
Concurrent Computing November 19, 2024

Solutions to Exercise 8

Problem 1.

• Figure 1. Yes. An equivalent serial execution is T2 · T1.

• Figure 2. Yes. An equivalent serial execution is T2 · T1.

• Figure 3. Yes. An equivalent serial execution is T2 · T1.

• Figure 4. No. The execution is not opaque because T3 observes results of T1’s actions even though T1
is aborted. One way to make it opaque is to have the read operations in T3 return 0. In this case an
equivalent sequential execution is T1 · T3 · T2.

• Figure 5. No. The execution is not opaque because if T1 is serialized before T2, then T2 does not
observe the write to y; and if T2 is serialized before T1, then T1 does not observe the write to x.
One way to make the execution opaque is to abort one of the transactions. Another is to have read
operation in T1 return 1. In this case an equivalent serial execution is T2 · T1.

• Figure 6. Yes. An equivalent sequential execution is T1 · T2.

p-1



Problem 2. To implement these objects using transactional memory, we only need to enclose their se-
quential specification in an atomic block.

Snapshot:
uses: array[M]

upon Snapshot do
begintransaction;
for i = 1 to M do

ret[i]← array[i];

endtransaction;
return ret

Counter:
initially: count = 0

upon Inc do
begintransaction;
ret← count;
count← count + 1;
endtransaction;
return ret

CASN:
uses: array[M]

upon CASN(idx, oldv, newv) do
begintransaction;
L← length(idx);
for i = 1 to L do

if array[idx[i]] ̸= oldv[i] then
endtransaction;
return array

for i = 1 to L do
array[idx[i]]← newv[i]

endtransaction;
return array

p-2


