Concurrent Computing November 19, 2024

Exercise 8

Problem 1.
Each of the following executions represents an interleaving of transactions executed by a Transactional
Memory object. For each execution:

* Specify whether it is opaque or not.
e If it is not, suggest a modification to make it opaque.

* Specify an equivalent sequential execution of transactions.

Reminder: An execution is opaque if it is equivalent to some sequential execution in which every trans-
action, even aborted, observes a consistent state of the memory. A transaction in a sequential execution
observes a consistent state of the memory if for every transactional variable x every read operation on x
within the transaction returns the value written by the last successful write operation on x or the initial
value if there are no write operations on x.

x.write(1) y.write(2)
p1 Ty } } ® commit

p2 T I I ® commit
x.read — 0 y.read — 0

Figure 1: Transactional executions 1.
x.write(1) y.write(2)
p1 Ty | } } ® commit

p2 Tt I I ® commit
x.read — 0 y.read — 0

Figure 2: Transactional executions 2.
x.write(1) y.write(2)
P1 Ty | | | ® commit

p2 T f f ® commit
x.read — 0 y.read — 0

Figure 3: Transactional executions 3.

x.arite(1) y.write(2) y.read — 0 y-write(2)
pi Tt I t—-oO abort T2} I +——=@ commit

p2 Ts | I I O abort
x.read — 1 y.read — 2

Figure 4: Transactional executions 4.

x.read — 0 y.write(1)
P1 Ti | } } ® commit

p2 T | } f ® commit
y.read — 0 x.write(1)

Figure 5: Transactional executions 5.

x.read — 0 y.write(1)
P1 Ty | } } O abort

p2 T | } } ® commit
y.read — 0 x.write(1)

Figure 6: Transactional executions 6.

Problem 2.
Implement following objects using transactional memory:

* A snapshot.
¢ A strong counter.

* A compare-and-swap that works on several locations in an array. It takes the indices of the locations,
expected old values and the new values as parameters. Only if all the locations in the array have the
expected values, it swaps them with the new ones.

