
Concurrent Computing
Mock Midterm Exam

November 25th, 2024

Time: 1h45

• This midterm is “closed book”: no notes, electronics, or cheat sheets allowed.

• When solving a problem, do not assume any known result from the lectures, unless we explicitly
state that you might use some known result.

• Keep in mind that only one operation on one shared object (e.g., a read or a write of a register)
can be executed by a process in a single step. To avoid confusion (and common mistakes) write
only a single atomic step in each line of an algorithm.

• Remember to write which variables represent shared objects (e.g., registers).

• Unless otherwise stated, we assume atomic multi-valued MRMW shared registers.

• Unless otherwise stated, we ask for wait-free algorithms.

• Unless otherwise stated, we assume a system of n asynchronous processes which might crash.

• For every algorithm you write, provide a short explanation of why the algorithm is correct.

• Make sure that your name and SCIPER number appear on every loose sheet of paper you hand in.

• You are only allowed to use additional pages handed to you (available upon request).

Good luck!

Problem Max Points Score
1 2

2 2

3 3

4 3

5 4

Total 14

1

Problem 1 (2 points)

Tasks.

1. Write a wait-free algorithm that implements a safe MRSW binary register using (any number of)
SRSW safe binary registers.

2. Write a wait-free algorithm that implements a regular MRSW binary register using (any number
of) safe MRSW binary registers.

2

Problem 2 (2 points)

A snapshot object maintains an array of registers R of size n, has operations scan() and updatei() and
the following sequential specification:

1 upon updatei(v) do
2 Ri ←v
3 upon scan do
4 return R

Figure 1: Sequential specification of the snapshot object.

The following algorithm (incorrectly) implements an atomic snapshot object using an array of shared
registers R:

1 upon updatei(v) do
2 ts← ts + 1
3 Ri ← (v, ts, scan())
4 upon scan do
5 t1 ← collect(), t2 ← t1
6 while true do
7 t3 ← collect()
8 if t3 = t2 then return ⟨ t3[1].val, . . . , t3[N].val ⟩
9

10 for k← 1 to N do
11 if t3[k].ts ≥ t1[k].ts + 1 then return t3[k].snapshot
12

13 t2 ← t3

14 upon collect do
15 for j← 1 to N do
16 xj ← Rj;
17 return x

Figure 2: Incorrect implementation of the snapshot object.

Task. Give an execution of the algorithm which violates atomicity of the snapshot object.

3

4

Problem 3 (3 points)

Consider the linearizable and wait-free log object. The log object supports two operations: append and
getLog. The sequential specification of the log object is shown below:

1 Given:
2 Sequential linked list L that is initially empty.
3

4 procedure append(obj)
5 L.append(obj)
6

7 procedure getLog()
8 result[]← ⊥
9 k← length(L)
10 i← 1
11 while i ≤ k do
12 result[i]← element(L, i) // the element(L, i) function call returns the i-th element of list L
13 i← i + 1
14 return result

Figure 3: Sequential specification of the log object.

Furthermore, consider a linearizable and wait-free fetch-and-increment object where its sequential
specification is shown below:

1 Given:
2 Register R that is initially 0.
3

4 procedure fetchAndIncrement()
5 old← R
6 R← old + 1
7 return old

Figure 4: Sequential specification of the fetch-and-increment object.

Is it possible to implement the linearizable and wait-free log object by using any number of read-write
registers and fetch-and-increment objects? Explain your answer.

5

6

Problem 4 (3 points)

An atomic shared counter maintains an integer x, initially 0, and has two operations inc() and read().
The sequential specification is as follows:

1 x integer, initially 0

2 upon read(x) do
3 return x

4 upon inc(x) do
5 x ← x + 1

Consider the following, incorrect, implementation of an obstruction-free consensus object from shared
counters:

uses: C0, C1 – atomic shared counters initialized to 0

1 upon propose(v) do
2 while true do
3 (x0, x1)← readCounters()
4 if x0 > x1 then
5 v← 0
6 else if x1 > x0 then
7 v← 1
8 if |x0 − x1| ≥ 1 then
9 return v

10 Cv.inc()

11 upon readCounters() do
12 while true do
13 x0 ← C0.read()
14 x1 ← C1.read()
15 x′0 ← C0.read()
16 if x0 = x′0 then
17 return (x0, x1)

Give an execution of the above algorithm that shows that the algorithm is not a correct implemen-
tation of an obstruction-free consensus object, i.e. an execution in which some property (obstruction-
freedom, validity, or agreement) of obstruction-free consensus is violated.

7

8

Problem 5 (4 points)

An atomic 0-set-once object is a shared object that has three states ⊥, 0, and 1. ⊥ is the initial state. It
provides only one operation set(v) where v ∈ {0, 1}, such that:

• If the object is in state ⊥, then set(v) changes the state of the object to v and returns v.

• If the object is in state s where s ∈ {0, 1}, then set(v) changes the state of the object to s ∧ ¬v and
returns the new state of the object (i.e., s ∧ ¬v).

Tasks.

1. Explain what it means for a shared object to have infinite consensus number.

2. Write an algorithm that solves consensus among two processes using any number of 0-set-once
objects and registers.

3. Prove that the atomic 0-set-once object has infinite consensus number.

9

10

