split into
partitions, which are

replicated.

Broker

CS-460
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Partitioned Logs

* In typical message brokers, once a message is consumed, it is deleted.

* Log-based message brokers durably store all events in a sequential
log.

* Alogis an append-only sequence of records on disk.

* A producer sends a message by appending it to the end of the log.

* A consumer receives messages by reading the log sequentially.



=PrFL
Partitioned Logs

* To scale up the system, logs can be partitioned hosted on different
machines.

e Each partition can be read and written independently of others.

* Atopicis a group of partitions that all carry messages of the same

type.
* Within each partition, the broker assigns a monotonically increasing
sequence number (offset) to every message

* No ordering guarantee across partitions.
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Topics

 Topics are queues: a stream of messages of a particular type

* Each message is assigned a sequential id called an offset (no overhead
related to maintaining explicit message id)

* Topics are logical collections of partitions (the physical files).
* Ordered

¢ Append Only Partition 0 01112)|3|4|5|6|7]|8]|9|(10]11 125
* Immutable \
Partition 1 01112]|3|4|5|16|7]|8(9 < /

Partiion2 |0|1|2(3|4|5|6|7[8]9]|10[11|12:

Writes
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Kafka Producer

Kafka Broker

K Users Topic \

. . o H ”
Publish “Alice” Consume “Alice

To Users topic To Users topic

Alice

Producer < > Ana A
Jeanne N

Topic, Position
Append only

CS-460 44



=PFL
Kaftka Partitions

Kafka Broker

Users Topic

Partition R

(L-2)
0 Malo
1 Medhi

J

- /
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Partitions

 Partitions of a topic are replicated: fault-tolerance

* A broker contains some of the partitions for a topic: load-balancing

* One broker is the leader of a partition: all writes and reads must go to the leader.

0

J O

0

0
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Kafka architecture

Producer

Producer

mfka Cluster

Partition 1
(leader)

Partition 2

Partition 3

Partition 2
(leader)

Partition 1

Partiticin 3

Partition 3
(leader)

Partition 1

B Zookeeper it
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Consumer groups

« A consumer group: one or more consumers that jointly consume
a set of subscribed topics
« each message is delivered to only one of the consumers within the
group.
 at any given time, all messages from one partition are consumed only
by a single consumer within each consumer group
* Avoids synchronization
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Partitioned Logs

Topic A
A

Topic B
A\

Partition O

Partition 1

Partition O

Partition 1

Partition 2

Producer client

Producer client

Consumer group

_________________
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415|678
4
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C
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L—

CS-460

Consumer client

: offset for B.0 =4
- offset forB.1=5

/;> Consumer client | !
: offsetforB.2=9 :

_________________

49



=PrFL
State and guarantees

* State
* Brokers are stateless: no metadata for consumers-producers in brokers.

* Consumers are responsible for keeping track of offsets.
* Messages in queues expire based on pre-configured time periods (e.g., once a day).

» Side benefit : A consumer can deliberately rewind back to an old offset and re-
consume data.

* Delivery guarantees

* Kafka guarantees that messages from a single partition are delivered to a consumer
in order.
* There is no guarantee on the ordering of messages coming from different partitions.
» Kafka only guarantees at-least-once delivery (the client needs to check for duplicate)

e Kafka uses Zookeeper (up to 2025) for the following tasks:
e Detecting the addition and the removal of brokers and consumers.
» Keeping track of the consumed offset of each partition.
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Scalability

Throughput in MB/s

400

350

300

250

200

150

100

50

(10 topics, broker flush interval 100K)

/ 381

/

/293

/

/190

/
1U1L

1 broker

2 brokers

CS-460

3 brokers

4 brokers

51



=PFL
Kaftka

* Simple and efficient (hight throughput)
* Persistent storage

* Pull-based pub-sub system

* Widely used in industry

CS-460
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