Foundations of Software
Fall 2023

Week 9
based on slides by Martin Odersky

Type Checking and Type Reconstruction

We now come to the question of type checking and type
reconstruction.
> Type checking:
Given I, £t and T, check whether [=t : T

> Type reconstruction:
Given [and t, find a type T such that ' =t : T

Type checking and reconstruction seem difficult since parameters

in lambda calculus do not carry their types with them.

Type reconstruction also suffers from the problem that a term can
have many types.

Idea: We construct all type derivations in parallel, reducing type

reconstruction to a unification problem.

From Judgements to Equations

TP : Judgement — Equations

TP(Fr'+t:T)=
case t of
X - A{l(x)=T}
Ax.t1 : let a, b fresh in

{(a — b)=T} U
TP(M,x:akty : b)

t1 to : let afresh in
TPt :a—T) U
TP(T'Fty : a)

Example

Let twice = A\f.\x.f (f x).
Then twice gives rise to the following equations (see blackboard).

Soundness and Completeness |

0.1 Definition: In general, a type reconstruction algorithm A
assigns to an environment [and a term t a set of types A([, t).
The algorithm is sound if for every type T € A(l",t) we can prove
the judgement [=t : T.

The algorithm is complete if for every provable judgement

=1t : T we have that T € A(l",t).

0.2 Theorem: TP is sound and complete. Specifically:

F=t:T iff 3b.Jars TJEQNS
where
a is a new type variable
EQNS =TP(T'kt : a)
b= FV(EQNS) \ FV(I)

Here, FV/ denotes the set of free type variables (of a term, and
environment, an equation set).

Type Reconstruction and Unification

Problem: Transform set of equations

{Ti=Ui izt o m

into an equivalent substitution
{aj — Tj’}j:l,“.,n

where type variables do not appear recursively on their right hand
sides (directly or indirectly). That is:

aj ¢ FUT,) forj=1,....,nk=j,....,n

Substitutions

A substitution s is an idempotent mapping from type variables to
types which maps all but a finite number of type variables to
themselves.
We often represent a substitution s as a set of equations a=T with
anot in FV(T).
Substitutions can be generalized to mappings from types to types
by definining

s(T—>U) = sT—sU

Substitutions are idempotent mappings from types to types, i.e.

5(s(T)) = 5(T). (why?)
The o operator denotes composition of substitutions (or other

functions): (f o g)(x) = f(g(x)).

A Unification Algorithm

We present an incremental version of Robinson’s algorithm (1965).

mgu : (Type=Type) — Subst — Subst
mgu(T=U)s = mgu'(sT=sU)s

mgu’(a=a)s = s

mgu’(a=T)s = sU{a—T} if a FU(T)
mgu’(T=a)s = sU{a—T} if a¢ FUT)
mgu’(Tl — Tr=U; — U2)S = (mgu(TzéUz) o mgu(TléUl))s
mgu’(T=U)s = error in all other cases

Soundness and Completeness of Unification

0.3 Definition: A substitution v is a unifier of a set of equations
{Ti=U;}i=1, m if uT; = uU;, for all i. It is a most general unifier
if for every other unifier 1/ of the same equations there exists a
substitution s such that v/ = so wu.

0.4 Theorem: Given a set of equations EQNS. If EQNS has a
unifier then mgu(EQNS)(()) computes the most general unifier of
EQNS. If EQNS has no unifier then mgu(EQNS) () fails.

10

From Judgements to Substitutions

TP : Judgement — Subst — Subst

TP(Fr'+t:T)=
case t of
X mgu([(x)=T)
AX.tq let a, b fresh in
mgu((a — b)=T) o
TP(M,x:akty : b)
t1 to let a fresh in
TP(Fr'Fty:a—T) o
TP(F Fto: a)

11

Soundness and Completeness |l

One can show by comparison with the previous algorithm:

0.5 Theorem: TP is sound and complete. Specifically:

Nt T iff T=r(s(a))
where
a is a new type variable
s=TP(T'+t : a)(0)
r is a substitution on FV(s(a)) \ FV(s(I"))

12

Polymorphism

In the simply typed lambda calculus, a term can have many types.
But a variable or parameter has only one type.
Example:

(Ax.x x)(A\y.y)

is untypable. But if we substitute actual parameter for formal, we
obtain

(A\y.y)(A\y.y):a—a

Functions which can be applied to arguments of many types are
called polymorphic.

13

Polymorphism in Programming

Polymorphism is essential for many program patterns.
Example: map

def map f xs =
if (isEmpty xs) then nil
else cons (f (head xs)) (map (f (tail xs)))

names: List[String]
nums : List[Int]

map toUpperCase names
map increment nums

Without a polymorphic type for map one of the last two lines is
always illegal!

Forms of Polymorphism

Polymorphism means “having many forms" .
Polymorphism also comes in several forms.

» Universal polymorphism, sometimes also called generic types:
The ability to instantiate type variables.

» Inclusion polymorphism, sometimes also called subtyping: The
ability to treat a value of a subtype as a value of one of its
supertypes.

» Ad-hoc polymorphism, sometimes also called overloading:
The ability to define several versions of the same function
name, with different types.

We first concentrate on universal polymorphism.
Two basic approaches: explicit or implicit.

15

Explicit Polymorphism

We introduce a polymorphic type Va. T, which can be used just as
any other type.

We then need to make introduction and elimination of V's explicit.
Typing rules:

MXFEty:To
(T-TABs)
F XXty @ VX.T)
MN=tq @ VX.T
! e (T-TAPppP)

FEt1 [T2] @ [X— To]T1o

16

We also need to give all parameter types, so programs become
verbose.

Example:

def map [al[b] (f: a => b) (xs: List[al]) =
if (isEmpty [a]l (xs)) then nil [b]
else
cons [b]
(f (head [al] xs))
(map [a][b] (£) (tail [a] xs))

names: List[String]
nums : List[Int]

map [String]l [String] toUpperCase names
map [Int] [Int] increment nums

17

Translating to System F

The translation of map into a System-F term is as follows: (See
blackboard)

18

Implicit Polymorphism

Implicit polymorphism does not require annotations for parameter
types or type instantations.

Idea: In addition to types (as in simply typed lambda calculus), we
have a new syntactic category of type schemes. Syntax:

Type Scheme S8 == T | VX.S

Type schemes are not fully general types; they are used only to
type named values, introduced by a val construct.

The resulting type system is called the Hindley/Milner system,
after its inventors. (The original treatment uses let ... in ...
rather than val ... ; ...).

19

Hindley/Milner Typing rules

x & dom(T”’
7 () (T-VAR)
Mx:8,M-x:8
XFt:T X& FVT M=t : VX.T
! 7) ! (T-TAPpp)
N+t :VvX.Ty Nt [X— T2]Ty
(T-TABS)

Nt :8 Mx:8Fty: T
! : ’ (T-LET)

Flet x = t1 in to : T

The other two rules are as in simply typed lambda calculus:

x:TiFty: Ty

(T-ABS)
MEXx.tr : Ty — T

[Ft1:Tp =T Mty : To
Fty to: T

(T-App)

20

Type Reconstruction for Hindley/Milner

Type reconstruction for the Hindley/Milner system works as for
simply typed lambda calculus. We only have to add a clause for
let expressions and refine the rules for variables.

TP : Judgement — Subst — Subst

TP(T+t : T)(s) =

case t of

let x=1t7 in to, : let a, b fresh in
let s =TP(T'Ety @ a)i

TP(I,x : gen(s1(M),s1(a)) - t2 : b)(s1)

where gen(I", T) = VX;. -+ - VX,.T with X; € FV(T) \ FV(I").

21

Variables in Environments

When comparing with the type of a variable in an environment, we
have to make sure we create a new instance of their type as follows:

newlnstance(VX;. ---X,.8) =
let by,..., b, fresh in

[X1H>b17...,X,,'—>bn]S
TP(TFt:T) =

x : {newlnstance(l'(x))=T}

22

Hindley /Milner in Programming Languages

Here is a formulation of the map example in the Hindley/Milner
system.

let map = Af.Axs in
if (isEmpty xs) then nil
else cons (f (head xs)) (map f (tail xs))

/./names: List[String]
// nums : List[Int]
/) map : VX.WY. (X — Y) — List[X] — List[Y]

map toUpperCase names
map increment nums

23

Limitations of Hindley/Milner

Hindley /Milner still does not allow parameter types to be
polymorphic. For example,

(Ax.x x)(A\y.y)
is still ill-typed, even though the following is well-typed:
let id = Ay.y in (id id)

With explicit polymorphism the expression could be completed to a
well-typed term:

(AA.Xx:(VB: B—B). x [A— A] (x [A]))(AC.Ay:C.y)

24

The Essence of let

We regard
let x=1t; in to

as a shorthand for
[X — t]_]t2

We use this equivalence to get a revised Hindley/Milner system.

0.6 Definition: Let HM’ be the type system that results if we
replace rule LET from the Hindley/Milner system HM by:

Nt : Ty rF[XHtl]tgiT
NFlet x=1t7 in tp : T

(T-LET’)

25

Equivalence of the two systems

0.7 Theorem: [Fyy t @ STyt 08
The theorem establishes the following connection between the

Hindley/Milner system and the simply typed lambda calculus Fi:

0.8 Corollary: Let t* be the result of expanding all let's in t
according to the rule

let x=1t; in to — [x— t1]t2

Then
Namt:T = TTFRt*:T

Furthermore, if every let-bound name is used at least once, we
also have the reverse:

r}—[_‘lt*ZT — [Fpumt: T

26

Principal Types

0.9 Definition: A type T is a generic instance of a type scheme
S = Vay ...Va,.T' if there is a substitution s on a1, ..., a, such
that T = sT’. We write in this case S < T.

0.10 Definition: A type scheme S’ is a generic instance of a type
scheme S iff for all types T

S <T—S<T
We write in this case S < &',

0.11 Déefinition: A type scheme S is principal (or: most general) for
I and t iff

> Ht:S
» [+t : 8 impliess <&

27

0.12 Definition: A type system TS has the principal typing
property iff, whenever [15 t : S then there exists a principal
type scheme for [and t.

0.13 Theorem: 1. HM’ without let has the p.t.p.
2. HM' with let has the p.t.p.

3. HM has the p.t.p.
Proof sketch:

1. Use type reconstruction result for the simply typed lambda
calculus.

2. Expand all 1et's and apply (1.).
3. Use equivalence between HM and HM'.

These observations could be used to come up with a type
reconstruction algorithm for HM. But in practice one takes a more
direct approach.

28

Reading for next week

» Chapter 15 — Subtyping, up to section 15.5 included
» Chapter 16 — Metatheory of Subtyping

29

