
Stream processing
Anne-Marie Kermarrec

CS-460 1

Where are we?

CS-460 2

Consistency protocols
CAP Theorem

Week 9

Gossip Protocols
Week 7

Distributed/decentralized
systems

Week 8-12

Data science software stack

Data Processing

Ressource Management & Optimization

Data Storage

Distributed
File Systems

(GFS)

NoSQL DB
Dynamo Big Table

Cassandra
Week 9

Distributed
Messaging

systems
Kafka – Week 11

Structured
Data

Spark SQL

Graph Data
Pregel, GraphLab, X-

Streem, Chaos

Machine
Learning
Week 12

Batch Data
Map Reduce,
Dryad, Spark

Streaming Data
Storm, Naiad, Flink, Spark

Streaming Google Data Flow

Scheduling (Mesos)- Week 10Query optimization

Storage
Hierarchies
& Layouts

Transaction
Management

Query
Execution

Stream Processing

• Stream processing continuously incorporates new data to compute a
result.

• The input data is unbounded.
• A series of events, no predetermined beginning or end.

• User applications can compute various queries over this stream of
events.

CS-460 3

Use cases

• Fraud detection systems
• Trading systems (examine price changes and execute trades)
• Military and intelligence systems
• Advertizement systems and recommenders

• Data analytics
• Recommenders
• …

• Real-time analytics
• Rate of certain events e.g. tracking a running count of each type of event, or aggregating

them into hourly windows
• Compute rolling average of a value
• Compare current statistics

CS-460 4

Stream Processing versus DBMS

• Database Management Systems (DBMS): data-at-rest analytics
• Store and index data before processing it.
• Process data only when explicitly asked by the users

• Stream Processing Systems (SPS): data-in-motion analytics
• Processing information as it flows, without (or with) storing them persistently.

CS-460 5

Stream processing versus batch processing

• Advantages of stream processing
• Near real-time results
• Do not need to accumulate data for processing
• Streaming operators typically require less memory

• Disadvantages of stream processing
• Some operators are harder to implement with streaming
• Stream algorithms are often approximations

CS-460 6

Example

• Recommender system
• Every time someone loads a page; a viewed page event generates several

events.

• That may lead to any of the following:
• Store the message in Cassandra/MongoDB for future analysis
• Count page views and update a dashboard
• Trigger an alert if a page view fails
• Send an email notification to another user
• Compute analytics
• Compute recommendations

CS-460 7

Messaging System

• Disseminate streams of events from
various producers to various consumers.

• Messaging system is an approach to notify
consumers about new events.

• Messaging systems
• Direct messaging
• Pub/Sub systems

CS-460 8

Gossip
Protocols

Direct Messaging

• Necessary in latency critical applications (e.g., remote surgery).
• A producer sends a message containing the event, which is pushed to

consumers.
• Both consumers and producers have to be online at the same time.

CS-460 9

Direct Messaging

• Issues when consumer crashes or temporarily goes offline.
• Producers may send messages faster than the consumers can process.

• Dropping messages
• Backpressure

• Message brokers can log events to process at a later time.

CS-460 10

Publish-subscribe systems

• Asynchronous (loosely coupled) event notification system
• A set of Subscribers/consumers register their interest (subscriptions)
• A set of Publishers/producers issue some events (events)
• Publish-subscribe system

1. Manages users subscriptions
2. Matches published events against subscriptions
3. Disseminate events to matching subscribers (and no others)

• Flexible and seamless messaging substrate for applications

SubscribersPublishers Pub-sub System

11CS-460

Pub-sub System

Storage and
management of

subscriptions
(subscribe/uns

ubscribe)

Event
dissemination

Example

CS-460

Pub-sub System

Publisher Storage and
management of

subscriptions
(subscribe/uns

ubscribe)

Event
dissemination

Analytics
service

Profile
management
service

Recommender

Update Profile in Cassandra

Compute recommendation

Update Dashboard

Prominent way of disseminating information
• Social networks
• RSS feeds
• Recommendation systems

12

Decoupling in time, space and
synchronization

CS-460 13

Publisher

Pub-sub System

Publisher

Publisher

Publisher

Storage and
management of

subscriptions
(subscribe/uns

ubscribe)

Event
dissemination

Subscriber

Subscriber

Subscriber

Subscriber

the interacting parties do not need to know each other.

Decoupling in time, space and
synchronization

CS-460 14

Publisher

Pub-sub System

Publisher

Publisher

Publisher

Storage and
management of

subscriptions
(subscribe/uns

ubscribe)

Event
dissemination

Subscriber

Subscriber

Subscriber

Subscriber

Decoupling in time, space and
synchronization

CS-460 15

Pub-sub System

Publisher Storage and
management of

subscriptions
(subscribe/uns

ubscribe)

Event
dissemination

Subscriber

Publish() Notify()

Synchronization decoupling: producers are not blocked upon publication, subscribers are asynchronously notified

Pub-sub systems: expressiveness

• Differences in subscription expressiveness
• Topic-based ~ Application-level multicast

 topic=houses_sales
• Content-based

• Attribute-based
 s1=(city=Rennes) (capacity=2_Bedrooms)
• Range queries
 s1=(city=Rennes || Saint Malo) &&
(capacity=3_Bedrooms || price < 500,000 EUR)

16CS-460

Pub/Sub architecture

• Centralized Broker model
• Consists of multiple publishers and multiple subscribers and centralized

broker
• Subscribers/Publishers will contact 1 broker, and do not need to have

knowledge about others.
• E.g. CORBA event services, JMS, JEDI etc…

CS-460 17

Distributed/decentralized architectures

• Distributed model
• A set of nodes act as brokers (Siena, Kafka)

• Decentralized model
• Each node can be publisher, subscriber or broker.
• DHT are employed to locate nodes in the network.
• E.g. Java distributed event service/Tera

• Topic-based pub-sub: Equivalent/related to application-level multicast
(ALM)

CS-460 18

19

ALM on structured overlay networks

• Overlay network used for group naming and group localization
• Flooding-based multicast [CAN multicast]:

• Creation of a specific network for each group
• Message flooded along the overlay links

• Tree-based multicast [Bayeux, Scribe]
• Creation of a tree per group
• Flooding along the tree branches

CS-460

20

Scribe

TCP/IPInternet

SCRIBEMulticast protocol
Membership management

PASTRYP2P Infrastructure

CS-460

21

Scribe: design

• Goals
• Group creation
• Membership maintenance
• Messages dissemination within a group

• Construction of a multicast tree on top of a Pastry-like infrastructure
• Creation of a tree per group
• The tree root is the peer hosting the key associated to that group
• The tree is formed as the union of routes from every member to the root
• Reverse path forwarding
• Messages flooded along the tree branches

CS-460

22

Scribe: group (topic) creation
• Each group is assigned an identifier

groupId = Hash(name)

• Multicast tree root : node which
nodeId is the numerically closest to
the groupId

• Create(group): P2P routing using
the groupeId as the key

#G

Create(#G)

Root

CS-460

23

One tree per topic

• join(group): message sent through Pastry using groupeId as the key
• Multicast tree: union of Pastry routes from the root to each group

• Low latency: leverages Pastry proximity routing
• Low network link stress: most packets are replicated low in the tree

CS-460

24

Scribe : join(group)

1100

1101

1001

0100 0111

1011

1111

1100

0111

0100

1000
1111

1000

1101

1001

1011

CS-460

25

Scribe: message dissemination

Multicast(group, m)

• Routing through Pastry to
the root key=groupeId

• Flooding along the tree
branches from the root to
the leaves

1100

1101

1001

0100 0111

1011

E

CS-460

26

Reliability

• « best effort » reliability guarantee
• Tree maintenance when failures are detected
• Stronger guarantee may also be implemented

• Node failure
• Parents periodically send heartbeat messages to their descendants in the tree
• When such messages are missed, nodes join the group again

• Local reconfiguration
• Pastry routes around failures

CS-460

27

Tree maintenance

1100

1101

1011

0100 0111

1011

1000

1001

1111

Root

CS-460

28

Tree maintenance

1100

1101

0100 0111

1011

1000

1001

1111

Faulty rootNew root

CS-460

29

Load balancing

• Specific algorithm to limit the load on each node
• Size of forwarding tables

• Specific algorithm to remove the forwarders-only peers from the tree
• small-size groups

CS-460

30

Scribe performance

• Discrete event simulator
• Evaluation metrics

• Relative delay penalty
• RMD: max delayapp-mcast / max delayip-mcast

• RAD: avg delayapp-mcast / avg delayip-mcast

• Stress on each network link
• Load on each node

• Number of entries in the routing table
• Number of entries in the forwarding tables

• Experimental set-up
• Georgia Tech Transit-stub model (5050 core routers)
• 100 000 nodes chosen at random among 500 000
• Zipf distribution for 1500 groups
• Bandwidth not modeled

CS-460

31

Group distribution

1

10

100

1000

10000

100000

0 150 300 450 600 750 900 1050 1200 1350 1500

Group rank

G
ro

up
 s

iz
e

Instant
Messaging

Windows
Update

Stock
Alert

CS-460

32

Delay/IP

0

300

600

900

1200

1500

0 1 2 3 4 5

Delay penalty

C
D

F
of

 G
ro

up
s

RMD

RAD

Mean = 1.81
Median =1.65

CS-460

33

Load balancing

0

5000

10000

15000

20000

25000

0 5 10 15 20 25 30 35 40
Number of forwarding tables

N
um

be
r o

f n
od

es

CS-460

34

Load balancing

0

5000

10000

15000

20000

0 100 200 300 400 500 600 700 800 900 1000 1100
Total number of entries in forwarding tables

N
um

be
r o

f n
od

es

0

5

10

15

20

25

30

35

40

45

50

55

50 150 250 350 450 550 650 750 850 950 1050
Total number of entries in forwarding tables

N
um

be
r o

f n
od

es

CS-460

35

Network load

0

5000

10000

15000

20000

25000

30000

1 10 100 1000 10000

Stress

N
um

be
r o

f n
et

w
or

k
lin

ks

Scribe

IP Multicast

Maximum

CS-460

36

Summary

• Generic P2P infrastructures
• Good support for large-scale distributed applications
• ALM Infrastructure

• Scribe exhibits good performances/IP multicast
• Large size groups
• Large number of groups
• Good load-balancing properties

CS-460

Kafka
Kafka: A distributed messaging system for log processing
Developed by LinkedIn, now Apache, written in Scala and Java

CS-460 37

Kafka

• Kafka is a distributed, topic-based, partitioned, replicated commit log
service.

• Fast
• Scalable
• Durable
• Distributed
• A log-based message broker
• Distributed stream processing software

CS-460 38

Kafka adoption and use cases

• Widely spread across industries such as healthcare, finance, retail, and
manufacturing (˜50 000 companies in 2025).

• LinkedIn: activity streams, operational metrics, data bus
• 400 nodes, 18k topics, 220B msg/day (peak 3.2M msg/s)

• Tesla: stream processing to handle trillions of IoT events daily, uses Kafka to
ingest, process, and analyze data from its vehicle fleet in real time

• Netflix: real-time monitoring and event processing
• X: as part of their Storm real-time data pipelines
• Spotify: log delivery (from 4h down to 10s), Hadoop
• Airbnb, Cisco, Gnip, InfoChimps, Ooyala, Square, Uber, JPMorgan,…
• MediegoJ

CS-460 39

Kafka in a nutshell
• Producers write data to

brokers.
• Consumers read data from

brokers (Pull model)
• Distributed, run in a cluster

• The data
• Data is stored in topics.
• Topics are split into

partitions, which are
replicated.

40

Producer

Consumer

Producer

Broker Broker Broker Broker

Consumer

ZK

CS-460

Partitioned Logs

• In typical message brokers, once a message is consumed, it is deleted.
• Log-based message brokers durably store all events in a sequential

log.
• A log is an append-only sequence of records on disk.
• A producer sends a message by appending it to the end of the log.
• A consumer receives messages by reading the log sequentially.

CS-460 41

Partitioned Logs

• To scale up the system, logs can be partitioned hosted on different
machines.

• Each partition can be read and written independently of others.
• A topic is a group of partitions that all carry messages of the same

type.
• Within each partition, the broker assigns a monotonically increasing

sequence number (offset) to every message
• No ordering guarantee across partitions.

CS-460 42

Topics

• Topics are queues: a stream of messages of a particular type
• Each message is assigned a sequential id called an offset (no overhead

related to maintaining explicit message id)
• Topics are logical collections of partitions (the physical files).

• Ordered
• Append only
• Immutable

CS-460 43

Kafka Producer

CS-460 44

Producer

Kafka Broker

consumer

Alice

Users Topic
Publish “Alice”
To Users topic

Topic, Position
Append only

Ana
Jeanne

Consume “Alice”
To Users topic

Kafka Partitions

CS-460 45

Producer

Kafka Broker

consumer
Alice

Users Topic

Ana
Jeanne

Malo
Medhi

Partition 1
(A-K)

Partition 2
(L-Z)

0
1
2

0
1
2

Partitions

• Partitions of a topic are replicated: fault-tolerance
• A broker contains some of the partitions for a topic: load-balancing
• One broker is the leader of a partition: all writes and reads must go to the leader.

CS-460 46

Kafka architecture

CS-460 47

Consumer groups

• A consumer group: one or more consumers that jointly consume
a set of subscribed topics

• each message is delivered to only one of the consumers within the
group.

• at any given time, all messages from one partition are consumed only
by a single consumer within each consumer group

• Avoids synchronization

CS-460 48

Partitioned Logs

CS-460 49

State and guarantees

• State
• Brokers are stateless: no metadata for consumers-producers in brokers.
• Consumers are responsible for keeping track of offsets.
• Messages in queues expire based on pre-configured time periods (e.g., once a day).
• Side benefit : A consumer can deliberately rewind back to an old offset and re-

consume data.
• Delivery guarantees

• Kafka guarantees that messages from a single partition are delivered to a consumer
in order.

• There is no guarantee on the ordering of messages coming from different partitions.
• Kafka only guarantees at-least-once delivery (the client needs to check for duplicate)

• Kafka uses Zookeeper (up to 2025) for the following tasks:
• Detecting the addition and the removal of brokers and consumers.
• Keeping track of the consumed offset of each partition.

CS-460 50

Scalability

101

190

293

381

0

50

100

150

200

250

300

350

400

1 broker 2 brokers 3 brokers 4 brokers

Th
ro

ug
hp

ut
 in

 M
B/

s
(10 topics, broker flush interval 100K)

CS-460 51

Kafka

• Simple and efficient (hight throughput)
• Persistent storage
• Pull-based pub-sub system
• Widely used in industry

CS-460 52

References

The many faces of publish/subscribe. Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, Anne-Marie
Kermarrec. ACM Computing Surveys June 2003.

XL peer-to-peer pub/sub systems. Anne-Marie Kermarrec & Peter Triantafillou. ACM Computing Surveys Nov.
2013.

Kafka: A distributed messaging system for log processing. J. Kreps et al. NetDB, 2011

Spark: The Definitive Guide. M. Zaharia et al., O'Reilly Media, 2018 - Chapter 20

Fundamentals of stream processing: application design, systems and analytics. H. Andrade et al., Cambridge
University Press, 2014 - Chapter 1-5, 7, 9

High-availability algorithms for distributed stream processing. J. Hwang et al., ICDE 2005

CS-460 53

https://dl.acm.org/journal/csur
https://dl.acm.org/journal/csur

References (ALM)

• M. Castro, P. Druschel, A-M. Kermarrec and A. Rowstron, "SCRIBE: A large-scale and decentralised
application-level multicast infrastructure", IEEE Journal on Selected Areas in Communication (JSAC), Vol. 20,
No, 8, October 2002.

• M. Castro, P. Druschel, A-M. Kermarrec, A. Nandi, A. Rowstron and A. Singh, "SplitStream: High-bandwidth
multicast in a cooperative environment", SOSP'03, Lake Bolton, New York, October, 2003.

• Shelley Q. Zhuang, Ben Y. Zhao, Anthony D. Joseph, Randy Katz John Kubiatowicz « Bayeux: An Architecture
for Scalable and Fault-tolerant Wide-area Data Dissemination »Eleventh International Workshop on
Network and Operating Systems Support for Digital Audio and Video (NOSSDAV 2001)

• Sylvia Ratnasamy, Mark Handley, Richard Karp, Scott Shenker « Application-level Multicast using Content-
Addressable Networks » (2001) Lecture Notes in Computer Science, NGC 2001 London.

• D. Kostic, A. Rodriguez, J. Albrecht, and A. Vahdat. « Bullet: High bandwidth data dissemination using an
overlay mesh ». In 19th ACM Symposium on Operating Systems Principles, October 2003.

CS-460 54

http://www.cs.berkeley.edu/~shelleyz
http://www.cs.berkeley.edu/~ravenben
http://www.cs.berkeley.edu/~adj
http://www.cs.berkeley.edu/~randy
http://www.cs.berkeley.edu/~kubitron

