Concurrent Computing November 12, 2024

Solutions to Exercise 6

Problem 1. The following algorithm implements a contention manager that transforms any obstruction-
free algorithm into a wait-free one:

uses: T[1,..., N]—array of registers, Executing[1, ..., N]—atomic wait-free snapshot object

initially: T[1,...,N] < L, Executing[l,...,N] « L

upon try; do
if T[i] = L then T[i] < GetTimestamp()

repeat
sact; < {p; | T[j] # L A p;j & OP.suspected; }
Executing.update(i, L)

leader; < the process in sact; with the lowest timestamp T'[leader;]
if leader; = i then Executing.update(i, i)
until Executing.scan() contains only i and L, ¥ processes € sact;

upon resign; do
T[i] + L
| Executing.update(i, 1)

The algorithm uses a procedure GetTimestamp () that generates unigue timestamps. We assume that if
a process gets a timestamp ¢ from GetTimestamp (), then no process can get a timestamp lower than f in-
finitely many times. Thus, we can easily implement GetTimestamp () using only registers (or even without
using any shared objects). For example, we can use the output of a counter (see the lecture notes on how
to implement a counter from registers) combined with a process id (to ensure that timestamps are unique).
The algorithm also uses a wait-free, atomic snapshot object to store the process that should be executing
next (or is currently executing) in order to avoid two processes executing concurrently.



