

This note contains definitions, theorems, facts, *etc.* that are not fully explained in lectures due to limited time. If you think there are anything missing or any mistakes, please contact ziyi.guan@epfl.ch.

Some of the definitions and the exercise presented in this note are adapted from the course materials of *Algebraic Error Correcting Codes* taught by Professor Mary Wootters at Stanford University. We direct interesting readers to refer to the course website https://web.stanford.edu/~marykw/classes/CS250_W18/ for more information.

1 Coding Theory

1.1 Code

In the lecture, we go over the BLR-test, which determines if a function is linear or not. We mention that it implicitly rely on the Hadamard code. Here we give a brief introduction to the coding theory.

A basic problem in the coding theory is how to encode messages efficiently and how to deal with data corruption during communication. For example, we prove in lecture that given a function f that is very close to a linear function f_{LIN} , it is possible to recover f_{LIN} from f .

Formally, given a finite alphabet Σ and $n \in \mathbb{Z}_{>0}$, a code C with **block length** n over the Alphabet Σ is a subset of Σ^n . We introduce other characteristics of code C in the followings:

- A **codeword** of the code C is an element $c \in C$.
- The **message length** of the code C is $k := \log_{|\Sigma|} |C|$.
 - Note that different messages should have different encodings, thus $|\Sigma|^k = |C|$.
- The **rate** of the code C is denoted as R , and $R := \frac{k}{n}$.
- The **distance** of the code C is the minimum Hamming distance between codewords, that is, $d := \min_{c \neq c' \in C} \Delta(c, c')$.
 - Hamming distance: $\Delta(x, y) := \sum_{i=1}^n \mathbb{1}(x_i \neq y_i)$
 - Relative Hamming distance: $\delta(x, y) := \frac{1}{n} \sum_{i=1}^n \mathbb{1}(x_i \neq y_i) = \frac{\Delta(x, y)}{n}$
- A $(n, k, d)_{|\Sigma|}$ code: code with block length n , message length k , distance d , and alphabet Σ .

Example 1. $C := \{(0, 0, 0, 0), (1, 0, 0, 1), (0, 1, 0, 1), (0, 0, 1, 1), (0, 1, 1, 0), (1, 0, 1, 0), (1, 1, 0, 0), (1, 1, 1, 1)\}$ is a code of length 4 over $\Sigma = \{0, 1\}$ (in which case we call C a binary code). To be concrete, C is a $(4, 3, 2)_2$ code. (One can verify this easily.)

Intuitively, we would like a code with small block length, i.e. we want R to be close to 1. However, we can show that R can not be any close to 1. To illustrate it we need to define the Hamming ball first:

Definition 1. The Hamming ball in Σ^n of radius r for $x \in \Sigma^n$ is

$$B_{\Sigma^n}(x, r) := \{y \in \Sigma^n : \Delta(x, y) \leq r\}$$

The volume of $B_{\Sigma^n}(x, r)$ is $\text{Vol}_{|\Sigma|}(r, n) := |B_{\Sigma^n}(x, r)|$.

The definition of the volume makes sense because $|B_{\Sigma^n}(x, r)|$ does not depend on x . Now we can use the Hamming Ball to find a bound for the rate, which is called the **Hamming bound**.

Theorem 1. For a $(n, k, d)_{|\Sigma|}$ code, the Hamming bound of its rate R is:

$$R \leq 1 - \frac{\log_{|\Sigma|}(\text{Vol}_{|\Sigma|}(\lfloor \frac{d-1}{2} \rfloor, n))}{n}$$

Proof. We prove by checking the Hamming Ball of each codeword.

- The $(n, k, d)_{|\Sigma|}$ code C is a subset of Σ^n , thus:

$$|C| \cdot \text{Vol}_{|\Sigma|}(\left\lfloor \frac{d-1}{2} \right\rfloor, n) \leq |\Sigma|^n.$$

- By taking log of both sides, we have:

$$R = \frac{k}{n} \leq 1 - \frac{\log_{|\Sigma|}(\text{Vol}_{|\Sigma|}(\lfloor \frac{d-1}{2} \rfloor, n))}{n}$$

□

Example 2. Suppose $\text{Enc} : \{0, 1\}^4 \rightarrow \{0, 1\}^7$ with $\text{Enc}(x_1, x_2, x_3, x_4) := (x_1, x_2, x_3, x_4, x_2 + x_3 + x_4, x_1 + x_3 + x_4, x_1 + x_2 + x_4)$. Let $C := \text{Img}(\text{Enc})$. Thus $C \subseteq \{0, 1\}^7$ is a $(7, 4, 3)_2$ code with tight Hamming bound, since $\text{Vol}_2(1, 7) = 1 + \binom{7}{1} \times 1 = 8$. This code is called a Hamming code.

Exercise 1. Show that the code C in Example 2 has distance 3, thus it has tight Hamming bound.

Solution. It suffices to show that $\min_{c \in C \setminus \{0\}} \text{wt}(c) \geq 3$ where $\text{wt}(c)$ denotes the number of non-zero elements in c . ■

1.2 Hadamard code

The Hadamard code is a linear code with some nice properties illustrated in the lecture. That is, we can efficiently check if f is a Hadamard codeword (or linear function) and recover a Hadamard codeword from small corruption.

We first give a definition of the linear code:

Definition 2 (Linear code). A linear code is a code for which any linear combination of codewords is also a codeword.

Example 3. The code C defined in Example 2 is a linear code, since for any codewords $c_1 := \text{Enc}(x_1, x_2, x_3, x_4)$ and $c_2 := \text{Enc}(y_1, y_2, y_3, y_4)$, we have $ac_1 + bc_2 = \text{Enc}(ax + by) \in C$.

Exercise 2. Show that a linear code of block length n and message length k over a finite field \mathbb{F} (which means that the alphabet is \mathbb{F}) is a k -dimensional linear subspace of \mathbb{F}^n .

Solution. We will prove by contradiction:

- A linear code C is a linear subspace by definition, we need to show that its dimension is k .
- Assume that the dimension of the subspace is $k+1$, that is, the subspace has $k+1$ linearly independent basis $\{c_i\}_{i \in [k]}$ and every codeword c can be written as $\sum_{i=0}^k b_i c_i$.
- Note that two codeword $c = c'$ iff their corresponding representations $\{b_i\}_{i \in [k]}$, $\{b'_i\}_{i \in [k]}$ are the same. That is to say, there is a bijection from $c \in C$ to $\{b_i\}_{i \in [k]}, b_i \in \mathbb{F}$.
- $|C| = |\mathbb{F}|^{k+1}$, which is a contradiction with the message length being k .

■

As mentioned in the lecture, the set of all linear functions is precisely the Hadamard code. Assume without loss of generality that $\mathbb{F} = \mathbb{F}_2$, we introduce Hadamard code and its properties.

Definition 3 (Hadamard code). *The Hadamard code is a subset $C \subseteq \{0,1\}^{2^n}$ which is the image of the encoding function $\text{Had}: \{0,1\}^n \rightarrow \{0,1\}^{2^n}$. The encoding function Had encodes a message $u \in \{0,1\}^n$ to the sequence of all inner product with u . That is,*

$$\text{Had}(u) := (\langle u, a \rangle)_{a \in \{0,1\}^n}.$$

We have the following observations:

- The Hadamard code's codeword block length is 2^n with message length n .
- The Hadamard code is a linear code.
 - Any linear combination of Hadamard codewords is also a Hadamard codeword because:

$$\begin{aligned} \alpha \text{Had}(u) + \beta \text{Had}(v) &= \alpha(\langle u, a \rangle)_{a \in \{0,1\}^n} + \beta(\langle v, a \rangle)_{a \in \{0,1\}^n} \\ &= (\langle \alpha u + \beta v, a \rangle)_{a \in \{0,1\}^n} \\ &= \text{Had}(\alpha u + \beta v) \end{aligned}$$

- The relative distance of the Hadamard code is $\frac{1}{2}$ (for general \mathbb{F} , it will be $1 - \frac{1}{|\mathbb{F}|}$).
- The Hadamard code is the truth table of LIN, which is the set of all linear functions from $\{0,1\}^n$ to $\{0,1\}$.
 - As defined in the lecture, a function $f: \mathbb{F}^n \rightarrow \mathbb{F}$ is linear iff there exists $c \in \mathbb{F}^n$ such that for every $x \in \mathbb{F}^n$, $f(x) = \sum_{i=1}^n c_i x_i$.
 - The truth table of LIN is a $2^n \times 2^n$ table where the rows are indexed by input values and the columns are indexed by the linear functions.
 - A Hadamard codeword encoding from the message u is precisely the truth table of the linear function $f(x) := \langle u, x \rangle = \sum_{i=1}^n u_i x_i$, that is, the values of f over every possible x .
 - There is a natural bijection from every $u \in \mathbb{F}^n$ to every $f \in \text{LIN}$: $u \rightarrow f(x) = \sum_{i=1}^n u_i x_i$.

Example 4. We show the Hadamard code for the case $n = 2$:

x	Had(0, 0)	Had(0, 1)	Had(1, 0)	Had(1, 1)
(0, 0)	0	0	0	0
(0, 1)	0	1	0	1
(1, 0)	0	0	1	1
(1, 1)	0	1	1	0

Every column is the truth table of a linear function $f(x) := \sum_{i=1}^n u_i x_i$.

Based on the observations above, it can be clearly seen that the Hadamard code has two nice properties as we mention at the beginning of the subsection:

- Local testability: Given a function $f: \{0, 1\}^n \rightarrow \{0, 1\}$, we are able to know whether there exists $u \in \{0, 1\}^n$ such that $f(x) = \text{Had}(u)_x$ for all $x \in \{0, 1\}^n$ (or just $f = \text{Had}(u)$ for simplicity). In other words, we can know if $f \in \text{LIN}$.
 - Simply use V_{BLR} .
- Local decodability: Given a function f that is close to some linear function \hat{f} , we are able to learn $\hat{f}(x)$ for any $x \in \{0, 1\}^n$.
 - Local correction: Sample $y \in \{0, 1\}^n$ and return $f(x + y) - f(y)$.