

Foundations of Software

Fall 2023

Week 9

based on slides by Martin Odersky

Type Checking and Type Reconstruction

We now come to the question of type checking and type reconstruction.

- ▶ **Type checking:**

Given Γ , t and T , check whether $\Gamma \vdash t : T$

- ▶ **Type reconstruction:**

Given Γ and t , find a type T such that $\Gamma \vdash t : T$

Type checking and reconstruction seem difficult since parameters in lambda calculus do not carry their types with them.

Type reconstruction also suffers from the problem that a term can have many types.

Idea: We construct all type derivations in parallel, reducing type reconstruction to a unification problem.

From Judgements to Equations

$\text{TP} : \text{Judgement} \longrightarrow \text{Equations}$

$\text{TP}(\Gamma \vdash t : T) =$

case t of

$x : \{\Gamma(x) \triangleq T\}$

$\lambda x. t_1 : \text{let } a, b \text{ fresh in}$

$\{(a \rightarrow b) \triangleq T\} \cup$

$\text{TP}(\Gamma, x : a \vdash t_1 : b)$

$t_1 \ t_2 : \text{let } a \text{ fresh in}$

$\text{TP}(\Gamma \vdash t_1 : a \rightarrow T) \cup$

$\text{TP}(\Gamma \vdash t_2 : a)$

Example

Let `twice = λf.λx.f (f x)`.

Then `twice` gives rise to the following equations (see blackboard).

Soundness and Completeness I

0.1 Definition: In general, a type reconstruction algorithm \mathcal{A} assigns to an environment Γ and a term t a set of types $\mathcal{A}(\Gamma, t)$. The algorithm is *sound* if for every type $T \in \mathcal{A}(\Gamma, t)$ we can prove the judgement $\Gamma \vdash t : T$.

The algorithm is *complete* if for every provable judgement $\Gamma \vdash t : T$ we have that $T \in \mathcal{A}(\Gamma, t)$.

0.2 Theorem: TP is sound and complete. Specifically:

$$\Gamma \vdash t : T \text{ iff } \exists \bar{b}. [a \mapsto T] \text{EQNS}$$

where

a is a new type variable

$$\text{EQNS} = \text{TP}(\Gamma \vdash t : a)$$

$$\bar{b} = \text{FV}(\text{EQNS}) \setminus \text{FV}(\Gamma)$$

Here, FV denotes the set of free type variables (of a term, and environment, an equation set).

Type Reconstruction and Unification

Problem: Transform set of equations

$$\{T_i \hat{=} U_i\}_{i=1, \dots, m}$$

into an equivalent substitution

$$\{a_j \mapsto T'_j\}_{j=1, \dots, n}$$

where type variables do not appear recursively on their right hand sides (directly or indirectly). That is:

$$a_j \notin FV(T'_k) \quad \text{for } j = 1, \dots, n, k = j, \dots, n$$

Substitutions

A *substitution* s is an idempotent mapping from type variables to types which maps all but a finite number of type variables to themselves.

We often represent a substitution s as a set of equations $a \hat{=} T$ with a not in $FV(T)$.

Substitutions can be generalized to mappings from types to types by defining

$$s(T \rightarrow U) = sT \rightarrow sU$$

Substitutions are idempotent mappings from types to types, i.e. $s(s(T)) = s(T)$. (why?)

The \circ operator denotes composition of substitutions (or other functions): $(f \circ g)(x) = f(g(x))$.

A Unification Algorithm

We present an incremental version of Robinson's algorithm (1965).

$$\begin{array}{lcl} \text{mgu} & : & (\text{Type} \hat{=} \text{Type}) \rightarrow \text{Subst} \rightarrow \text{Subst} \\ \text{mgu}(T \hat{=} U)s & = & \text{mgu}'(sT \hat{=} sU)s \\ \text{mgu}'(a \hat{=} a)s & = & s \\ \text{mgu}'(a \hat{=} T)s & = & s \cup \{a \mapsto T\} \quad \text{if } a \notin FV(T) \\ \text{mgu}'(T \hat{=} a)s & = & s \cup \{a \mapsto T\} \quad \text{if } a \notin FV(T) \\ \text{mgu}'(T_1 \rightarrow T_2 \hat{=} U_1 \rightarrow U_2)s & = & (\text{mgu}(T_2 \hat{=} U_2) \circ \text{mgu}(T_1 \hat{=} U_1))s \\ \text{mgu}'(T \hat{=} U)s & = & \text{error} \quad \text{in all other cases} \end{array}$$

Soundness and Completeness of Unification

0.3 *Definition*: A substitution u is a *unifier* of a set of equations $\{T_i \hat{=} U_i\}_{i=1, \dots, m}$ if $uT_i = uU_i$, for all i . It is a *most general unifier* if for every other unifier u' of the same equations there exists a substitution s such that $u' = s \circ u$.

0.4 *Theorem*: Given a set of equations $EQNS$. If $EQNS$ has a unifier then $mgu(EQNS)(\emptyset)$ computes the most general unifier of $EQNS$. If $EQNS$ has no unifier then $mgu(EQNS)(\emptyset)$ fails.

From Judgements to Substitutions

$\text{TP} : \text{Judgement} \rightarrow \text{Subst} \rightarrow \text{Subst}$

$\text{TP}(\Gamma \vdash t : T) =$

case t of

x : $\text{mgu}(\Gamma(x) \hat{=} T)$

$\lambda x. t_1$: let a, b fresh in

$\text{mgu}((a \rightarrow b) \hat{=} T) \circ$

$\text{TP}(\Gamma, x : a \vdash t_1 : b)$

$t_1 \ t_2$: let a fresh in

$\text{TP}(\Gamma \vdash t_1 : a \rightarrow T) \circ$

$\text{TP}(\Gamma \vdash t_2 : a)$

Soundness and Completeness II

One can show by comparison with the previous algorithm:

0.5 *Theorem:* TP is sound and complete. Specifically:

$\Gamma \vdash t : T \text{ iff } T = r(s(a))$

where

a is a new type variable

$s = \text{TP}(\Gamma \vdash t : a)(\emptyset)$

r is a substitution on $FV(s(a)) \setminus FV(\Gamma)$

Polymorphism

In the simply typed lambda calculus, a term can have many types.
But a variable or parameter has only one type.

Example:

$$(\lambda x. x) (\lambda y. y)$$

is untypable. But if we substitute actual parameter for formal, we obtain

$$(\lambda y. y) (\lambda y. y) : a \rightarrow a$$

Functions which can be applied to arguments of many types are called *polymorphic*.

Polymorphism in Programming

Polymorphism is essential for many program patterns.

Example: `map`

```
def map f xs =  
  if (isEmpty xs) then nil  
  else cons (f (head xs)) (map (f (tail xs)))  
  ...  
names: List[String]  
nums : List[Int]  
  ...  
map toUpperCase names  
map increment nums
```

Without a polymorphic type for `map` one of the last two lines is always illegal!

Forms of Polymorphism

Polymorphism means “having many forms”.

Polymorphism also comes in several forms.

- ▶ *Universal polymorphism*, sometimes also called *generic types*: The ability to instantiate type variables.
- ▶ *Inclusion polymorphism*, sometimes also called *subtyping*: The ability to treat a value of a subtype as a value of one of its supertypes.
- ▶ *Ad-hoc polymorphism*, sometimes also called *overloading*: The ability to define several versions of the same function name, with different types.

We first concentrate on universal polymorphism.

Two basic approaches: *explicit* or *implicit*.

Explicit Polymorphism

We introduce a polymorphic type $\forall a. T$, which can be used just as any other type.

We then need to make introduction and elimination of \forall 's explicit.
Typing rules:

$$\frac{\Gamma, X \vdash t_2 : T_2}{\Gamma \vdash \lambda X. t_2 : \forall X. T_2} \quad (\text{T-TABS})$$

$$\frac{\Gamma \vdash t_1 : \forall X. T_{12}}{\Gamma \vdash t_1 [T_2] : [X \mapsto T_2] T_{12}} \quad (\text{T-TAPP})$$

We also need to give all parameter types, so programs become verbose.

Example:

```
def map [a] [b] (f: a => b) (xs: List[a]) =
  if (isEmpty [a] (xs)) then nil [b]
  else
    cons [b]
      (f (head [a] xs))
      (map [a] [b] (f) (tail [a] xs))
  ...
names: List[String]
nums : List[Int]
...
map [String] [String] toUpperCase names
map [Int] [Int] increment nums
```

Translating to System F

The translation of `map` into a System-F term is as follows: (See blackboard)

Implicit Polymorphism

Implicit polymorphism does not require annotations for parameter types or type instantiations.

Idea: In addition to types (as in simply typed lambda calculus), we have a new syntactic category of *type schemes*. Syntax:

$$\text{Type Scheme } S ::= T \mid \forall X. S$$

Type schemes are not fully general types; they are used only to type named values, introduced by a `val` construct.

The resulting type system is called the *Hindley/Milner system*, after its inventors. (The original treatment uses `let ... in ...` rather than `val ... ; ...`).

Hindley/Milner Typing rules

$$\frac{x \notin \text{dom}(\Gamma')}{\Gamma, x : S, \Gamma' \vdash x : S} \quad (\text{T-VAR})$$
$$\frac{\Gamma, x \vdash t : T_1 \quad x \notin FV(\Gamma)}{\Gamma \vdash t : \forall x. T_1} \quad (\text{T-TABS})$$
$$\frac{\Gamma \vdash t : \forall x. T_1}{\Gamma \vdash t : [x \mapsto T_2]T_1} \quad (\text{T-TAPP})$$

$$\frac{\Gamma \vdash t_1 : S \quad \Gamma, x : S \vdash t_2 : T}{\Gamma \vdash \text{let } x = t_1 \text{ in } t_2 : T} \quad (\text{T-LET})$$

The other two rules are as in simply typed lambda calculus:

$$\frac{\Gamma, x : T_1 \vdash t_2 : T_2}{\Gamma \vdash \lambda x. t_2 : T_1 \rightarrow T_2} \quad (\text{T-ABS})$$

$$\frac{\Gamma \vdash t_1 : T_2 \rightarrow T \quad \Gamma \vdash t_2 : T_2}{\Gamma \vdash t_1 \ t_2 : T} \quad (\text{T-APP})$$

Type Reconstruction for Hindley/Milner

Type reconstruction for the Hindley/Milner system works as for simply typed lambda calculus. We only have to add a clause for `let` expressions and refine the rules for variables.

$\text{TP} : \text{Judgement} \rightarrow \text{Subst} \rightarrow \text{Subst}$

$\text{TP}(\Gamma \vdash t : T)(s) =$

case t of

...

let $x = t_1$ in t_2 : let a, b fresh in

let $s_1 = \text{TP}(\Gamma \vdash t_1 : a)$ in

$\text{TP}(\Gamma, x : \text{gen}(s_1(\Gamma), s_1(a)) \vdash t_2 : b)(s_1)$

where $\text{gen}(\Gamma, T) = \forall x_1. \dots \forall x_n. T$ with $x_i \in FV(T) \setminus FV(\Gamma)$.

Variables in Environments

When comparing with the type of a variable in an environment, we have to make sure we create a new instance of their type as follows:

```
newInstance( $\forall X_1 \dots X_n. S$ ) =  
  let  $b_1, \dots, b_n$  fresh in  
   $[X_1 \mapsto b_1, \dots, X_n \mapsto b_n]S$ 
```

```
TP( $\Gamma \vdash t : T$ ) =  
  case t of  
  x    : { newInstance( $\Gamma(x)$ )  $\hat{=} T$  }  
  ...
```

Hindley/Milner in Programming Languages

Here is a formulation of the map example in the Hindley/Milner system.

```
let map =  $\lambda f. \lambda xs$  in
  if (isEmpty xs) then nil
  else cons (f (head xs)) (map f (tail xs))
  ...
// names: List[String]
// nums : List[Int]
// map   :  $\forall X. \forall Y. (X \rightarrow Y) \rightarrow List[X] \rightarrow List[Y]$ 
  ...
map toUpperCase names
map increment nums
```

Limitations of Hindley/Milner

Hindley/Milner still does not allow parameter types to be polymorphic. For example,

$$(\lambda x. x\ x)(\lambda y. y)$$

is still ill-typed, even though the following is well-typed:

$$\text{let } \text{id} = \lambda y. y \text{ in } (\text{id} \text{ id})$$

With explicit polymorphism the expression could be completed to a well-typed term:

$$(\Lambda A. \lambda x: (\forall B: B \rightarrow B). x [A \rightarrow A] (x [A]))(\Lambda C. \lambda y: C. y)$$

The Essence of let

We regard

$$\text{let } x = t_1 \text{ in } t_2$$

as a shorthand for

$$[x \mapsto t_1]t_2$$

We use this equivalence to get a revised Hindley/Milner system.

0.6 Definition: Let HM' be the type system that results if we replace rule LET from the Hindley/Milner system HM by:

$$\frac{\Gamma \vdash t_1 : T_1 \quad \Gamma \vdash [x \mapsto t_1]t_2 : T}{\Gamma \vdash \text{let } x = t_1 \text{ in } t_2 : T} \quad (\text{T-LET}')$$

Equivalence of the two systems

0.7 Theorem: $\Gamma \vdash_{\text{HM}} t : S$ iff $\Gamma \vdash_{\text{HM}'} t : S$

The theorem establishes the following connection between the Hindley/Milner system and the simply typed lambda calculus F_1 :

0.8 Corollary: Let t^* be the result of expanding all `let`'s in t according to the rule

$$\text{let } x = t_1 \text{ in } t_2 \rightarrow [x \mapsto t_1]t_2$$

Then

$$\Gamma \vdash_{\text{HM}} t : T \implies \Gamma \vdash_{F_1} t^* : T$$

Furthermore, if every `let`-bound name is used at least once, we also have the reverse:

$$\Gamma \vdash_{F_1} t^* : T \implies \Gamma \vdash_{\text{HM}} t : T$$

Principal Types

0.9 *Definition:* A type T is a *generic instance* of a type scheme $S = \forall \alpha_1 \dots \forall \alpha_n. T'$ if there is a substitution s on $\alpha_1, \dots, \alpha_n$ such that $T = sT'$. We write in this case $S \leq T$.

0.10 *Definition:* A type scheme S' is a generic instance of a type scheme S iff for all types T

$$S' \leq T \implies S \leq T$$

We write in this case $S \leq S'$.

0.11 *Definition:* A type scheme S is *principal* (or: *most general*) for Γ and t iff

- ▶ $\Gamma \vdash t : S$
- ▶ $\Gamma \vdash t : S'$ implies $S \leq S'$

0.12 *Definition*: A type system TS has the *principal typing property* iff, whenever $\Gamma \vdash_{TS} t : S$ then there exists a principal type scheme for Γ and t .

0.13 *Theorem*:

1. HM' without `let` has the p.t.p.
2. HM' with `let` has the p.t.p.
3. HM has the p.t.p.

Proof sketch:

1. Use type reconstruction result for the simply typed lambda calculus.
2. Expand all `let`'s and apply (1.).
3. Use equivalence between HM and HM' .

These observations could be used to come up with a type reconstruction algorithm for HM . But in practice one takes a more direct approach.

Reading for next week

- ▶ Chapter 15 – Subtyping, up to section 15.5 included
- ▶ Chapter 16 – Metatheory of Subtyping