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Challenge | - Make it stand!

e Questions:
o Given some (digital) geometric object, how can we determine if it stands? v/

o |f it does not stand, how can we modify it, so that it does?

e More fundamentally:

o What does it mean for an object to stand? v/
o What is a geometric object? /
o What does it mean to modify a shape?

o How do we find the best modification?

e Make it stand: The initial shape, the it, has meaning.
o How do we preserve the initial shape as best as possible?
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Aside: Mobile
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Aside: GCM Research

MOCCA: Modeling and Optimizing Cone-joints for Complex Assemblies, SSIGGRAPH 2021

A
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Recap: Barycentric Coordinates

e What is the barycentric equation for the line passing through point C' and the centroid
of triangle ABC?

A y=1-8| [B a=p] [c aty=1] [D: =gy
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Shearing a Mesh

e The centroid is given as
1
Tan = o Z Asxy
feF

o where Ay, z are the area resp. centroid of triangle fand @ =} . Ay is the total area of the mesh.

e Area is preserved under shearing!

o When applying a shear, the mesh centroid is still a linear function of the shear coefficient v.

e We can easily solve for the specific v to achieve a given target z-location of the centroid!

o Homework 1.1

~
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Shape Preservation

e Shear can introduce “unnatural” deformations.

e Make it stand: The initial shape, the it, has meaning.
o How do we preserve the initial shape as best as possible?
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Shape Preservation

e We want to modify our input geometry as little as possible to make it stand.
e How can we make “as little as possible” more formal?

e |dea: Treat the object as an elastic body and minimize some elastic deformation energy.

Reference Configuration Deformed Configuration

e We use a simple shape preservation model based on springs.
o We will study more sophisticated models are based on continuum mechanics later

o
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Spring Networks

Reference Configuration Deformed Configuration

N

e Rudimentary spring-based deformable object model:
o Sample a set of points X; and connect them with springs.

o In our case, the samples X; are the initial mesh vertex positions and each mesh edge becomes a spring.

o Now our deformed configuration is described by a deformation function ® as x; = ®(X;).

n
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Linear Springs (Hooke’s Law)

e Hooke's Law (1676): for small extensions, the force required
to stretch a spring is proportional to the amount of stretch.

4N
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Linear Springs (Hooke’s Law)

e Hooke's Law (1676): for small extensions, the force required
to stretch a spring is proportional to the amount of stretch.

fext — k(l_L) X
2x| A I

Variables Meaning

L rest length I
[ deformed length |JVWVW\"
fext applied force

< [ >
k spring stiffness coefficient I—/VV\/VVV‘» Foxt
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Linear Springs (Hooke’s Law) Energy

e How do we model this spring with an elastic energy term? «—L—

e Energy stored in spring = work done by external force I

(neglecting heat) . ] .
WM o

Brping(L1) = / Foul(z)de

/ k(xz — L)dz = —k(l — L)%
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Linear Springs (Hooke’s Law) in nD

e Now let’s express a spring’s energy in terms of undeformed/deformed points in nD.

o NNV -O .
Xo X4 VN/‘

L=|X;—Xol, 1=|x1—x0

1 2
Eping = Ek(Hxl — xo|| — [| X1 — Xol|)

e Forces on point x; applied by spring?

o Homework!
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Spring System Energy

Reference Configuration Deformed Configuration

X2

I TN
N

XOf X1

e Full elastic energy of spring system: just sum them up!

2
Eelastlc X X Z kzg |xz x]” ”XZ - X]”)
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Make it stand - Optimization

&
ALy
VAN

e Our goal is to find new vertex positions V' of our mesh such that
o the elastic energy is minimized

o the centroid projects into the support line

ls| ls| Constraints makes this problem harder to solve :(
How do we get a unconstrained formulation?
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e where z is the center of the support line and [, is its length.

e This is an example of a non-linear, constrained optimization problem.
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Make it stand - Optimization
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e Let's replace the balance constraint with a penalty energy term:

1
Eeq(V) VOaF) — E(wcm — $C5|)2

o This energy penalizes deviations of the centroid from the center of the support line.

e Unconstrained nonlinear optimization problem:

27.09.24, 09:37

. - Increasing w effectively makes
mvl'n Eeq (V’ Vo, F) + wEe'as“c(V’ Vo, F)’ the springs stiffer.

where w controls a trade-off between ensuring that the object is standing and preserving the

input shape.
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Geometry Riddle

e What fraction of the area of the regular hexagon is shaded by the six pointed star
(vertices are connected to midpoints)?

477
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Motivation

e Physical Simulation

o Compute static equilibria of rigid and deformable objects, more general physical systems.
o Variational integrators for dynamics problems.

e Optimal Design
o Formulate the design problem as optimizing some performance metric.

o Example: minimize distance of C.0.M. to the support polygon by repositioning surface points.



Introduction

Optimization is everywhere !

“Since the fabric of the universe is most perfect [...],
nothing at all takes place in the universe in which some
rule of maximum or minimum does not appear.”

Leonard Euler on Wikipedia

Leonhard Euler (1707-1783)
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Types of Optimization Problems

Continuous vs. Discrete

Unconstrained vs. Constrained

None, One, or Many Objectives

Deterministic vs. Stochastic

Source: https:/neos-guide.org/optimization-tree


https://neos-guide.org/optimization-tree

Reading

e For Today: Chapter 2, pp 10-21
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Nocedal, J., Wright, S. (2006). Numerical Optimization. United States: Springer New York.
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Reading

-ngineering Design
Optimization

Engineering Design Optimization
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General Formulation

e Standard Form of continuous optimization problem

min f(x)
st.ci(x) =0 1€€&
Ci(X) >0 1€

e with

o optimization variable x = (z1,zs,...,2,)’ € R?

o

objective function f : R® -+ R
o constraint functions ¢; : R® — R

o equality constraint index set £

O

inequality constraint index set Z



Unconstrained Optimization

minx f (X) Tglobal

x € R™ with n often very large (e.g., thousands of variables)
Global minimum x* : f(x*) < f(x) Vx

Local minimum x*: f(x*) < f(x) Vx e N

In general (unless f is convex), we hope only for local minima.

We will assume f is at least C'2.
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True or False?

A function that has two or more minima, must have at least one maximum.

{Az TrueJ {B: FaIseJ
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True or False?

The global minimum (if it exists) of a function is unique.

{Az TrueJ {B: FaIseJ
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True or False?

A polynomial of degree n has at most |n/2] local minima.

{Az TrueJ {B: FaIseJ
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True or False?

If two functions f and g have a minimum at z, then f - g also has a minimum at .

{Az TrueJ {B: FaIseJ
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Unconstrained Optimization - Example |

e Minimize f(z) = 2z? +4z +1

e How to find solution £*?

o strategy (A): visual inspection

o strategy (B): analytic solution

14



Unconstrained Optimization - Example Il

e minimize f(z,y) = 4(sin(z) —cos(y))? +z? +y> +z + y



Algorithm Overview

e Our goal is to find the (local) minimum of the objective function f.

e Strategy: Iterative search

o Given some initial point x,, we will construct a sequence of estimates xg, x1, ..., x; with

f(x0) = f(x1)--- = f(xx).
e Basic Questions:
o How to find x4?
o How to find the next iterate x; given x¢, x1,...,X;_17
o When to stop?

o How to make this efficient?

16



Gradients and Gradient Descent

e The simplest, most intuitive algorithm for finding a minimizer:
iteratively step in the direction of steepest descent.

e In 1D, this direction is given by the sign of — f'(x).

Of
8.’131

e In nD, this direction points opposite the gradient vector, Vf = [
(in Cartesian coordinates).
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Gradient as the Best Linear Approximation

e The gradient can be interpreted as representing the best linear approximation f around
the current point x:

fx+d) = f(x) + Vf(x) d+O(|d|")

(first-order Taylor expansion).
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Taylor expansion 18
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Another Graphical Interpretation

e Stepping along the negative gradient direction moves perpendicularly to the current
contour.

fx+d) = f(x) + Vf(x) d+O(|d|")
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Gradient as Steepest Ascent Direction

e Taylor expansion: f(x +d) = f(x) + Vf(x)'d + O(||d||?)

e Why does —V f point in the direction of quickest descent?
e Search for the optimal step d* of very shortlength0 < e < 1-

m(}n f(x+d) = m(}n f(x)+Vf-d
Idfj=e Id]|=e

= m(}n Vf-d= mjn e||V f]| cos(8),
Id]|=e |d]|=e

where @ is the angle between V f and d.

\Z
VSl

e Minimum occurs when cos(f) = -1 <= d* = —¢
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How far to Step?

e Once step direction d is chosen, a step length a > 0 must be picked.

Finding the best a is a 1D optimization problem (regardless of n):

e Solving this exactly is usually difficult and not worthwhile.

Instead, simpler strategies for picking « (“inexact line searches”) are used.
For now, let’s consider using a small, constant a.

21



Basic Gradient Descent Algorithm

Algorithm: basic_steepest_descent
Input:
f function to minimize
x initial guess
a step length
while not converged (f, x)
x=x—aVf
end

e Remaining questions:

o What convergence criterion to use?
o Is it possible to pick a single a that performs well?

o How to compute gradients?

22
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