
Concurrent Computing December 16, 2024

Exercise 11

Problem 1.
Consider the atomic commit-adopt object, which has the following specification. Every process p pro-

poses an input value v to such an object and obtains an output, which consists of a pair (dec, val); dec can
be either commit or adopt. The following properties are satisfied:

• Validity: If a process obtains output (commit, v) or (adopt, v), then v was proposed by some process.

• Commitment: If every process proposes the same value, then no process may output (adopt, v) for
any value v.

• Agreement: If a process p outputs (commit, v) and a process q outputs (commit, v′) or (adopt, v′),
then v = v′.

• Termination: Every correct process eventually obtains an output.

Consider the following implementation of an atomic commit-adopt object from atomic wait-free snapshot
objects and atomic MRMW registers:

• Using two shared snapshot objects: S1 and S2 of size n, initialized to (⊥,⊥, . . . ,⊥);

• Using two local arrays of registers: ai and bi of size n.

The implementation is as follows:

propose(v)

S_1.updatei, v;

a_i := S_1.snapshot();

if every non-⊥ value in a_i is v then

x := (true, v);

else

v := max(a_i); // max(arr) returns the greatest non-⊥ element in array arr

x := (false, v);

S_2.update(i, x);

b_i := S_2.snapshot();

if every non-⊥ value in b_i is equal to (true, v) then

return (commit, v);

if some value in b_i is equal to (true, val) for some val then

return (adopt, val);

return (adopt, v);

Is the above implementation correct (does it satisfy the commit-adopt properties)? Justify your answer.

p-1


