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This note contains definitions, theorems, facts, etc. that are not fully explained in lectures due to
limited time. If you think there are anything missing or any mistakes, please contact ziyi.guan@epfl.ch.

Some of the definitions and the exercise presented in this note are adapted from the course
materials of Algebraic Error Correcting Codes taught by Professor Mary Wootters at Stanford
University. We direct interesting readers to refer to the course website https://web.stanford.

edu/~marykw/classes/CS250_W18/ for more information.

1 Coding Theory

1.1 Code

In the lecture, we go over the BLR-test, which determines if a function is linear or not. We mention
that it implicitly rely on the Hadamard code. Here we give a brief introduction to the coding theory.

A basic problem in the coding theory is how to encode messages efficiently and how to deal with
data corruption during communication. For example, we prove in lecture that given a function f
that is very close to a linear function fLIN, it is possible to recover fLIN from f .

Formally, given a finite alphabet Σ and n ∈ Z>0, a code C with block length n over the
Alphabet Σ is a subset of Σn. We introduce other characteristics of code C in the followings:

• A codeword of the code C is an element c ∈ C.

• The message length of the code C is k := log|Σ| |C|.

– Note that different messages should have different encodings, thus |Σ|k = |C|.

• The rate of the code C is denoted as R, and R := k
n .

• The distance of the code C is the minimum Hamming distance between codewords, that is,
d := minc ∕=c′∈C∆(c, c′).

– Hamming distance: ∆(x, y) :=
!n

i=1 (xi ∕= yi)

– Relative Hamming distance: δ(x, y) := 1
n

!n
i=1 (xi ∕= yi) =

∆(x,y)
n

• A (n, k, d)|Σ| code: code with block length n, message length k, distance d, and alphabet Σ.

Example 1. C := {(0, 0, 0, 0), (1, 0, 0, 1), (0, 1, 0, 1), (0, 0, 1, 1), (0, 1, 1, 0), (1, 0, 1, 0), (1, 1, 0, 0), (1, 1, 1, 1)}
is a code of length 4 over Σ = {0, 1} (in which case we call C a binary code). To be concrete, C is
a (4, 3, 2)2 code. (One can verify this easily.)

Intuitively, we would like a code with small block length, i.e. we want R to be close to 1.
However, we can show that R can not be any close to 1. To illustrate it we need to define the
Hamming ball first:
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Definition 1. The Hamming ball in Σn of radius r for x ∈ Σn is

BΣn(x, r) := {y ∈ Σn : ∆(x, y) ≤ r}

The volume of BΣn(x, r) is Vol|Σ|(r, n) := |BΣn(x, r)|.

The definition of the volume makes sense because |BΣn(x, r)| does not depend on x. Now we
can use the Hamming Ball to find a bound for the rate, which is called the Hamming bound .

Theorem 1. For a (n, k, d)|Σ| code, the Hamming bound of its rate R is:

R ≤ 1−
log|Σ|(Vol|Σ|(

"
d−1
2

#
, n))

n

Proof. We prove by checking the Hamming Ball of each codeword.

• The (n, k, d)|Σ| code C is a subset of Σn, thus:

|C| ·Vol|Σ|(

$
d− 1

2

%
, n) ≤ |Σ|n .

• By taking log of both sides, we have:

R =
k

n
≤ 1−

log|Σ|(Vol|Σ|(
"
d−1
2

#
, n))

n

Example 2. Suppose Enc : {0, 1}4 → {0, 1}7 with Enc(x1, x2, x3, x4) := (x1, x2, x3, x4, x2 + x3 +
x4, x1 + x3 + x4, x1 + x2 + x4). Let C := Img(Enc). Thus C ⊆ {0, 1}7 is a (7, 4, 3)2 code with tight
Hamming bound, since Vol2(1, 7) = 1 +

&
7
1

'
× 1 = 8. This code is called a Hamming code.

Exercise 1. Show that the code C in Example 2 has distance 3, thus it has tight Hamming bound.

Solution. It suffices to show that minc∈C\{0}wt(c) ≥ 3 where wt(c) denotes the number of non-zero
elements in c. !

1.2 Hadamard code

The Hadamard code is a linear code with some nice properties illustrated in the lecture. That is,
we can efficiently check if f is a Hadamard codeword (or linear function) and recover a Hadamard
codeword from small corruption.

We first give a definition of the linear code:

Definition 2 (Linear code). A linear code is a code for which any linear combination of codewords
is also a codeword.

Example 3. The code C defined in Example 2 is a linear code, since for any codewords c1 :=
Enc(x1, x2, x3, x4) and c2 := Enc(y1, y2, y3, y4), we have ac1 + bc2 = Enc(ax+ by) ∈ C.

Exercise 2. Show that a linear code of block length n and message length k over a finite field F
(which means that the alphabet is F) is a k-dimensional linear subspace of Fn.



Solution. We will prove by contradiction:

• A linear code C is a linear subspace by definition, we need to show that its dimension is k.

• Assume that the dimension of the subspace is k + 1, that is, the subspace has k + 1 linearly
independent basis {ci}i∈[k] and every codeword c can be written as

!k
i=0 bici.

• Note that two codeword c = c′ iff their corresponding representations {bi}i∈[k], {b′i}i∈[k] are
the same. That is to say, there is a bijection from c ∈ C to {bi}i∈[k], bi ∈ F.

• |C| = |F|k+1, which is a contradiction with the message length being k.

!

As mentioned in the lecture, the set of all linear functions is precisely the Hadamard code.
Assume without loss of generality that F = F2, we introduce Hadamard code and its properties.

Definition 3 (Hadamard code). The Hadamard code is a subset C ⊆ {0, 1}2n which is the image
of the encoding function Had: {0, 1}n → {0, 1}2n. The encoding function Had encodes a message
u ∈ {0, 1}n to the sequence of all inner product with u. That is,

Had(u) := (〈u, a〉)a∈{0,1}n .

We have the following observations:

• The Hadamard code’s codeword block length is 2n with message length n.

• The Hadamard code is a linear code.

– Any linear combination of Hadamard codewords is also a Hadamard codeword because:

αHad(u) + βHad(v) = α(〈u, a〉)a∈{0,1}n + β(〈u, a〉)a∈{0,1}n
= (〈αu+ βv, a〉)a∈{0,1}n
= Had(αu+ βv)

• The relative distance of the Hadamard code is 1
2 (for general F, it will be 1− 1

|F|).

• The Hadamard code is the truth table of LIN, which is the set of all linear functions from
{0, 1}n to {0, 1}.

– As defined in the lecture, a function f : Fn → F is linear iff there exists c ∈ Fn such that
for every x ∈ Fn, f(x) =

!n
i=1 cixi.

– The truth table of LIN is a 2n × 2n table where the rows are indexed by input values
and the columns are indexed by the linear functions.

– A Hadamard codeword encoding from the message u is precisely the truth table of the
linear function f(x) := 〈u, x〉 =

!n
i=1 uixi, that is, the values of f over every possible x.

– There is a natural bijection from every u ∈ Fn to every f ∈ LIN: u → f(x) =
!n

i=1 uixi.

Example 4. We show the Hadamard code for the case n = 2:



x Had(0, 0) Had(0, 1) Had(1, 0) Had(1, 1)

(0, 0) 0 0 0 0

(0, 1) 0 1 0 1

(1, 0) 0 0 1 1

(1, 1) 0 1 1 0

Every column is the truth table of a linear function f(x) :=
!n

i=1 uixi.

Based on the observations above, it can be clearly seen that the Hadamard code has two nice
properties as we mention at the beginning of the subsection:

• Local testablity: Given a function f : {0, 1}n → {0, 1}, we are able to know whether there
exists u ∈ {0, 1}n such that f(x) = Had(u)x for all x ∈ {0, 1}n (or just f = Had(u) for
simplicity). In other words, we can know if f ∈ LIN.

– Simply use VBLR.

• Local decodability: Given a function f that is close to some linear function (f , we are able to
learn (f(x) for any x ∈ {0, 1}n.

– Local correction: Sample y ∈ {0, 1}n and return f(x+ y)− f(y).


