Foundations of Software, Week 14

Dependent Object Types



Where are we when modelling Scala?

Simple (?) example: List type:

trait List[T] {
def isEmpty: Boolean; def head: T; def tail: List[T]

}

def Cons[T](hd: T, tl: List[T])

new List[T] {

def isEmpty = false; def head = hd; def tail = tl
}
def Nil[T] = new List[T] {

def isEmpty = true; def head = ??7?7; def tail = ?7?7?



New Problems

m List is parameterized.
m List is recursive.
m List can be invariant or covariant.



Covariant List type

trait List[+T] {

def iskEmpty = false; def head = hd; def tail = tl
}

Cons, Nil as before.



Modelling Parameterized Types

Traditionally: Higher-kinded types.

m Besides plain types, have functions from types to types, and functions over these
and so on.
m Needs a kinding system:

* // Kind of normal types
* => % // Kind of unary type constructors
* => % => %

(* => %) > *

m Needs some way to express type functions, such as a A for types.



Modelling Recursive Types

Traditionally: Have a constructor for recursive types ut. T(t).

Example:
mu ListInt. { head: Int, tail: ListInt }

Tricky interactions with equality and subtyping.

Consider:
type T =mu t. Int => Int > t

How do T and Int -> T relate?



Modelling Variance

Traditionally: Express definition site variance

trait List[+T] ...
trait Function1[-T, +U] ...

List[C], Functionl1[D, E]
as use-site variance (aka Java wildcards):

trait List[T] ...
trait Functionl1[T, U]

List[_ <: C]
Function1[_ >: D, _ <: E]



Meaning of Wildcards

A type like Function1[_ >: D, _ <: E] means:

The type of functions where the argument is some (unknown) supertype of D and the
result is some (unknown) subtype of E.

This can be modelled as an existential type:

exists X >: D, Y <: E. Functionl[X, Y]



Combining Several of These Features

. is possible, but gets messy rather quickly



|dea: Use Path Dependent Types as a Common Basis

Here is a re-formulation of List.

trait List { self =>
type T
def isEmpty: Boolean
def head: T
def tail: List { type T = self.T }
}
def Cons[XJ(hd: X, tl: List { type T = X }) = new List {
type T = X
def isEmpty = false
def head = hd
def tail = tl
}

Analogous for Nil.



Handling Variance

trait List { self =>
type T
def isEmpty: Boolean
def head: T
def tail: List { type T <: self.T }
}
def Cons[XJ(hd: X, tl: List { type T <: X }) = new List {
type T = X
def isEmpty = false
def head = hd
def tail = tl



Elements needed:

m Variables, functions

m Abstract types { type T <: B }
m RefinementsC { ... }

m Path-dependent types self.T.



Abstract Types

m An abstract type is a type without a concrete implementation
m Instead only (upper and/or lower) bounds are given.

Example

trait KeyGen {
type Key
def key(s: String): this.Key



Implementations of Abstract Types

m Abstract types can be refined in subclasses or implemented as type aliases.
Example

object HashKeyGen extends KeyGen {
type Key = Int
def key(s: String) = s.hashCode



Generic Functions over Abstract Types

We can write functions that work for all implementations of an abstract type like this:

def mapKeys(k: KeyGen, ss: List[Stringl): List[k.Key] =
ss.map(s => k.key(s))

m k.Key is a path-dependent type.

m The type depends on the value of k, which is a term.

m The type of mapKeys is a dependent function type.
mapKeys: (k: KeyGen, ss: List[String]) -> List[k.Key]

m Note that the occurrence of k in the type is essential; without it we could not
express the result type!.



Formalization

We now formalize these ideas in a calculus.
DOT standands for (path)-Dependent Object Types.

Program:

m Syntax, Typing rules (this week)
m An approach to the meta theory (next week).



{a: T}
{A:S5.T}
x.A
SAT
p(x: T)
V(x:S)T

Variable
Term member
Type member
Type
top type
bot type
field declaration
type declaration
type projection
intersection
recursive type
dependent function

d:

X.a

Xy
let x=tinu

::{a =t}

{A=T}
di N dy

Value
object
lambda

Term
variable
value
selection
application
let

Definition
field def.
type def.
aggregate def.



DOT Types

DOT Scala
T Any Top type
il Nothing Bottom type
{a: T} { def a: T} Record field
{A:S.T} { type A >: S <: T}  Abstract type
TAU T&U Intersection
(Together these can form records)
x.A x. A Type projection
w(x:T) {x => ...} Recursive type
(Scala allows only recursive records)
V(x:8)T (x: S) =T Dependent function type



DOT Definitions

Definitions make concrete record values.

DOT Scala

{a=1t} {def a=t} Field definition
{A=T} { type A =T} Type definition
di N\ da - Record formation

(Scala uses {di;...;d,} directly)

Definitions are grouped together in an object
DOT Scala

v(x: T)d new { x: T=>4d} Instance creation



DOT Terms

DOT values are objects and lambdas.

DOT terms have member selection and application work on variables, not values or full
terms.

X.a instead of t.a
Xy instead of tu

This is not a reduction of expressiveness. With let, we can apply the following
desugarings, where x and y are fresh variables:

t.a -—=> let x = t in x.a
tu -—=> let x =t in let y =uinxy

This way of writing programs is also called monadic normal form (MNF).



Programmer-Friendlier Notation

In the following we use the following ASCII versions of DOT constructs.

(x: T) => U

(x: T) > U
new(x: T)d

new { x: T=>d }
rec(x: T)
{x=>T3}
T&U

Any

Nothing

for
for
or
for
or
for
for
for
for

Ax: T)U
Vix:T)U



Encoding of Generics

For generic types: Encode type parameters as type members

For generic functions: Encode type parameters as value parameters which carry a type
field. Hence polymorphic (universal) types become dependent function types.

Example: The polymorphic type of the twice method
VX(X—=X) = X=X

is represented as
(cX: {A: Nothing..Any}) -> (cX.A => cX.A) -> cX.A -> cX.A

cX is a menmonic for “cell containing a type variance X",



Example: Church Booleans

Let
type IFT = { if: (x: {A: Nothing..Any}) -> x.A -> x.A -> x.A }
Then define:

let boolimpl =
new(b: { Boolean: IFT..IFT } &
{ true: IFT } &
{ false: IFT })
{ Boolean = IFT } &
{ true = { if = (x: {A: Nothing..Any}) => (t: x.A) => (f: x.A) =>t } &
{ false = { if = (x: {A: Nothing..Any}) => (t: x.A) => (f: x.A) => f }



Church Booleans API

To hide the implementation details of boolImpl, we can use a wrapper:

let bool =
let boolWrapper =
(x: rec(b: {Boolean: Nothing..IFT} &
{true: b.Boolean} &
{false: b.Boolean})) => x
in boolWrapper boolImpl



Abbreviations and Syntactic Sugar

We use the following Scala-oriented syntax for type members.

type A for {A: Nothing..Any}
type A = T for {A: T..T}

type A >: S for {A: S..Any}

type A <: U for {A: Nothing. .U}
type A >: S <: U for {A: S..U}



Abbreviations (2)
We group multiple, intersected definitions or declarations in one pair of braces,
replacing & with ; or a newline. E.g, the definition
{ type A=T; a=1t }
expands to
{A=Ty&{a=t}Z
and the type
{ type A <: T; a: T}
expands to

{ A: Nothing..T } & { a: T }



Abbreviations (3)

We expand type ascriptions to applications:
t: T

expands to
((x: T) =>x) t

(which expands in turn to)

lety = (x: T) =>x inletz=tiny z



Abbreviations (4)

We abbreviate
new (x: T)d
to
new { x => d }
if the type of definitions d is given explicitly, and to
new { d }

if d does not refer to the this reference x.



Church Booleans, Abbreviated

let bool =
new { b =>

type Boolean = {if: (x: { type A }) -> (t: x.A) -> (f: x.A) -> x.A}
true = {if: (x: { type A }) => (t: x.A) => (f: x.A) => t}
false = {if: (x: { type A }) => (t: x.A) => (f: x.A) => f}

}: { b => type Boolean; true: b.Boolean; false: b.Boolean }



Example: Covariant Lists

We now model the following Scala definitions in DOT:

package scala.collection.immutable
trait List[+A] {
def isEmpty: Boolean; def head: A; def tail: List[A]
}
object List {
def nil: List[Nothing] = new List[Nothing] {
def isEmpty = true; def head = head; def tail = tail // infinite loops
}
def cons[AJ(hd: A, tl: List[A]) = new List[A] {
def isEmpty = false; def head = hd; def tail = tl



Encoding of Lists

let scala_collection_immutable_impl = new { sci =>
type List = { thisList =>
type A
isEmpty: bool.Boolean
head: thisList.A
tail: sci.List & {type A <: thisList.A }
}
cons = (x: {type A}) => (hd: x.A) =>
(tl: sci.List & { type A <: x.A }) =>
let 1 = new {
type A = x.A
isEmpty = bool.false
head = hd
tail = tl1 }
in 1



Encoding of Lists (ctd)

nil = (x: {type A}) =>
let 1 = new { 1 =>
type A = x.A
isEmpty = bool.true
head = 1.head
tail = 1.tail }
in 1

} // end implementation new { sci => ...



List API

We wrap scala_collection_immutable_impl to hide its implementation types.

let scala_collection_immutable = scala_collection.immutable_impl: { sci =>
type List <: { thisList =>
type A
isEmpty: bool.Boolean
head: thisList.A
tail: sci.List & {type A <: thisList.A }
}
nil: sci.List & { type A = Nothing }
cons: (x: {type A}) -> (hd: x.A) ->
(tl: sci.List & { type A <: x.A }) —>
sci.List & { type A = x.A }



Nominal Types

The encodings give an explanation what nominality means.

A nominaltype such as List is simply an abstract type, whose implementation is
hidden.



Still To Do

The rest of the calculus is given by three definitions:
An evaluation relation t — .
Type assignment rules ' - x: T
Subtyping rules I' - T <: U.



Evaluation t — ¢

Evaluation is particular since it works on variables not values.

This is needed to keep reduced terms in ANF form.

e[t — e[t ift — ¢
let x=vinexy] — letx=vinelz:=ylt] ifv=Az:T)t
let x=vin ¢gxa — let x=vin ¢t ifv=v(x:T)...{a=1t}...
let x=yint — [x:=y|t
E—

let x=let y=sintinu let y=sin let x=tinu

where the evaluation context e is defined as follows:

ex=[]| letx=[]int]| letx=vine

Note that evaluation uses only variable renaming, not full substitution.



Type Assignment I' = ¢t: T

x: Tel
I'kEx: T

' x: THt: U
FFAx:T)t:V(x:T)U

F'Fx:V(z:5T T'ky:S
FExy:[z:=yT

', x: THd: T
FEv(x:T)d: p(x:T)

'x:{a: T}
I'bExa: T

(VAR)

(ALL-I)

(ALL-E)

({30

({}-E)



Type Assignment (2)

I't: T I', x:Tku:U
x ¢ tv(U)
' letx=tinu:U

'Ex:T
Dk x:p(x:T)

L'k x:pu(x:T)
'kEx:T

I'Ex: T T'Ex:U
'Ex:TAU

I't: T TTHET<: U
I'Et: U

(LET)

(REC-T)

(REC-E)

(AND-I)

(SuB)



Type Assignment

Note that there are now 4 rules which are not syntax-directed: (Sub), (And-1), (Rec-),
and (Rec-E).

It turns out that the meta-theory becomes simpler if (And-1), (Rec-1), and (Rec-E) are
not rolled into subtyping.



Definition Type Assignment I' =d: T

et T (FLD-I)
I'{a=t}:{a: T}
FF{A=T}:{A: T.T} (Typ-I)
IhEdi:Ti Thdy: Ty
dom(dy), dom(d,) disjoint (ANDDEF-T)

I'EdiANdy: TiNT,

Note that there is no subsumption rule for definition type assignment.



Subtyping I' - T <: U

'-T<:T (Top)
FrELl<T (Bor)
'-T<:T (REFL)
'ES<:T I'tET<:U
'ES<:U (Traxs)
FrETAU<:T (AND;-<:)
r=TAnU<: U (ANDy-<:)
FES<:T TES<: U (<+-AxD)

I'ES<:TAU



Subtyping (2)

'Ex:{A:S.T}
'-xA<:T

'Ex:{A:S.T}
ES<:xA

'S5 <S5
F,X:52|—T1<: Ts

'k V(X:Sl)Tl <: V(X:SQ)TQ

I'-T<: U
F'H{a: T} <:{a: U}

F|—52<:51 Ff_T1<: T2

'k {A : 51..T1} < {A : 52..7_2}

(SEL-<:)

(<:-SEL)

(ALL-<:-ALL)

(FLD-<:-FLD)

(Typ-<:-TYP)



Example: Uses of Abstract Types

To encode type parameters (as in List)
To hide information (as in KeyGen)
To resolve variance puzzlers



Resolving Variance Puzzlers with Abstract Types

A standard example to justify unsound covariance is this:
Let's model animals which eat food items.

Both Animal and Food are the root of a type hierarchy.
trait Animal

trait Cow extends Animal with Food
trait Lion extends Animal

trait Food
trait Grass extends Food



Adding eat

trait Animal {
def eat(food: Food): Unit
}
trait Cow extends Animal {
def eat(food: Grass): Unit
}
trait Lion extends Animal {
def eat(food: Cow): Unit

b

Problem: eat in Cow or Lion does not override correctly the eat in Animal, because of
the contravariance rule for function subtyping.



Refining the Model

We can get the right behavior with an abstract type.

trait Animal {
type Diet <: Food
def eat(food: Diet): Unit
3
trait Cow extends Animal {
type Diet <: Grass
def eat(food: this.Diet): Unit
3
object Milka extends Cow {
type Diet = AlpineGrass
def eat(food: AlpineGrass): Unit



Translating to DOT

type Animal = { this => {Diet: Nothing..Food} & {eat: this.Diet -> Unit}}
type Cow = { this => {Diet: Nothing..Grass} & {eat: this.Diet -> Unit}}

Do we have Cow <: Animal?



Translating to DOT

type Animal = { this => {Diet: Nothing..Food} & {eat: this.Diet -> Unit}}
{ this => {Diet: Nothing..Grass} & {eat: this.Diet -> Unit}}

type Cow

Is Cow <: Animal?

No. There is no subtyping rule for recursive types.



Translating to DOT

But we do have:

x: Cow
==> // expand the definition

x: { this => {Diet: Nothing..Grass} & {eat: this.Diet -> Unit}}
==> // by (Rec-E)

x: {Diet: Nothing..Grass} & {eat: x.Diet -> Unit}}
==> // by (Sub)

x: {Diet: Nothing..Food} & {eat: x.Diet -> Unit}}
==> // by (Rec-I)

x: { this => {Diet: Nothing..Food} & {eat: this.Diet -> Unit}}
==> // Collapse the definition

x: Animal



The Meta Theory

As usual, need to prove progress and preservation theorems.

Theorem (Preservation) f 'Ht: Tandt — wuthenT'Fuw: T.

Theorem (Progress) If = t: T then tis a value or there is a term u such that t — w.

()



The Meta Theory

As usual, need to prove progress and preservation theorems.

Theorem (Preservation) f 'Ht: Tandt — wuthenT'Fuw: T.

Theorem (Progress) If = t: T then tis a value or there is a term u such that t — w.
()

In fact this is wrong. Counter example:

t = let x = (y: Bool) =>y in x



Fixing Progress

Theorem (Progress) If -t : T then tis an answer or there is a term u such that
t — u.

Answers n are defined by the production

n ::= x | v | letx=vinn



Why It's Difficult

We always need some form of inversion.
Eg.:
mlIfTEx:V(x:5T

then x is bound to some lambda value A\(x: ') t,
where S<: S and'Ft: T,

This looks straightforward to show.

But it isn't.



User-Definable Theories

In DOT, the subtyping relation is given in part by user-definable definitions
type T >: S <: U

This makes T a supertype of S and a subtype of U.

By transitivity, S <: U.

So the type definition above proves a subtype relationship which was potentially not
provable before.



Bad Bounds

What if the bounds are non-sensical?

Example
type T >: Any <: Nothing

By the same argument as before, this implies that
Any <: Nothing

Once we have that, again by transitivity we get S <: T for arbitrary S and T.

That is the subtyping relations collapses to a point.



Bad Bounds and Inversion

A collapsed subtyping relation means that inversion fails.
Example: Say we have a binding x=v(x: T)....
So in the corresponding environment I" we would expect a binding x: u(x: T).

But if every type is a subtype of every other type, we also get with subsumption that
I'Fx:V(x: S)UL

Hence, we cannot draw any conclusions from the type of x. Even if it is a function
type, the actual value may still be a record.



Can We Exclude Bad Bounds Statically?

Unfortunately, no.

Consider:

type S = { type A; type B >: A <: Bot }
type T = { type A >: Top <: B; type B }

Individually, both types have good bounds. But their intersection does not:
type S & T == { type A >: Top <: Bot; type B >: Top <: Bot }

So, bad bounds can arise from intersecting types with good bounds.

But maybe we can verify all intersections in the program?



Bad Bounds Can Arise at Run-Time

The problem is that types can get more specific at run time.
Recall again preservation: If 't: Tandt — wuvthen'Fu: T.
Because of subsumption u might also have a type S which is a true subtype of T.

That S could have bad bounds (say, arising from an intersection).



Dealing With It: A False Start

Bad bounds make problems by combining the selection subtyping rules with transitivity.

'Ex:{A:S.T}

(SEL-<:)
F'ExA<: T

I'Ex:{A:S5.T}
'-S<:xA

(<:-SEL)

Can we “tame’’ these rules so that bad bounds cannot be exploited? E.g.



Dealing With It: A False Start

'Ex:{A:S.T} I'ES<: T
I'ExA<: T

(SEL-<:)

F'Fx:{A:S.T} r=S<:T
'ES<:xA

(<:-SEL)

Problem: we lose monotonicity. Tighter assumptions may yield worse results.



Dealing With It: Another False Start

Can we get rid of transitivity instead?
l.e. only use algorithmic version of subtyping rules?
We tried (for a long time), but got nowhere.

Transitivity seems to be essential for inversion lemmas and many other aspects of the
proof.



Dealing With It: The Solution
Observation: To prove preservation, we need to reason at the top-level only about
environments that arise from an actual computation. l.e. in

mif’'Ft: Tandt — uthenI'Fuw: T.

The environment I" corresponds to an evaluated let prefix, which binds variables to
values.

And values have guaranteed good bounds because all type members are aliases.

TH{A=T}:{A: T.T} (Typ-I)



Introducing Explicit Stores

We have seen that the let prefix of a term acts like a store.

For the proofs of progress and preservation it turns out to be easier to model the store
explicitly.

A store is a set of bindings x = v or variables to values.

The evaluation relation now relates terms and stores.

s|t— §|¢



Evaluations|t — & | ¢

s|xa — s|t if s(x) =v(x:T)..
slxy — s|[z:=y|t if s(x) =X(z: T)t
sl letx=yint — s|[x:=yt
s| letx=vint — sx=v|t
sl letx=tinu — | letx=tinu ifs|t — |1



Relationship between Stores and Environments

For the theorems and proofs of progress and preservation, we need to relate
environment and store.

Definition: An environment I' corresponds to a store s, written I' ~ s, if for every
binding x=vin sthere is anentry I' - x: T where I - v: T.

I' Fy v: Tis an exact typing relation.

We define I Fy x: Tiff I' = x: T by a typing derivation which ends in a (All-I) or
({}-1) rule

(i.e. no subsumption or substructural rules are allowed at the toplevel).



Progress and Preservation, 2nd Take

Theorem (Preservation)

fT'Ht: TandT'~sands|t — § |, then there exists an environment IV D T’
such that, one has IV ¢ : Tand IV ~ &¢.

Theorem (Progress)

IfTFt: Tand T ~ sthen either tis an answer, or s| t — & | ¢/, for some store ¢,
term t.



Conclusion

DOT is a fairly small calculus that can express “classical” Scala programs and Module
systems with abstract types.

It gives a principled foundation for nominal type systems.

Even though the calculus is small, its meta theory turned out to be surprisingly hard.



