Concurrent Computing November 12, 2024

Solutions to Exercise 7

Problem 1. The following algorithm solves the problem:
uses: Cp, C'y — counters

upon propose(v) do

while true do

(z0, 1) < readCounters()

if zg > 1 then v + 0

else if 1 > xo then v « 1

if |xg — 1| > n then return v
Cy.inc()

The readCounters procedure atomically reads both counters Cy and C;. It can be implemented as follows:
upon readCounters() do
while true do

xg < Co.read()

x1 + Cy.read()

xf  Co.read()

if xo = z{, then return (z¢,z1)

Problem 2. The answer is yes. To justify this, we show linearizability and termination still hold. For
linearizability, we need only to justify the return value of the replaced condition. Consider the first scan s
which returns on this condition. (The “first” scan refers to when the scan starts.) Since the timestamp 7
of the snapshot ret returned by s is no less than ts (which is obtained at the beginning of s), therefore the
wlInc procedure which returns 7 (denoted by wlne;) cannot end before the wiInc procedure which returns ts
(denoted by wincs) starts, by the property of the weak counter. In other words, wlnc; ends no earlier than
wlney starts. Thus the call of scan (denoted by s,¢:) inside the update which writes ret ends no earlier than
s starts. Le., two scans s and s,..; are concurrent. As a result, s can be linearized at the same point as S;.e;.
Since s, returns a linearizable value, then s also returns a linearizable value. We can extend the reasoning
to infinity by induction. For termination, it is easy to see that now the implementation has more chances to

return, and therefore must satisfy termination (as the original implementation satisfies termination).



