Concurrent Computing December 16, 2024

Exercise 11

Problem 1.
Consider the atomic commit-adopt object, which has the following specification. Every process p pro-

poses an input value v to such an object and obtains an output, which consists of a pair (dec, val); dec can

be either commit or adopt. The following properties are satisfied:

Validity: If a process obtains output (commit, v) or (adopt, v), then v was proposed by some process.

Commitment: If every process proposes the same value, then no process may output (adopt, v) for
any value v.

Agreement: If a process p outputs (commit, v) and a process g outputs (commit, v’) or (adopt, v'),
thenv =v'.

Termination: Every correct process eventually obtains an output.

Consider the following implementation of an atomic commit-adopt object from atomic wait-free snapshot
objects and atomic MRMW registers:

Using two shared snapshot objects: S; and S; of size #, initialized to (L, L,..., L);

Using two local arrays of registers: a; and b; of size n.

The implementation is as follows:

propose(v)

S_1.updatei, v;

a_i := S_1.snapshot();
if every non-l value in a_i is v then

x := (true, v);

else
v := max(a_i); // max(arr) returns the greatest non-l element in array arr
x := (false, v);

S_2.update(i, x);

b_i := S_2.snapshot();

if every non-l value in b_i is equal to (true, v) then
return (commit, v);

if some value in b_i is equal to (true, val) for some val then
return (adopt, val);

return (adopt, Vv);

Is the above implementation correct (does it satisfy the commit-adopt properties)? Justify your answer.



