
Concurrent Computing November 12, 2024

Solutions to Exercise 6

Problem 1. The following algorithm implements a contention manager that transforms any obstruction-
free algorithm into a wait-free one:

uses: T[1, . . . , N]—array of registers, Executing[1, . . . , N]—atomic wait-free snapshot object
initially: T[1, . . . , N]← ⊥, Executing[1, . . . , N]← ⊥
upon tryi do

if T[i] = ⊥ then T[i]← GetTimestamp()

repeat
sacti ← { pj | T[j] ̸= ⊥ ∧ pj /∈ 3P .suspectedi }
Executing.update(i,⊥)
leaderi ← the process in sacti with the lowest timestamp T[leaderi]
if leaderi = i then Executing.update(i, i)

until Executing.scan() contains only i and ⊥, ∀ processes ∈ sacti

upon resigni do
T[i]← ⊥
Executing.update(i,⊥)

The algorithm uses a procedure GetTimestamp() that generates unique timestamps. We assume that if
a process gets a timestamp t from GetTimestamp(), then no process can get a timestamp lower than t in-
finitely many times. Thus, we can easily implement GetTimestamp() using only registers (or even without
using any shared objects). For example, we can use the output of a counter (see the lecture notes on how
to implement a counter from registers) combined with a process id (to ensure that timestamps are unique).
The algorithm also uses a wait-free, atomic snapshot object to store the process that should be executing
next (or is currently executing) in order to avoid two processes executing concurrently.

p-1


