=PFL

Stream processing

Anne-Marie Kermarrec

CCCCCC

=PrL
Where are we?

Data science software stack

Data Processing
Graph Data Structured Machine
Pregel, GraphLab, X- Data Learning
Streem, Chaos Spark SQL Week 12

Batch Data Streaming Data
Map Reduce, Storm, Naiad, Flink, Spark
Dryad, Spark Streaming Google Data Flow

Transaction
Management

Gossip Protocols Query

Week 7 Execution

Consistency protocols
CAP Theorem
Week 9 NoSQL DB Distributed

Storage Distributed 5 . T

: . : m
Hierarchies File Systems yng 0 Big "able ging
assandra systems

Distributed/decentralized & La
youts (GFS)
systems Week 9 Kafka — Week 11

Week 8-12

Data Storage

Ressource Management & Optimization

Query optimization Scheduling (Mesos)- Week 10

CS-460 2

cPrL
Stream Processing

e Stream processing continuously incorporates new data to compute a
result.

* The input data is unbounded.
* A series of events, no predetermined beginning or end.

» User applications can compute various queries over this stream of
events.

=PrL
Use cases

Fraud detection systems
Trading systems (examine price changes and execute trades)
Military and intelligence systems

Advertizement systems and recommenders

* Data analytics
* Recommenders

Real-time analytics

* Rate of certain events e.g. tracking a running count of each type of event, or aggregating
them into hourly windows

* Compute rolling average of a value
* Compare current statistics

cPrL
Stream Processing versus DBMS

* Database Management Systems (DBMS): data-at-rest analytics
* Store and index data before processing it.
* Process data only when explicitly asked by the users

* Stream Processing Systems (SPS): data-in-motion analytics
* Processing information as it flows, without (or with) storing them persistently.

Index

Data Queries

Data

CS-460

cPrL
Stream processing versus batch processing

* Advantages of stream processing
* Near real-time results
* Do not need to accumulate data for processing
e Streaming operators typically require less memory

* Disadvantages of stream processing
* Some operators are harder to implement with streaming
e Stream algorithms are often approximations

=PFL
Example

 Recommender system

* Every time someone loads a page; a viewed page event generates several
events.

* That may lead to any of the following:
 Store the message in Cassandra/MongoDB for future analysis
Count page views and update a dashboard
Trigger an alert if a page view fails
Send an email notification to another user
Compute analytics

Compute recommendations

cPrL
Messaging System

* Disseminate streams of events from
various producers to various consumers.

* Messaging system is an approach to notify
consumers about new events.

b |V| essda gl N g Syste ms Data Producers Data Consumers
* Direct messaging ETL

* Pub/Sub systems } EE . Compt)lex
even
\ C processing
3

User Transactions

CS-460 8

cPrL
Direct Messaging

* Necessary in latency critical applications (e.g., remote surgery).

* A producer sends a message containing the event, which is pushed to
consumers.
* Both consumers and producers have to be online at the same time.

lllllllll

CS-460

cPrL
Direct Messaging

* |ssues when consumer crashes or temporarily goes offline.

* Producers may send messages faster than the consumers can process.
* Dropping messages
* Backpressure

* Message brokers can log events to process at a later time.

CS-460

10

cPFL
Publish-subscribe systems

T~

Publishers

Pub-sub System Subscribers

/

Pub-sub System
* Asynchronous (loosely coupled) event notification system

* A set of Subscribers/consumers register their interest (subscriptions)

Storage and

* A set of Publishers/producers issue some events (events) management of
* Publish-subscribe system subscriptions
1. Manages users subscriptions (subscribe/uns

2. Matches published events against subscriptions ubscribe)
3. Disseminate events to matching subscribers (and no others)

* Flexible and seamless messaging substrate for applications Event
dissemination

CS-460

cPFL
Example

Publisher

| T —
e

2

e NMonde.fr

Pub-sub System

Storage and
management of
subscriptions
(subscribe/uns
ubscribe)

Event
dissemination

Prominent way of disseminating information

e Social networks

* RSS feeds

* Recommendation systems

CS-460

Profile
management
service

Analytics
service

Recommender

Update Profile in Cassandra

Update Dashboard

Compute recommendation

12

EPFL

Decoupling in time, space and
synchronization

Pub-sub System

Publisher

Storage and

management of

Publisher

subscriptions

(subscribe/uns
ubscribe)

Publisher

Publisher

Event
dissemination

the interacting parties do not need to know each other.

CS-460

Subscriber

Subscriber

Subscriber

Subscriber

13

EPFL

Decoupling in time, space and
synchronization

Publisher

Publisher

Publisher

Publisher

Pub-sub System

Storage and

Subscriber

management of

subscriptions

Subscriber

(subscribe/uns

ubscribe)

Subscriber

Subscriber

Event
dissemination

CS-460

14

=PrFL
Decoupling in time, space and

synchronization

Pub-sub System

management of
subscriptions

Publish() (subscribe/uns

ubscribe)

Event
dissemination

Synchronization decoupling: producers are not blocked upon publication, subscribers are asynchronously notified

CS-460 15

=PFL
Pub-sub systems: expressiveness

* Differences in subscription expressiveness

* Topic-based ~ Application-level multicast
topic=houses_sales

* Content-based
e Attribute-based
sl=(city=Rennes) (capacity=2_Bedrooms)
* Range queries
sl=(city=Rennes || Saint Malo) &&
(capacity=3_Bedrooms || price < 500,000 EUR)

CS-460

16

EPFL
Pub/Sub architecture

e Centralized Broker model

* Consists of multiple publishers and multiple subscribers and centralized
broker

e Subscribers/Publishers will contact 1 broker, and do not need to have
knowledge about others.

* E.g. CORBA event services, IMS, JEDI etc...

cPFL
Distributed/decentralized architectures

e Distributed model
* A set of nodes act as brokers (Siena, Kafka)

* Decentralized model
* Each node can be publisher, subscriber or broker.
 DHT are employed to locate nodes in the network.
* E.g. Java distributed event service/Tera

 Topic-based pub-sub: Equivalent/related to application-level multicast
(ALM)

=PFL
ALM on structured overlay networks

* Overlay network used for group naming and group localization

* Flooding-based multicast [CAN multicast]:
* Creation of a specific network for each group
* Message flooded along the overlay links

* Tree-based multicast [Bayeux, Scribe]
* Creation of a tree per group
* Flooding along the tree branches

19

cPrFL
Scribe

Multicast protocol
Membership management

P2P Infrastructure

Infernet

SCRIBE

______ {

PASTRY

TCP/IP

CS-460

20

=PFL
Scribe: design

* Goals
* Group creation
* Membership maintenance
* Messages dissemination within a group

* Construction of a multicast tree on top of a Pastry-like infrastructure
* Creation of a tree per group
* The tree root is the peer hosting the key associated to that group
* The tree is formed as the union of routes from every member to the root
* Reverse path forwarding
* Messages flooded along the tree branches

21

Scribe: group (topic) creation

Create(#G)

* Each group is assigned an identifier
groupld = Hash(name)

* Multicast tree root : node which
nodeld is the numerically closest to

the groupld

* Create(group): P2P routing using
the groupeld as the key

CS-460 22

c=PrL
One tree per topic

e join(group): message sent through Pastry using groupeld as the key

* Multicast tree: union of Pastry routes from the root to each group

* Low latency: leverages Pastry proximity routing
* Low network link stress: most packets are replicated low in the tree

CS-460

23

Scribe : join(group)

1000 0111

CS-460

24

Scribe: message dissemination

Multicast(group, m)

* Routing through Pastry to
the root key=groupeld

* Flooding along the tree
branches from the root to
the leaves

CS-460

@

25

=PFL
Reliability

« best effort » reliability guarantee

* Tree maintenance when failures are detected
e Stronger guarantee may also be implemented

Node failure
* Parents periodically send heartbeat messages to their descendants in the tree
* When such messages are missed, nodes join the group again

Local reconfiguration

Pastry routes around failures

26

Tree maintenance

Root

CCCCCC

27

Tree maintenance

New root

Fauljy root

CS-460

28

=PFL
Load balancing

* Specific algorithm to limit the load on each node
 Size of forwarding tables

* Specific algorithm to remove the forwarders-only peers from the tree
* small-size groups

29

=PFL

Scribe performance

* Discrete event simulator

e Evaluation metrics
* Relative delay penalty
* RMD: max delayapp-mcast / Max delayip.meast
* RAD: avg delayapp-meast / avg delayip.meast
* Stress on each network link

* Load on each node
* Number of entries in the routing table
* Number of entries in the forwarding tables

* Experimental set-up

* Georgia Tech Transit-stub model (5050 core routers)
100 000 nodes chosen at random among 500 000
Zipf distribution for 1500 groups
Bandwidth not modeled

CS-460

30

=PFL
Group distribution

Update

10000
o 1000
N
a Instant
=] .
o Messaging
o 100

10
1 T T T T T T T T T

0 150 300 450 600 750 900 1050 1200 1350 1500

Group rank

CS-460

EPFL
Delay/IP

CDF of Groups

1500

1200

900

600

300

— RMD
— RAD
Mean = 1.81
Median =1.65
2 3 4

Delay penalty
CS-460

32

cPFL
Load balancing

25000

20000

15000

10000

Number of nodes

5000

10

15 20 25
Number of forwarding tables
CS-460

30

35

40

33

Load balancing

Number of nodes

20000

15000

10000

5000

Number of nodes

o
o

[$)]
o

'S
o

'S
o

w
o

[
o

N
o

N
o

-
o

ﬂ

-
o

\

o

o

50 150 250

350 450 550 650 750
Total number of entries in forwarding tables

850

950

1050

100

200

300 400

Total number of enfries in forwarding tables

500 600 700

800

900

1000

1100

34

EPFL

Network load

Number of network links

30000

25000

20000

15000

10000

5000

— Scribe

— — IP Multicast

Maximum

I
I
v

|

100

-460
ress

1000

10000

35

cPrL
Summary

e Generic P2P infrastructures
* Good support for large-scale distributed applications
* ALM Infrastructure

e Scribe exhibits good performances/IP multicast
* Large size groups
* Large number of groups
* Good load-balancing properties

36

§8 kafkao

Kafka: A distributed messaging system for log processing

Developed by LinkedIn, now Apache, written in Scala and Java

CS-460

37

=PrL
Kaftka

 Kafka is a distributed, topic-based, partitioned, replicated commit log
service.

* Fast

Web logs

e Scalable

Transactions Warehouse
* Durable
* Distributed

* A log-based message broker

Metrics Alerting

Audit logs

* Distributed stream processing software

CS-460

38

=PFL
Katka adoption and use cases

* Widely spread across industries such as healthcare, finance, retail, and
manufacturing ("50 000 companies in 2025).

* LinkedIn: activity streams, operational metrics, data bus
* 400 nodes, 18k topics, 220B msg/day (peak 3.2M msg/s)

* Tesla: stream processing to handle trillions of 10T events daily, uses Kafka to
ingest, process, and analyze data from its vehicle fleet in real time

* Netflix: real-time monitoring and event processing

* X: as part of their Storm real-time data pipelines

» Spotify: log delivery (from 4h down to 10s), Hadoop

e Airbnb, Cisco, Gnip, InfoChimps, Ooyala, Square, Uber, JPMorgan,...
* Mediego©

=PFL
Kaftka in a nutshell

* Producers write data to
brokers.

 Consumers read data from
brokers (Pull model)

e Distributed, run in a cluster

* The data
* Data is stored in topics.

* Topics are split into
partitions, which are

replicated.

Broker

CS-460

40

=PrFL
Partitioned Logs

* In typical message brokers, once a message is consumed, it is deleted.

* Log-based message brokers durably store all events in a sequential
log.

* Alogis an append-only sequence of records on disk.

* A producer sends a message by appending it to the end of the log.

* A consumer receives messages by reading the log sequentially.

=PrFL
Partitioned Logs

* To scale up the system, logs can be partitioned hosted on different
machines.

e Each partition can be read and written independently of others.

* Atopicis a group of partitions that all carry messages of the same

type.
* Within each partition, the broker assigns a monotonically increasing
sequence number (offset) to every message

* No ordering guarantee across partitions.

cPrL
Topics

 Topics are queues: a stream of messages of a particular type

* Each message is assigned a sequential id called an offset (no overhead
related to maintaining explicit message id)

* Topics are logical collections of partitions (the physical files).
* Ordered

¢ Append Only Partition 0 01112)|3|4|5|6|7]|8]|9|(10]11 125
* Immutable \
Partition 1 01112]|3|4|5|16|7]|8(9 < /

Partiion2 |0|1|2(3|4|5|6|7[8]9]|10[11|12:

Writes

CS-460 Old » New

=PrL
Kafka Producer

Kafka Broker

K Users Topic \

. . o H ”
Publish “Alice” Consume “Alice

To Users topic To Users topic

Alice

Producer < > Ana A
Jeanne N

Topic, Position
Append only

CS-460 44

=PFL
Kaftka Partitions

Kafka Broker

Users Topic

Partition R

(L-2)
0 Malo
1 Medhi

J

- /

CS-460 45

Producer <::">

=PrL
Partitions

 Partitions of a topic are replicated: fault-tolerance

* A broker contains some of the partitions for a topic: load-balancing

* One broker is the leader of a partition: all writes and reads must go to the leader.

0

J O

0

0

46

=PrL
Kafka architecture

Producer

Producer

mfka Cluster

Partition 1
(leader)

Partition 2

Partition 3

Partition 2
(leader)

Partition 1

Partiticin 3

Partition 3
(leader)

Partition 1

B Zookeeper it

CS-460

47

cPrL
Consumer groups

« A consumer group: one or more consumers that jointly consume
a set of subscribed topics
« each message is delivered to only one of the consumers within the
group.
 at any given time, all messages from one partition are consumed only
by a single consumer within each consumer group
* Avoids synchronization

EPFL

Partitioned Logs

Topic A
A

Topic B
A\

Partition O

Partition 1

Partition O

Partition 1

Partition 2

Producer client

Producer client

Consumer group

4|5(6|7|8
415|678
4
L—) :\
45|67 l

C
456|789 (10|11]12

L—

CS-460

Consumer client

: offset for B.0 =4
- offset forB.1=5

/;> Consumer client | !
: offsetforB.2=9 :

49

=PrFL
State and guarantees

* State
* Brokers are stateless: no metadata for consumers-producers in brokers.

* Consumers are responsible for keeping track of offsets.
* Messages in queues expire based on pre-configured time periods (e.g., once a day).

» Side benefit : A consumer can deliberately rewind back to an old offset and re-
consume data.

* Delivery guarantees

* Kafka guarantees that messages from a single partition are delivered to a consumer
in order.
* There is no guarantee on the ordering of messages coming from different partitions.
» Kafka only guarantees at-least-once delivery (the client needs to check for duplicate)

e Kafka uses Zookeeper (up to 2025) for the following tasks:
e Detecting the addition and the removal of brokers and consumers.
» Keeping track of the consumed offset of each partition.

EPFL

Scalability

Throughput in MB/s

400

350

300

250

200

150

100

50

(10 topics, broker flush interval 100K)

/ 381

/

/293

/

/190

/
1U1L

1 broker

2 brokers

CS-460

3 brokers

4 brokers

51

=PFL
Kaftka

* Simple and efficient (hight throughput)
* Persistent storage

* Pull-based pub-sub system

* Widely used in industry

CS-460

52

=PFL
References

The many faces of publish/subscribe. Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, Anne-Marie
Kermarrec. ACM Computing Surveys June 2003.

XL peer-to-peer pub/sub systems. Anne-Marie Kermarrec & Peter Triantafillou. ACM Computing Surveys Nov.

2013.
Kafka: A distributed messaging system for log processing. J. Kreps et al. NetDB, 2011
Spark: The Definitive Guide. M. Zaharia et al., O'Reilly Media, 2018 - Chapter 20

Fundamentals of stream processing: application design, systems and analytics. H. Andrade et al.,, Cambridge
University Press, 2014 - Chapter 1-5, 7, 9

High-availability algorithms for distributed stream processing. J. Hwang et al., ICDE 2005

CS-460

53

https://dl.acm.org/journal/csur
https://dl.acm.org/journal/csur

cPFL
References (ALM)

M. Castro, P. Druschel, A-M. Kermarrec and A. Rowstron, "SCRIBE: A large-scale and decentralised

application-level multicast infrastructure", IEEE Journal on Selected Areas in Communication (JSAC), Vol. 20,

No, 8, October 2002.

M. Castro, P. Druschel, A-M. Kermarrec, A. Nandi, A. Rowstron and A. Singh, "SplitStream: High-bandwidth
multicast in a cooperative environment", SOSP'03, Lake Bolton, New York, October, 2003.

Shelley Q. Zhuang, Ben Y. Zhao, Anthony D. Joseph, Randy Katz John Kubiatowicz « Bayeux: An Architecture
for Scalable and Fault-tolerant Wide-area Data Dissemination »Eleventh International Workshop on
Network and Operating Systems Support for Digital Audio and Video (NOSSDAV 2001)

Sylvia Ratnasamy, Mark Handley, Richard Karp, Scott Shenker « Application-level Multicast using Content-
Addressable Networks » (2001) Lecture Notes in Computer Science, NGC 2001 London.

D. Kostic, A. Rodriguez, J. Albrecht, and A. Vahdat. « Bullet: High bandwidth data dissemination using an
overlay mesh ». In 19th ACM Symposium on Operating Systems Principles, October 2003.

CS-460

54

http://www.cs.berkeley.edu/~shelleyz
http://www.cs.berkeley.edu/~ravenben
http://www.cs.berkeley.edu/~adj
http://www.cs.berkeley.edu/~randy
http://www.cs.berkeley.edu/~kubitron

