Foundations of Software
Spring 2025

Week 11

Objects

Plan:

Plan:
1. ldentify some characteristic “core features” of object-oriented
programming
2. Develop two different analyses of these features:

2.1 A translation into a lower-level language
2.2 A direct, high-level formalization of a simple object-oriented
language (“Featherweight Java")

The Translational Analysis

Our first goal will be to show how many of the basic features of
object-oriented languages

dynamic dispatch

encapsulation of state

inheritance

this

super
can be understood as “derived forms” in a lower-level language
with a rich collection of primitive features:

(higher-order) functions

records

references

recursion

subtyping

The Translational Analysis
For simple objects and classes, this translational analysis works
very well.

When we come to more complex features (in particular, classes
with this), it becomes less satisfactory, leading us to the more
direct treatment in the following chapter.

Concepts

The Essence of Objects

What "“is" object-oriented programming?

The Essence of Objects
What "is" object-oriented programming?

The term is used widely, but there are some core features that are
strongly implied by it.

Dynamic dispatch

Perhaps the most basic characteristic of object-oriented
programming is dynamic dispatch: when an operation is invoked on
an object, the ensuing behavior depends on the object itself, rather
than being fixed (as when we apply a function to an argument).

Two objects of the same type (i.e., responding to the same set of
operations) may be implemented internally in completely different
ways.

This is late binding for function calls.

Example (in Java)
class A {
int x = 0;
int m() { x = x+1; return x; }
int n() { x = x-1; return x; }

}
class B extends A {

int m() { x = x+5; return x; }

class C extends A {
int m() { x = x-10; return x; }

Note that (new B()) .m() and (new C()).m() invoke completely
different code!

8 9
Aside: Late Binding Encapsulation
Object-oriented programming started developing during the 60's In most OO languages, each object consists of some internal state
and 70's. Alan Kay claims to have used /ate binding as a driving encapsulated with a collection of method implementations
concept in exploring object-oriented design. operating on that state.
The idea is, let's be honest: we do not know how to program, nor > state directly accessible to methods
to write programming languages. Thus, let us defer as many > state inaccessible from outside the object
decisions as possible. Let us bind many things as /ate as possible.
The clearest application of this is dynamic dispatch of methods.
10 11

Encapsulation

In Java, encapsulation of internal state is optional. For full
encapsulation, fields must be marked protected:

class A {
protected int x = 0;
int m() { x = x+1; return x; }
int n() { x = x-1; return x; }

}

class B extends A {
int m() { x = x+5; return x; }

}
class C extends A {
int m() { x = x-10; return x; }

}

The code (new B()) .x is not allowed.

Side note: Objects vs. ADTs

The encapsulation of state with methods offered by objects is a
form of information hiding.

A somewhat different form of information hiding is embodied in
the notion of an abstract data type (ADT).

12 13
Side note: Objects vs. ADTs Subtyping and Encapsulation
An ADT comeprises: The “type” (or “interface” in Smalltalk terminology) of an object
> A hidden representation type X is just the set of operations that can be performed on it (and the
> A collection of operations for creating and manipulating T:ypes of their paran‘jeters and results); it does not include the
internal representation.
elements of type X.
Similar to OO encapsulation in that only the operations provided Object interfaces fit naturally into a subtype relation.
by the ADT are allowed to directly manipulate elements of the An interface listing more operations is “better” than one
abstract type. listing fewer operations.
But different in that there is just one (hidden) representation type This gives rise to a natural and useful form of polymorphism: we
and just one implementation of the operations — no dynamic can write one piece of code that operates uniformly on any object
dispatch. whose interface is “at least as good as I" (i.e., any object that
Both styles have advantages. supports at least the operations in I).
Caveat: In the OO community, the term “abstract data type” is
often used as more or less a synonym for “object type.” This is
unfortunate, since it confuses two rather different concepts.
14 15

Example

// ... class A and subclasses B and C as above...
class D {
int p (A myA) { return myA.m(); }
}
D d = new D();
int z = d.p (new BQ));

z
int w = d.p (new CQ);

Inheritance

Objects that share parts of their interfaces will typically (though
not always) share parts of their behaviors.

To avoid duplication of code, want to write the implementations of
these behaviors in just one place.
= inheritance

16 17
Inheritance Example
Basic mechanism of inheritance: classes
class A {
. tected int x = 0;
A class is a data structure that can be protecte m_ x
int m() { x = x+1; return x; }
> instantiated to create new objects (“instances”) int n0) { x = x-1; return x; }
> refined to create new classes (“subclasses”) ¥
class B extends A {
int o() { x = x%10; return x; }
¥
N.b.: some OO languages offer an alternative mechanism, called _A” in.stance of B has methods m, n, and o. The first two are
delegation, which allows new objects to be derived by refining the inherited from A.
behavior of existing objects.
18 19

Ubiquitous this Examples

OO languages provide ubiquitous access to this, the current

. 1 E
method receiver. class E { .
protected int x = 0;
This is a form of open recursion, and it is late binding of the int m(O) { x = x+1; return x; }
receiver of a method. int n() { x = x-1; return this.m(Q; }
}

The interesting thing is that this might be an instance of a
subclass, not the class you are currently looking at! So, the system class F extends E {
must be sure to allow this's actual class at run time to override int m() { x = x+100; return x; }
the definitions of the current class. ¥

Quick check:

» What does (new E()).n() return?
» What does (new F()).n() return?

20

Calling “super” Example

It is sometimes convenient to “re-use” the functionality of an

overridden method class E {

’ protected int x = 0;
Java provides a mechanism called super for this purpose. int mO) { x = x+1; return x; }
int n() { x = x-1; return this.m(); }
}

class G extends E {
int m() { x = x+100; return super.m(); }

}

What does (new G()).n() return?

22

Getting down to details
(in the lambda-calculus)...

24

Simple objects with encapsulated state

class Counter {
protected int x = 1;
int get() { return x; }
void inc() { x++; }

// Hidden state

}

void inc3(Counter c) {
c.inc(); c.inc(); c.inc(Q);

}

Counter c = new Counter();
inc3(c);
inc3(c);
c.get();

How do we encode objects in the lambda-calculus?

25

Objects

c =1let x =ref 1 in
{get = A_:Unit. !x,
inc = A_:Unit. x:=succ(!x)};
= c : Counter
where
Counter = {get:Unit—Nat, inc:Unit—Unit}

26

Objects

inc3 = Ac:Counter. (c.inc unit; c.inc unit; c.inc unit);

= inc3 : Counter — Unit

(inc3 c; inc3 c; c.get unit);
— 7

27

Object Generators

newCounter =
A_:Unit. let x = ref 1 in
{get = A_:Unit. !x,
inc = A_:Unit. x:=succ(!x)};
— newCounter : Unit — Counter

Grouping Instance Variables

Rather than a single reference cell, the states of most objects
consist of a number of instance variables or fields.

It will be convenient (later) to group these into a single record.

newCounter =
A_:Unit. let r = {x=ref 1} in
{get = A_:Unit. !'(r.x),
inc = A_:Unit. r.x:=succ(!(r.x))};

The local variable r has type CounterRep = {x: Ref Nat}

28 29
Subtyping and Inheritance Subtyping
class Counter { ResetCounter = {get:Un%t4$NaF,
protected int x = 1; 1nc:Un1tf»Un1tf
int get() { return x; } reset:Unit—Unit};
void inc() { x++; }
3 newResetCounter =
A_:Unit. let r = {x = ref 1} in
= .Uni |
class ResetCounter extends Counter { {get A_.Un%t. Hr.x),
void resetO) { x = 1; } inc = A_:Unit. r.x:=succ(!(r.x)),
} ’ reset = A_:Unit. r.x:=1};
— newResetCounter : Unit — ResetCounter
ResetCounter rc = new ResetCounter();
inc3(rc);
rc.reset();
inc3(rc);
rc.get();
30 31

Subtyping

rc = newResetCounter unit;
(inc3 rc; rc.reset unit; inc3 rc; rc.get unit);
=4

Simple Classes

The definitions of newCounter and newResetCounter are
identical except for the reset method.

This violates a basic principle of software engineering:
Each piece of behavior should be implemented in just one
place in the code.

32 33
Reusing Methods Reusing Methods
Idea: could we just re-use the methods of some existing object to Idea: could we just re-use the methods of some existing object to
build a new object? build a new object?
resetCounterFromCounter = resetCounterFromCounter =
Ac:Counter. let r = {x = ref 1} in Ac:Counter. let r = {x = ref 1} in
{get = c.get, {get = c.get,
inc = c.inc, inc = c.inc,
reset = A_:Unit. r.x:=1}; reset = A_:Unit. r.x:=1};
No: This doesn't work properly because the reset method does
not have access to the local variable r of the original counter.
= classes
34 34

Classes

A class is a run-time data structure that can be
1. instantiated to yield new objects

2. extended to yield new classes

Classes

To avoid the problem we observed before, what we need to do is to
separate the definition of the methods

counterClass =
Ar:CounterRep.
{get = A_:Unit. !(r.x),
inc = A_:Unit. r.x:=succ(!(r.x))};
— counterClass CounterRep — Counter

from the act of binding these methods to a particular set of
instance variables:

newCounter =
A_:Unit. let r = {x=ref 1} in
counterClass r;
= newCounter : Unit — Counter

35 36
Defining a Subclass Overriding and adding instance variables
resetCounterClass = class Counter {
Ar:CounterRep. protected int x = 1;
let super = counterClass r in int get() { return x; }
{get = super.get, void incO) { x++; }
inc = super.inc, 3
reset = A_:Unit. r.x:=1};
= resetCounterClass : CounterRep — ResetCounter class ResetCounter extends Counter {
void reset() { x = 1; }
newResetCounter = }
A_:Unit. let r = {x=ref 1} in resetCounterClass r;
— newResetCounter : Unit — ResetCounter class BackupCounter extends ResetCounter {
protected int b = 1;
void backup() { b = x; }
void reset() { x = Db; }
}
37 38

Adding instance variables

In general, when we define a subclass we will want to add new
instances variables to its representation.

BackupCounter = {get:Unit—Nat, inc:Unit—Unit,
reset:Unit—Unit, backup: Unit—Unit};
BackupCounterRep = {x: Ref Nat, b: Ref Nat};

backupCounterClass =
Ar:BackupCounterRep.
let super = resetCounterClass r in

{get = super.get,
inc = super.inc,
reset = A_:Unit. r.x:=!(r.b),

backup = A_:Unit. r.b:=!(r.x)};
-

backupCounterClass : BackupCounterRep — BackupCounter

39

Notes:

» backupCounterClass both extends (with backup) and
overrides (with a new reset) the definition of counterClass

> subtyping is essential here (in the definition of super)

backupCounterClass =
Ar:BackupCounterRep.
let super = resetCounterClass r in
{get = super.get,
inc

super.inc,
reset = A_:Unit. r.x:=!(r.b),
backup = A_:Unit. r.b:=!(r.x)};

40

Calling super

Suppose (for the sake of the example) that we wanted every call to
inc to first back up the current state. We can avoid copying the
code for backup by making inc use the backup and inc methods
from super.

funnyBackupCounterClass =
Ar:BackupCounterRep.
let super = backupCounterClass r in
{get = super.get,
inc = A_:Unit. (super.backup unit; super.inc unit),

reset = super.reset,

backup = super.backup};
_

funnyBackupCounterClass : BackupCounterRep — BackupCounter

41

Calling between methods

What if counters have set, get, and inc methods:
SetCounter = {get:Unit—Nat, set:Nat—Unit, inc:Unit—Unit};

setCounterClass =
Ar:CounterRep.
{get = A_:Unit. !(r.x),
set = Ai:Nat. r.x:=i,

inc = A_:Unit. r.x:=(succ !(r.x)) });

42

Calling between methods

What if counters have set, get, and inc methods:
SetCounter = {get:Unit—Nat, set:Nat—Unit, inc:Unit—Unit};
setCounterClass =
Ar:CounterRep.
{get = A_:Unit. !(r.x),
set = Ai:Nat. r.x:=i,
inc = A_:Unit. r.x:=(succ '(r.x)) });

Bad style: The functionality of inc could be expressed in terms of
the functionality of get and set.

Can we rewrite this class so that the get/set functionality appears

Calling between methods

In Java we would write:
class SetCounter {
protected int x = 0;
int get () { return x; }
void set (int i) { x =1i; }
void inc () { this.set(this.get() + 1); }

just once?
42 43
Better... Note that the fixed point in
ette p
setCounterClass = setCounterClass =
Ar:CounterRep. Ar:?ounterRep.
fix fix)
(Athis: SetCounter. (Athis: SetCounter.
{get = A_:Unit. !(r.x), {get = A_:Unit. !(r.x),
set = A\i:Nat. r.x:=i, set = Ai:Nat. r.x:=i,
inc = A_:Unit. this.set (succ (this.get unit))}); inc = A_:Unit. this.set (succ (this.get unit))});
) o is “closed” — we “tie the knot” when we build the record.
Check: the type of the inner \-abstraction is
SetCounter—SetCounter, so the type of the fix expression is So this does not model the behavior of this (or self) in real 0O
SetCounter. languages.
This is just a definition of a group of mutually recursive functions.
44 45

Idea: move the application of fix from the class definition...

setCounterClass =
Ar:CounterRep.
Athis: SetCounter.
{get = A_:Unit. !(r.x),
set = Ai:Nat. r.x:=i,
inc = A_:Unit. this.set (succ(this.get unit))};

...to the object creation function:

newSetCounter =
A_:Unit. let r = {x=ref 1} in
fix (setCounterClass r);

In essence, we are switching the order of fix and
Ar:CounterRep. ..

Note that we have changed the types of classes from...
setCounterClass =
Ar:CounterRep.
fix
(Athis: SetCounter.
{get = A_:Unit. !(r.x),
set = Ai:Nat. r.x:=i,
inc = A_:Unit. this.set (succ (this.get unit))});
— setCounterClass : CounterRep — SetCounter
. to:
setCounterClass =
Ar:CounterRep.
Athis: SetCounter.
{get = A_:Unit. !(r.x),
set = Ai:Nat. r.x:=i,
inc = A_:Unit. this.set (succ(this.get unit))};

=
setCounterClass : CounterRep — SetCounter — SetCounter
46 47
Using this instrCounterClass =
Ar:InstrCounterRep.
Let’s continue the example by defining a new class of counter Athis: InstrCounter.
objects (a subclass of set-counters) that keeps a record of the let super = setCounterClass r this in
number of times the set method has ever been called. {get = super.get,
set = Ai:Nat. (r.a:=succ(!(r.a)); super.set i),
InstrCounter = {get:Unit—Nat, set:Nat—Unit, inc = super.inc,
inc:Unit—Unit, accesses:Unit—Nat}; accesses = A_:Unit. !(r.a)};
— instrCounterClass :
InstrCounterRep = {x: Ref Nat, a: Ref Nat}; InstrCounterRep — InstrCounter — InstrCounter
Notes:
> the methods use both this (which is passed as a parameter)
and super (which is constructed using this and the instance
variables)
» the inc in super will call the set defined here, which calls
the superclass set
> suptyping plays a crucial role (twice) in the call to
setCounterClass
48 49

One more refinement...

A small fly in the ointment

The implementation we have given for instrumented counters is
not very useful because calling the object creation function
newInstrCounter =
A_:Unit. let r = {x=ref 1, a=ref 0} in

fix (instrCounterClass r);
will cause the evaluator to diverge!

Intuitively (see TAPL for details), the problem is the “unprotected”
use of this in the call to setCounterClass in
instrCounterClass:

instrCounterClass =
Ar:InstrCounterRep.
Athis: InstrCounter.

let super = setCounterClass r this in

50 51
To see why this diverges, consider a simpler example: One possible solution
ff = Af:Nat—Nat.
let £/ = f in Idea: “delay” this by putting a dummy abstraction in front of it...
An:Nat. O setCounterClass =
= ff : (Nat—Nat) — (Nat—Nat) Ar:CounterRep.
Athis: Unit—SetCounter.
Now: A_:Unit.
fix ff — let f' = (fix £f) in An:Nat. O {get = A_:Unit. !(r.x),
— let f' = £f (fix £f) in An:Nat. 0 set = Ai:Nat. r.x:=i,
4 uhoh. inc = A_:Unit. (this unit).set ‘ ' .
(succ((this unit).get unit))};
— setCounterClass :
CounterRep — (Unit—SetCounter) — (Unit—SetCounter)
newSetCounter =
A_:Unit. let r = {x=ref 1} in
fix (setCounterClass r) unit;
52 53

Similarly:

instrCounterClass =
Ar:InstrCounterRep.
Athis: Unit—InstrCounter.
A_:Unit.
let super = setCounterClass r this unit in

{get = super.get,
set = Ai:Nat. (r.a:=succ(!(r.a)); super.set i),
inc = super.inc,
accesses = A_:Unit. !(r.a)};

newInstrCounter =
A_:Unit. let r = {x=ref 1, a=ref 0} in
fix (instrCounterClass r) unit;

Success

This works, in the sense that we can now instantiate
instrCounterClass (without diverging!), and its instances
behave in the way we intended.

54 55
Success (?) Recap
This works, in the sense that we can now instantiate We implemented object-oriented features on top of
instrCounterClass (without diverging!), and its instances function-language features:
behave in the way we intended. » Dynamic dispatch: use records of functions.
However, all the “delaying” we added has an unfortunate side » Encapsulation: use variable capture, so that these functions
effect: instead of computing the "method table” just once, when see the hidden state but the callers of the functions do not.
an object is created, we will now re-compute it every time we > Subtyping: use record subtyping, and get it for free.
i |
invoke a method! » Inheritance: introduce classes, and separate out the
Section 18.12 in TAPL shows how this can be repaired by using representation records.
references instead of fix to “tie the knot" in the method table. > Ubiquitous this: tricky! Bind this via £ix...but do not call
fix in the class definition...and do fix on a delayed
Unit—0bject function instead of directly on the Object.
55 56

