
Concurrent Computing October 1, 2024

Solutions to Exercise 1

Problem 1.
Part 1.a. Regular, not atomic.

Part 1.b. None of the above.

Part 1.c.
Atomic.

p1

p2

p3

write(1) write(2) write(1)

read → 1

read → 2

write(1) read → 1 write(2) read → 2 write(1)

Figure 1: Serialization points and an equivalent sequential execution.

Problem 2. Consider the transformation from (binary) SRSW safe to (binary) MRSW safe registers given
in class.

Part 2.a. Prove that the transformation works for multi-valued registers and regular registers.

When a process pi reads the base regular register Reg[i], pi gets (a) the value of a concurrent write on
Reg[i] (if any) or (b) the last value written to Reg[i] before such concurrent write operations. In case (a), the
value v obtained is from a R.write(v) that is concurrent with the read of pi. In case (b), the value v obtained
can either be (b.1) from a R.write(v) that is concurrent with the read of pi, or (b.2) from the last value written
by a R.write() before the read of pi . Thus, the constructed register is regular.

Part 2.b. Also, prove that the transformation does not work for atomic registers (by providing a coun-
terexample that breaks atomicity).

See execution in Figure 2.

Problem 3. Consider the transformation from binary MRSW safe registers to binary MRSW regular reg-
isters, given in class.

p-1



pw

p1

p2

write(1)

read → 1

read → 0

Reg[1] = 1 Reg[2] = 1

Reg[1] = 1? ✓ Reg[2] = 0? ✓

Figure 2: Execution that violates atomicity.

Part 3.a. Prove that the transformation does not generate multi-valued MRSW regular registers (from
multi-valued MRSW safe base registers) by providing a counterexample that breaks regularity.

If the registers are multi-valued, then two consecutive reads on the safe register Reg may return arbitrary
values, breaking regularity of the register implementation. Since the safe register is binary in the correct
implementation (and thus limited to two values), this does not occur in the transformation given in class.

Part 3.b. Also, prove that the resulting registers (in the original transformation) are not binary atomic
(just regular) by providing a counterexample that breaks atomicity.

The counterexample can be easily built by scheduling two distinct reads during a write(1) operation on
the register. Since the underlying register is safe, we can ensure that the first operation returns 1, while the
second (non-overlapping) operation returns 0, contradicting atomicity.

p-2



Problem 4.

Read: 1

Read: 2

Write(1) Write(2)
W

R1

R2

Figure 3: An execution that is possible with a regular register but not with an atomic register. There are three processes:
a writer (W) and two readers (R1 and R2). The two reads are concurrent with the second write. The read by R1
completely precedes the read by R2. The execution is not atomic because it is impossible to assign linearization points
to all operations: if the linearization point of Write(2) is before that of the read by R1, then the read by R2 cannot have
a linearization point; if the linearization point of Write(2) is after that of the read by R1, then that read cannot have a
linearization point.

Problem 5.

Part 1 Please see Chapter 4 of these lecture notes (first item of Supplementary Material on the website),
page 51.

Part 2 For this, notice that if the writer first clears the array by writing 0’s, it is possible for the value of
the array to be all 0’s, which is not a valid state.

Part 3 Figure 4 presents an example that violates atomicity. Such an execution can occur if the first read
operation of p2 gets 0 while retrieving Reg[7] and gets 1 while retrieving Reg[1000]. This can occur since
both write(7) and write(1000) are concurrent with the read operation. Afterwards, the second read operation
of p2 will return 7 since write(1000) has not yet set Reg[7] to zero.

p-3

https://dcl.epfl.ch/site/_media/education/ca11-book.pdf


p1

p2

write(7) write(1000)

read → 1000 read → 7

Reg[7] = 1

Reg[7] = 1? ✗

Reg[1000] = 1

Reg[1000] = 1? ✓

Reg[7] = 1? ✓

Reg[7] = 0

Figure 4: Execution that violates atomicity.

p-4


