
Calculus of Inductive Constructions
Building on the Calculus of Constructions

Foundation of Software

Last week

1



Limitations of Pure CoC

Pure CoC has limitations:

▶ Defining Data Structures: CoC lacks direct support for
defining data structures (natural numbers, lists, or trees) in a
way that supports structural induction.

▶ Reasoning by Induction: As seen in previously, proving
properties like 1+n=n+1 for Church-encoded natural numbers
is very challenging (not so easy to define an induction
principle).

The core issue: Pure CoC doesn’t have a primitive mechanism for
user-defined inductive types and their associated structural
reasoning principles.

2



Limitations of Pure CoC

Pure CoC has limitations:

▶ Defining Data Structures: CoC lacks direct support for
defining data structures (natural numbers, lists, or trees) in a
way that supports structural induction.

▶ Reasoning by Induction: As seen in previously, proving
properties like 1+n=n+1 for Church-encoded natural numbers
is very challenging (not so easy to define an induction
principle).

The core issue: Pure CoC doesn’t have a primitive mechanism for
user-defined inductive types and their associated structural
reasoning principles.

2



Limitations of Pure CoC

Pure CoC has limitations:

▶ Defining Data Structures: CoC lacks direct support for
defining data structures (natural numbers, lists, or trees) in a
way that supports structural induction.

▶ Reasoning by Induction: As seen in previously, proving
properties like 1+n=n+1 for Church-encoded natural numbers
is very challenging (not so easy to define an induction
principle).

The core issue: Pure CoC doesn’t have a primitive mechanism for
user-defined inductive types and their associated structural
reasoning principles.

2



Limitations of Pure CoC

Pure CoC has limitations:

▶ Defining Data Structures: CoC lacks direct support for
defining data structures (natural numbers, lists, or trees) in a
way that supports structural induction.

▶ Reasoning by Induction: As seen in previously, proving
properties like 1+n=n+1 for Church-encoded natural numbers
is very challenging (not so easy to define an induction
principle).

The core issue: Pure CoC doesn’t have a primitive mechanism for
user-defined inductive types and their associated structural
reasoning principles.

2



Introducing: Calculus of Inductive Constructions (CIC)

To address these limitations, CoC was extended to the Calculus of
Inductive Constructions (CIC).

▶ CIC enriches CoC by adding a native mechanism to define
inductive types directly within the system.

▶ This allows for:
▶ Natural definitions of data types (e.g., natural numbers, lists,

booleans).
▶ Direct support for structural induction and recursion.

▶ Proof assistants like Coq and Lean are based on variants of
CIC.

3



Inductive Types: a simplified
approach

4



Inductive Types

Defining an inductive type is a fundamental extension to the
theory:

▶ A new type constant: The name of the inductive type itself
(e.g., Nat).

▶ New constructor constants: Functions that build terms of
this new type (e.g., Nat.zero, Nat.succ).

▶ A new primitive elimination principle (recursor): A special
function (e.g., Nat.rec) that enables deconstruction, case
analysis, recursion, and induction over the type.

▶ New definitional computation rules (ι-reduction): These
rules specify precisely how the recursor behaves when applied
to terms built by the constructors.

� The core idea: Every inductive definition basically adds new
primitives to the system, and new reduction rules.

5



Inductive Types

Defining an inductive type is a fundamental extension to the
theory:

▶ A new type constant: The name of the inductive type itself
(e.g., Nat).

▶ New constructor constants: Functions that build terms of
this new type (e.g., Nat.zero, Nat.succ).

▶ A new primitive elimination principle (recursor): A special
function (e.g., Nat.rec) that enables deconstruction, case
analysis, recursion, and induction over the type.

▶ New definitional computation rules (ι-reduction): These
rules specify precisely how the recursor behaves when applied
to terms built by the constructors.

� The core idea: Every inductive definition basically adds new
primitives to the system, and new reduction rules.

5



Inductive Types

Defining an inductive type is a fundamental extension to the
theory:

▶ A new type constant: The name of the inductive type itself
(e.g., Nat).

▶ New constructor constants: Functions that build terms of
this new type (e.g., Nat.zero, Nat.succ).

▶ A new primitive elimination principle (recursor): A special
function (e.g., Nat.rec) that enables deconstruction, case
analysis, recursion, and induction over the type.

▶ New definitional computation rules (ι-reduction): These
rules specify precisely how the recursor behaves when applied
to terms built by the constructors.

� The core idea: Every inductive definition basically adds new
primitives to the system, and new reduction rules.

5



Inductive Types

Defining an inductive type is a fundamental extension to the
theory:

▶ A new type constant: The name of the inductive type itself
(e.g., Nat).

▶ New constructor constants: Functions that build terms of
this new type (e.g., Nat.zero, Nat.succ).

▶ A new primitive elimination principle (recursor): A special
function (e.g., Nat.rec) that enables deconstruction, case
analysis, recursion, and induction over the type.

▶ New definitional computation rules (ι-reduction): These
rules specify precisely how the recursor behaves when applied
to terms built by the constructors.

� The core idea: Every inductive definition basically adds new
primitives to the system, and new reduction rules.

5



Inductive Types

Defining an inductive type is a fundamental extension to the
theory:

▶ A new type constant: The name of the inductive type itself
(e.g., Nat).

▶ New constructor constants: Functions that build terms of
this new type (e.g., Nat.zero, Nat.succ).

▶ A new primitive elimination principle (recursor): A special
function (e.g., Nat.rec) that enables deconstruction, case
analysis, recursion, and induction over the type.

▶ New definitional computation rules (ι-reduction): These
rules specify precisely how the recursor behaves when applied
to terms built by the constructors.

� The core idea: Every inductive definition basically adds new
primitives to the system, and new reduction rules.

5



Inductive Types

Defining an inductive type is a fundamental extension to the
theory:

▶ A new type constant: The name of the inductive type itself
(e.g., Nat).

▶ New constructor constants: Functions that build terms of
this new type (e.g., Nat.zero, Nat.succ).

▶ A new primitive elimination principle (recursor): A special
function (e.g., Nat.rec) that enables deconstruction, case
analysis, recursion, and induction over the type.

▶ New definitional computation rules (ι-reduction): These
rules specify precisely how the recursor behaves when applied
to terms built by the constructors.

� The core idea: Every inductive definition basically adds new
primitives to the system, and new reduction rules.

5



Example: Natural Numbers

6



Defining Nat in Lean

Let’s define natural numbers:

inductive Nat where

| zero : Nat

| succ : Nat -> Nat

This declaration introduces the following into our ambient Calculus
of Construction :

▶ Type Constant: Nat : Type 0 .
▶ Constructor Constants:

▶ Nat.zero : Nat
▶ Nat.succ : Nat -> Nat

▶ Primitive Recursor Constant: Nat.rec.

7



The Recursor: Nat.rec

The recursor Nat.rec is dependently typed:

Nat.rec :

forall {motive : Nat -> Sort u}

-- What we want to define/prove for each Nat

(zero_case : motive Nat.zero)

-- How to handle the ’zero’ case

(succ_case : (n : Nat) ->

(ih : motive n) ->

motive (Nat.succ n))

-- How to handle the ’succ n’ case,

(t : Nat)

-- The number on which we want to compute/prove

,

motive t

This operator enables both limited recursion and proof by
induction.

8



Computation: ι-Reduction Rules for Nat.rec

The ”new reduction rules” for Nat are its ι-reduction rules. These
specify how Nat.rec computes :
Let m be the motive, Z be the zero case, and S be the succ case.

1. Base Case Rule:
Nat.rec m Z S Nat.zero ⇝ Z

2. Step Case Rule:
Nat.rec m Z S (Nat.succ n) ⇝ S n (Nat.rec m Z S

n)

9



Defining Functions and Proving
with Nat

10



User-Friendly Definitions: Pattern Matching

We are more used to pattern matching to define functions
Example: Defining addition for Nat :

def add (m n : Nat) : Nat :=

match n with

| Nat.zero => m

| Nat.succ n’ => Nat.succ (add m n’)

11



How add could be compiled to Nat.rec

The Compiled Form:

Nat.rec

(fun (k : Nat) => Nat)

-- motive: for any Nat k, we produce a result of type nat

m

-- zero_case: if n is Nat.zero, result is m

(fun (k : Nat) (ih : Nat) => Nat.succ ih)

-- succ_case: if n is Nat.succ k,

-- apply Nat.succ to recursive result (ih)

n

-- The value n we are doing recursion on

� Pattern matching can be seen as convenient syntax grounded in
the primitive recursor and its ι-reduction rules.

12



Proving with Nat.rec: Example Induction

add_zero (n : Nat) : LeibnizEq (add .zero n) n :=

@Nat.rec

-- Motive Nat -> Prop

(fun (x : Nat) => LeibnizEq (add .zero x) x)

-- zero: LeibnizEq (add Nat.zero Nat.zero) Nat.zero

(leibniz_refl (add Nat.zero Nat.zero) )

-- succ: LeibnizEq (add Nat.zero (Nat.succ k)) (Nat.succ k)

(fun (k : Nat) (ih : LeibnizEq (add Nat.zero k) k) =>

-- We use leibniz_trans h1 h2 where:

-- h1: add zero (succ k) = succ (add zero k)

-- h2: succ (add zero k) = succ k

leibniz_tran

(leibniz_refl (add Nat.zero (Nat.succ k)))

(leibniz_congr ih Nat.succ))

-- The argument ’n’ for which P(n) is being proved

n

13



The problem with dependent
types: Length-Indexed Vectors

(Vector α n)

14



Vector α n: Definition

Vector α n is the type of lists of elements of type α that are
statically known to have length n. It’s an indexed inductive type.

inductive Vector (T : Type u) : Nat -> Type u where

| nil : Vector T .zero

| cons (head : T) {n : Nat} (tail : Vector T n)

: Vector T (.succ n)

We add:

▶ Type Constant: Vector : Type u -> Nat -> Type u.
▶ Constructor Constants:

▶ Vector.nil : α : Type u -> Vector α 0
▶ Vector.cons : α : Type u -> (head : α) -> n :

Nat -> (tail : Vector α n) -> Vector α (add n 1)

▶ ...

15



Vector.append: Dependent Pattern Matching

We define append using pattern matching.

def append {T : Type u} {n m : Nat}

(v1 : Vector T n) (v2 : Vector T m) : Vector T (add n m) :=

match v1 with

| Vector.nil => v2

| Vector.cons x xs => ...

Well-Typed?:

▶ Base Case (Vector.nil):
▶ If v1 is Vector.nil, then its type implies n = 0.
▶ The function must return Vector α (0 + m).
▶ We return v2, which has type Vector α m.
▶ This is not type-correct add 0 m and m do not reduce to each

other!

| Vector.nil =>

leibniz_cast_vector (leibniz_symm (add_zero m)) v2

16



Vector.append: Dependent Pattern Matching

We define append using pattern matching.

def append {T : Type u} {n m : Nat}

(v1 : Vector T n) (v2 : Vector T m) : Vector T (add n m) :=

match v1 with

| Vector.nil => v2

| Vector.cons x xs => ...

Well-Typed?:
▶ Base Case (Vector.nil):

▶ If v1 is Vector.nil, then its type implies n = 0.
▶ The function must return Vector α (0 + m).
▶ We return v2, which has type Vector α m.
▶ This is not type-correct add 0 m and m do not reduce to each

other!

| Vector.nil =>

leibniz_cast_vector (leibniz_symm (add_zero m)) v2

16



Vector.append: Dependent Pattern Matching

We define append using pattern matching.

def append {T : Type u} {n m : Nat}

(v1 : Vector T n) (v2 : Vector T m) : Vector T (add n m) :=

match v1 with

| Vector.nil => v2

| Vector.cons x xs => ...

Well-Typed?:
▶ Base Case (Vector.nil):

▶ If v1 is Vector.nil, then its type implies n = 0.
▶ The function must return Vector α (0 + m).
▶ We return v2, which has type Vector α m.
▶ This is not type-correct add 0 m and m do not reduce to each

other!

| Vector.nil =>

leibniz_cast_vector (leibniz_symm (add_zero m)) v2

16



Conclusion: The Inductive Power of CIC in Lean

▶ The philosophy for inductive types is to treat each definition
as an extension of the calculus, adding:
▶ New primitive constants: the type itself, its constructors, and a

type-specific recursor.
▶ New specific definitional computation rules: ι-reduction rules

that govern how the recursor behaves with the constructors.
▶ This ”primitive + ι-rule” approach provides a foundational

mechanism for:
▶ Defining data structures directly and naturally (e.g., Nat,

Bool, List, Vector).
▶ Performing type-safe dependent programming, where types can

track properties like length (e.g., Vector.append).
▶ Reasoning rigorously about programs and data using structural

induction, directly supported by the recursor.

Are every inductive types ok? No, only ”positive” recursive types.
For more details, we recommend the paragraph ”General Rules”
page 6, of Christine Paulin-Mohring, Introduction to the Calculus
of Inductive Constructions

17



Conclusion: The Inductive Power of CIC in Lean

▶ The philosophy for inductive types is to treat each definition
as an extension of the calculus, adding:
▶ New primitive constants: the type itself, its constructors, and a

type-specific recursor.
▶ New specific definitional computation rules: ι-reduction rules

that govern how the recursor behaves with the constructors.
▶ This ”primitive + ι-rule” approach provides a foundational

mechanism for:
▶ Defining data structures directly and naturally (e.g., Nat,

Bool, List, Vector).
▶ Performing type-safe dependent programming, where types can

track properties like length (e.g., Vector.append).
▶ Reasoning rigorously about programs and data using structural

induction, directly supported by the recursor.

Are every inductive types ok? No, only ”positive” recursive types.
For more details, we recommend the paragraph ”General Rules”
page 6, of Christine Paulin-Mohring, Introduction to the Calculus
of Inductive Constructions

17


