Concurrent Computing
Mock Midterm Exam

November 25th, 2024

Time: 1hgs

This midterm is “closed book”: no notes, electronics, or cheat sheets allowed.

When solving a problem, do not assume any known result from the lectures, unless we explicitly
state that you might use some known result.

Keep in mind that only one operation on one shared object (e.g., a read or a write of a register)
can be executed by a process in a single step. To avoid confusion (and common mistakes) write
only a single atomic step in each line of an algorithm.

Remember to write which variables represent shared objects (e.g., registers).

Unless otherwise stated, we assume atomic multi-valued MRMW shared registers.

Unless otherwise stated, we ask for wait-free algorithms.

Unless otherwise stated, we assume a system of n asynchronous processes which might crash.

For every algorithm you write, provide a short explanation of why the algorithm is correct.

Make sure that your name and SCIPER number appear on every loose sheet of paper you hand in.

You are only allowed to use additional pages handed to you (available upon request).

Good luck!

Problem \ Max Points \ Score ‘

1 2
2 2
3 3
4 3
5 4

Total 14

Problem 1 (2 points)

Tasks.

1. Write a wait-free algorithm that implements a safe MRSW binary register using (any number of)
SRSW safe binary registers.

2. Write a wait-free algorithm that implements a regular MRSW binary register using (any number
of) safe MRSW binary registers.

Problem 2 (2 points)

A snapshot object maintains an array of registers R of size n, has operations scan() and update;() and
the following sequential specification:

1 upon update;(v) do

2 ‘ Ri —V
3 upon scan do
4 ‘ return R

Figure 1: Sequential specification of the snapshot object.

The following algorithm (incorrectly) implements an atomic snapshot object using an array of shared
registers R:

1 upon update;(v) do
2 ts < ts+1

3 R; < (v, ts,scan())

4 upon scan do

5 t1 < collect(), tp +

6 while true do

7 t3 < collect()

8 if t3 = t; then return (#3[1].val, ..., t3[N].val)
9

10 fork < 1to N do
11 if ta[k].ts > t1[k].ts + 1 then return t3[k].snapshot
13 ty < t3

14 upon collect do
15 fOI']'FltONdO
16 x]‘ — Rj;

17 return x

Figure 2: Incorrect implementation of the snapshot object.

Task. Give an execution of the algorithm which violates atomicity of the snapshot object.

Problem 3 (3 points)

Consider the linearizable and wait-free log object. The log object supports two operations: append and
getLog. The sequential specification of the log object is shown below:

1 Given:
2 Sequential linked list L that is initially empty.

3

4 procedure append(obj)
5 L.append(obj)

6

7 procedure getLog()

8 result[] < L

9 k < length(L)

10 i+ 1

11 while i < k do

12 result[i] < element(L,i) // the element(L,) function call returns the i-th element of list L
13 1+ l—|— 1

14 return result

Figure 3: Sequential specification of the log object.

Furthermore, consider a linearizable and wait-free fetch-and-increment object where its sequential
specification is shown below:

1 Given:
2 Register R that is initially 0.

3
4 procedure fetchAndIncrement()

5 old + R
6 R+ old+1
7 return old

Figure 4: Sequential specification of the fetch-and-increment object.

Is it possible to implement the linearizable and wait-free log object by using any number of read-write
registers and fetch-and-increment objects? Explain your answer.

Problem 4 (3 points)

An atomic shared counter maintains an integer x, initially o, and has two operations inc() and read().
The sequential specification is as follows:

1 X integer, initially o
2 upon read(x) do

3 ‘ return x

4 upon inc(x) do

5 ‘ x+—x+1

Consider the following, incorrect, implementation of an obstruction-free consensus object from shared
counters:

uses: Cy, C; — atomic shared counters initialized to 0

1 upon propose(v) do
2 while true do

3 (x0, x1) < readCounters()
4 if xg > xq then
5 ‘ v+ 0
6 else if x; > xg then
7 ‘ v+ 1
8 if |[xg — x1| > 1 then
9 ‘ return v

10 Cv.inc()

11 upon readCounters() do

12 while true do

13 Xg < Co.read()

14 X1 < Cl‘read()

15 x(y < Co.read()

16 if xo = x{, then

17 ‘ return (xg, x1)

Give an execution of the above algorithm that shows that the algorithm is not a correct implemen-
tation of an obstruction-free consensus object, i.e. an execution in which some property (obstruction-
freedom, validity, or agreement) of obstruction-free consensus is violated.

Problem 5 (4 points)

An atomic 0-set-once object is a shared object that has three states 1, 0, and 1. L is the initial state. It
provides only one operation set(v) where v € {0,1}, such that:

e If the object is in state L, then sef(v) changes the state of the object to v and returns v.

e If the object is in state s where s € {0,1}, then sef(v) changes the state of the object to s A —=v and
returns the new state of the object (i.e., s A —v).

Tasks.

1. Explain what it means for a shared object to have infinite consensus number.

2. Write an algorithm that solves consensus among two processes using any number of 0-set-once
objects and registers.

3. Prove that the atomic 0-set-once object has infinite consensus number.

10

