
Concurrent Computing November 12, 2024

Solutions to Exercise 7

Problem 1. The following algorithm solves the problem:

uses: C0, C1 – counters

upon propose(v) do

while true do

(x0, x1)← readCounters()

if x0 > x1 then v ← 0

else if x1 > x0 then v ← 1

if |x0 − x1| ≥ n then return v

Cv.inc()

The readCounters procedure atomically reads both counters C0 and C1. It can be implemented as follows:

upon readCounters() do

while true do

x0 ← C0.read()

x1 ← C1.read()

x′
0 ← C0.read()

if x0 = x′
0 then return (x0, x1)

Problem 2. The answer is yes. To justify this, we show linearizability and termination still hold. For

linearizability, we need only to justify the return value of the replaced condition. Consider the first scan s

which returns on this condition. (The “first” scan refers to when the scan starts.) Since the timestamp τ

of the snapshot ret returned by s is no less than ts (which is obtained at the beginning of s), therefore the

wInc procedure which returns τ (denoted by wInc1) cannot end before the wInc procedure which returns ts

(denoted by wInc2) starts, by the property of the weak counter. In other words, wInc1 ends no earlier than

wInc2 starts. Thus the call of scan (denoted by sret) inside the update which writes ret ends no earlier than

s starts. I.e., two scans s and sret are concurrent. As a result, s can be linearized at the same point as sret.

Since sret returns a linearizable value, then s also returns a linearizable value. We can extend the reasoning

to infinity by induction. For termination, it is easy to see that now the implementation has more chances to

return, and therefore must satisfy termination (as the original implementation satisfies termination).

p-1

