
Foundations of Software
Spring 2025

Week 10

1

Subtyping

2

Motivation

With our usual typing rule for applications

Γ ⊢ t1 : T11→T12 Γ ⊢ t2 : T11

Γ ⊢ t1 t2 : T12
(T-App)

the term
(λr:{x:Nat}. r.x) {x=0,y=1}

is not well typed.

But this is silly: all we’re doing is passing the function a better
argument than it needs.

Similarly, in object-oriented languages, we want to be able to
define hierarchies of classes, with classes lower in the hierarchy
having richer interfaces than their ancestors higher in the hierarchy,
and use instances of richer classes in situations where one of their
ancestors are expected.

3

Motivation

With our usual typing rule for applications

Γ ⊢ t1 : T11→T12 Γ ⊢ t2 : T11

Γ ⊢ t1 t2 : T12
(T-App)

the term
(λr:{x:Nat}. r.x) {x=0,y=1}

is not well typed.

But this is silly: all we’re doing is passing the function a better
argument than it needs.

Similarly, in object-oriented languages, we want to be able to
define hierarchies of classes, with classes lower in the hierarchy
having richer interfaces than their ancestors higher in the hierarchy,
and use instances of richer classes in situations where one of their
ancestors are expected.

3

Subsumption

We achieve the effect we want by:

1. a subtyping relation between types, written S <: T

2. a rule of subsumption stating that, if S <: T, then any value of
type S can also be regarded as having type T

Γ ⊢ t : S S <: T

Γ ⊢ t : T
(T-Sub)

4

Example

We will define subtyping between record types so that, for example,

{x:Nat, y:Nat} <: {x:Nat}

So, by subsumption,

...
T-Rec

⊢ {x=0,y=1} : {x:Nat, y:Nat}

...
S-RcdWidth

{x:Nat, y:Nat} <: {x:Nat}
T-Sub

⊢ {x=0,y=1} : {x:Nat}

and hence
(λr:{x:Nat}. r.x) {x=0,y=1}

is well typed.

5

The Subtype Relation: Records

“Width subtyping” (forgetting fields on the right):

{li:Ti
i∈1..n+k} <: {li:Ti

i∈1..n} (S-RcdWidth)

Intuition: {x:Nat} is the type of all records with at least a
numeric x field.

Note that the record type with more fields is a subtype of the
record type with fewer fields.

Reason: the type with more fields places a stronger constraint on
values, so it describes fewer values.

6

The Subtype Relation: Records

Permutation of fields:

{kj:Sj
j∈1..n} is a permutation of {li:Ti

i∈1..n}

{kj:Sj
j∈1..n} <: {li:Ti

i∈1..n}
(S-RcdPerm)

By using S-RcdPerm together with S-RcdWidth and
S-Trans allows us to drop arbitrary fields within records.

7

The Subtype Relation: Records

“Depth subtyping” within fields:

for each i Si <: Ti

{li:Si
i∈1..n} <: {li:Ti

i∈1..n}
(S-RcdDepth)

The types of individual fields may change.

8

Example

S-RcdWidth

{a:Nat,b:Nat} <: {a:Nat}
S-RcdWidth

{m:Nat} <: {}
S-RcdDepth

{x:{a:Nat,b:Nat},y:{m:Nat}} <: {x:{a:Nat},y:{}}

9

Variations

Real languages often choose not to adopt all of these record
subtyping rules. For example, in Java,

▶ A subclass may not change the argument types of a method
of its superclass (i.e., no depth subtyping)

▶ Each class has just one superclass (“single inheritance” of
classes)

−→ each class member (field or method) can be assigned
a single index, adding new indices “on the right” as more
members are added in subclasses
(i.e., no permutation for classes)

▶ A class may implement multiple interfaces (“multiple
inheritance” of interfaces)
I.e., permutation is allowed for interfaces.

10

The Subtype Relation: Arrow types

T1 <: S1 S2 <: T2

S1→S2 <: T1→T2
(S-Arrow)

Note the order of T1 and S1 in the first premise. The subtype
relation is contravariant in the left-hand sides of arrows and
covariant in the right-hand sides.

Intuition: if we have a function f of type S1→S2, then we know
that f accepts elements of type S1; clearly, f will also accept
elements of any subtype T1 of S1. The type of f also tells us that
it returns elements of type S2; we can also view these results
belonging to any supertype T2 of S2. That is, any function f of
type S1→S2 can also be viewed as having type T1→T2.

11

The Subtype Relation: Top

It is convenient to have a type that is a supertype of every type.
We introduce a new type constant Top, plus a rule that makes Top
a maximum element of the subtype relation.

S <: Top (S-Top)

Cf. Object in Java (more or less) or AnyKind in Scala.

12

The Subtype Relation: General rules

S <: S (S-Refl)

S <: U U <: T

S <: T
(S-Trans)

13

Subtype relation

S <: S (S-Refl)

S <: U U <: T

S <: T
(S-Trans)

{li:Ti
i∈1..n+k} <: {li:Ti

i∈1..n} (S-RcdWidth)

for each i Si <: Ti

{li:Si
i∈1..n} <: {li:Ti

i∈1..n}
(S-RcdDepth)

{kj:Sj
j∈1..n} is a permutation of {li:Ti

i∈1..n}

{kj:Sj
j∈1..n} <: {li:Ti

i∈1..n}
(S-RcdPerm)

T1 <: S1 S2 <: T2

S1→S2 <: T1→T2
(S-Arrow)

S <: Top (S-Top)

14

Aside: Structural vs. declared subtyping

The subtype relation we have defined is structural: We decide
whether S is a subtype of T by examining the structure of S and T.

By contrast, the subtype relation in most OO languages (e.g.,
Java) is explicitly declared: S is a subtype of T only if the
programmer has stated that it should be.

There are pragmatic arguments for both.

For the moment, we’ll concentrate on structural subtyping, which
is the more fundamental of the two. (It is sound to declare S to be
a subtype of T only when S is structurally a subtype of T.)

We’ll come back to declared subtyping when we talk about
Featherweight Java.

15

Properties of Subtyping

16

Questions (1)

Clicker question: How many different T’s are there such that
⊢ {a=0} : T?

A. there is no such T

B. there is exactly one such T

C. there are n ∈ N, n > 1 such T’s

D. there are infinitely many such T’s

URL: ttpoll.eu
Session ID: cs452

17

Questions (2)

Clicker question: Given Γ ⊢ t1 {a=0} : T, what is the last typing
rule used in the typing derivation tree?

A. T-Rec

B. T-App

C. T-Sub

D. there are several correct answers

E. we do not know

URL: ttpoll.eu
Session ID: cs452

18

Safety

Statements of progress and preservation theorems are unchanged
from λ→.

Proofs become a bit more involved, because the typing relation is
no longer syntax directed.

Given a derivation, we don’t always know what rule was used in
the last step. The rule T-Sub could appear anywhere.

Γ ⊢ t : S S <: T

Γ ⊢ t : T
(T-Sub)

19

An Inversion Lemma for Subtyping

Lemma: If U <: T1→T2, then U has the form U1→U2, with T1 <: U1
and U2 <: T2.

Proof: By induction on subtyping derivations.

Case S-Arrow: U = U1→U2 T1 <: U1 U2 <: T2

Immediate.

Case S-Refl: U = T1→T2

By S-Refl (twice), T1 <: T1 and T2 <: T2, as required.

Case S-Trans: U <: W W <: T1→T2

Applying the IH to the second subderivation, we find that W has
the form W1→W2, with T1 <: W1 and W2 <: T2. Now the IH applies
again (to the first subderivation, which became U <: W1→W2),
telling us that U has the form U1→U2, with W1 <: U1 and U2 <: W2.
By S-Trans, T1 <: U1, and, by S-Trans again, U2 <: T2, as
required.

20

An Inversion Lemma for Subtyping

Lemma: If U <: T1→T2, then U has the form U1→U2, with T1 <: U1
and U2 <: T2.

Proof: By induction on subtyping derivations.

Case S-Arrow: U = U1→U2 T1 <: U1 U2 <: T2

Immediate.

Case S-Refl: U = T1→T2

By S-Refl (twice), T1 <: T1 and T2 <: T2, as required.

Case S-Trans: U <: W W <: T1→T2

Applying the IH to the second subderivation, we find that W has
the form W1→W2, with T1 <: W1 and W2 <: T2. Now the IH applies
again (to the first subderivation, which became U <: W1→W2),
telling us that U has the form U1→U2, with W1 <: U1 and U2 <: W2.
By S-Trans, T1 <: U1, and, by S-Trans again, U2 <: T2, as
required.

20

An Inversion Lemma for Subtyping

Lemma: If U <: T1→T2, then U has the form U1→U2, with T1 <: U1
and U2 <: T2.

Proof: By induction on subtyping derivations.

Case S-Arrow: U = U1→U2 T1 <: U1 U2 <: T2

Immediate.

Case S-Refl: U = T1→T2

By S-Refl (twice), T1 <: T1 and T2 <: T2, as required.

Case S-Trans: U <: W W <: T1→T2

Applying the IH to the second subderivation, we find that W has
the form W1→W2, with T1 <: W1 and W2 <: T2. Now the IH applies
again (to the first subderivation, which became U <: W1→W2),
telling us that U has the form U1→U2, with W1 <: U1 and U2 <: W2.
By S-Trans, T1 <: U1, and, by S-Trans again, U2 <: T2, as
required.

20

An Inversion Lemma for Subtyping

Lemma: If U <: T1→T2, then U has the form U1→U2, with T1 <: U1
and U2 <: T2.

Proof: By induction on subtyping derivations.

Case S-Arrow: U = U1→U2 T1 <: U1 U2 <: T2

Immediate.

Case S-Refl: U = T1→T2

By S-Refl (twice), T1 <: T1 and T2 <: T2, as required.

Case S-Trans: U <: W W <: T1→T2

Applying the IH to the second subderivation, we find that W has
the form W1→W2, with T1 <: W1 and W2 <: T2. Now the IH applies
again (to the first subderivation, which became U <: W1→W2),
telling us that U has the form U1→U2, with W1 <: U1 and U2 <: W2.
By S-Trans, T1 <: U1, and, by S-Trans again, U2 <: T2, as
required.

20

An Inversion Lemma for Subtyping

Lemma: If U <: T1→T2, then U has the form U1→U2, with T1 <: U1
and U2 <: T2.

Proof: By induction on subtyping derivations.

Case S-Arrow: U = U1→U2 T1 <: U1 U2 <: T2

Immediate.

Case S-Refl: U = T1→T2

By S-Refl (twice), T1 <: T1 and T2 <: T2, as required.

Case S-Trans: U <: W W <: T1→T2

Applying the IH to the second subderivation, we find that W has
the form W1→W2, with T1 <: W1 and W2 <: T2. Now the IH applies
again (to the first subderivation, which became U <: W1→W2),
telling us that U has the form U1→U2, with W1 <: U1 and U2 <: W2.
By S-Trans, T1 <: U1, and, by S-Trans again, U2 <: T2, as
required.

20

An Inversion Lemma for Subtyping

Lemma: If U <: T1→T2, then U has the form U1→U2, with T1 <: U1
and U2 <: T2.

Proof: By induction on subtyping derivations.

Case S-Arrow: U = U1→U2 T1 <: U1 U2 <: T2

Immediate.

Case S-Refl: U = T1→T2

By S-Refl (twice), T1 <: T1 and T2 <: T2, as required.

Case S-Trans: U <: W W <: T1→T2

Applying the IH to the second subderivation, we find that W has
the form W1→W2, with T1 <: W1 and W2 <: T2. Now the IH applies
again (to the first subderivation, which became U <: W1→W2),
telling us that U has the form U1→U2, with W1 <: U1 and U2 <: W2.
By S-Trans, T1 <: U1, and, by S-Trans again, U2 <: T2, as
required.

20

An Inversion Lemma for Subtyping

Lemma: If U <: T1→T2, then U has the form U1→U2, with T1 <: U1
and U2 <: T2.

Proof: By induction on subtyping derivations.

Case S-Arrow: U = U1→U2 T1 <: U1 U2 <: T2

Immediate.

Case S-Refl: U = T1→T2

By S-Refl (twice), T1 <: T1 and T2 <: T2, as required.

Case S-Trans: U <: W W <: T1→T2

Applying the IH to the second subderivation,

we find that W has
the form W1→W2, with T1 <: W1 and W2 <: T2. Now the IH applies
again (to the first subderivation, which became U <: W1→W2),
telling us that U has the form U1→U2, with W1 <: U1 and U2 <: W2.
By S-Trans, T1 <: U1, and, by S-Trans again, U2 <: T2, as
required.

20

An Inversion Lemma for Subtyping

Lemma: If U <: T1→T2, then U has the form U1→U2, with T1 <: U1
and U2 <: T2.

Proof: By induction on subtyping derivations.

Case S-Arrow: U = U1→U2 T1 <: U1 U2 <: T2

Immediate.

Case S-Refl: U = T1→T2

By S-Refl (twice), T1 <: T1 and T2 <: T2, as required.

Case S-Trans: U <: W W <: T1→T2

Applying the IH to the second subderivation, we find that W has
the form W1→W2, with T1 <: W1 and W2 <: T2.

Now the IH applies
again (to the first subderivation, which became U <: W1→W2),
telling us that U has the form U1→U2, with W1 <: U1 and U2 <: W2.
By S-Trans, T1 <: U1, and, by S-Trans again, U2 <: T2, as
required.

20

An Inversion Lemma for Subtyping

Lemma: If U <: T1→T2, then U has the form U1→U2, with T1 <: U1
and U2 <: T2.

Proof: By induction on subtyping derivations.

Case S-Arrow: U = U1→U2 T1 <: U1 U2 <: T2

Immediate.

Case S-Refl: U = T1→T2

By S-Refl (twice), T1 <: T1 and T2 <: T2, as required.

Case S-Trans: U <: W W <: T1→T2

Applying the IH to the second subderivation, we find that W has
the form W1→W2, with T1 <: W1 and W2 <: T2. Now the IH applies
again (to the first subderivation, which became U <: W1→W2),
telling us that U has the form U1→U2, with W1 <: U1 and U2 <: W2.

By S-Trans, T1 <: U1, and, by S-Trans again, U2 <: T2, as
required.

20

An Inversion Lemma for Subtyping

Lemma: If U <: T1→T2, then U has the form U1→U2, with T1 <: U1
and U2 <: T2.

Proof: By induction on subtyping derivations.

Case S-Arrow: U = U1→U2 T1 <: U1 U2 <: T2

Immediate.

Case S-Refl: U = T1→T2

By S-Refl (twice), T1 <: T1 and T2 <: T2, as required.

Case S-Trans: U <: W W <: T1→T2

Applying the IH to the second subderivation, we find that W has
the form W1→W2, with T1 <: W1 and W2 <: T2. Now the IH applies
again (to the first subderivation, which became U <: W1→W2),
telling us that U has the form U1→U2, with W1 <: U1 and U2 <: W2.
By S-Trans, T1 <: U1, and, by S-Trans again, U2 <: T2, as
required.

20

An Inversion Lemma for Typing

Lemma: If Γ ⊢ λx:S1.s2 : T1→T2, then T1 <: S1 and
Γ, x:S1 ⊢ s2 : T2.

Proof: By induction on typing derivations.

Case T-Abs: T1 = S1 T2 = S2 Γ, x:S1 ⊢ s2 : S2

Immediate.

Case T-Sub: Γ ⊢ λx:S1.s2 : U U <: T1→T2

By the subtyping inversion lemma, U = U1→U2, with T1 <: U1 and
U2 <: T2.
The IH now applies, yielding U1 <: S1 and Γ, x:S1 ⊢ s2 : U2.
From U1 <: S1 and T1 <: U1, rule S-Trans gives T1 <: S1.
From Γ, x:S1 ⊢ s2 : U2 and U2 <: T2, rule T-Sub gives
Γ, x:S1 ⊢ s2 : T2, and we are done.

21

An Inversion Lemma for Typing

Lemma: If Γ ⊢ λx:S1.s2 : T1→T2, then T1 <: S1 and
Γ, x:S1 ⊢ s2 : T2.

Proof: By induction on typing derivations.

Case T-Abs: T1 = S1 T2 = S2 Γ, x:S1 ⊢ s2 : S2

Immediate.

Case T-Sub: Γ ⊢ λx:S1.s2 : U U <: T1→T2

By the subtyping inversion lemma, U = U1→U2, with T1 <: U1 and
U2 <: T2.
The IH now applies, yielding U1 <: S1 and Γ, x:S1 ⊢ s2 : U2.
From U1 <: S1 and T1 <: U1, rule S-Trans gives T1 <: S1.
From Γ, x:S1 ⊢ s2 : U2 and U2 <: T2, rule T-Sub gives
Γ, x:S1 ⊢ s2 : T2, and we are done.

21

An Inversion Lemma for Typing

Lemma: If Γ ⊢ λx:S1.s2 : T1→T2, then T1 <: S1 and
Γ, x:S1 ⊢ s2 : T2.

Proof: By induction on typing derivations.

Case T-Abs: T1 = S1 T2 = S2 Γ, x:S1 ⊢ s2 : S2

Immediate.

Case T-Sub: Γ ⊢ λx:S1.s2 : U U <: T1→T2

By the subtyping inversion lemma, U = U1→U2, with T1 <: U1 and
U2 <: T2.
The IH now applies, yielding U1 <: S1 and Γ, x:S1 ⊢ s2 : U2.
From U1 <: S1 and T1 <: U1, rule S-Trans gives T1 <: S1.
From Γ, x:S1 ⊢ s2 : U2 and U2 <: T2, rule T-Sub gives
Γ, x:S1 ⊢ s2 : T2, and we are done.

21

An Inversion Lemma for Typing

Lemma: If Γ ⊢ λx:S1.s2 : T1→T2, then T1 <: S1 and
Γ, x:S1 ⊢ s2 : T2.

Proof: By induction on typing derivations.

Case T-Abs: T1 = S1 T2 = S2 Γ, x:S1 ⊢ s2 : S2

Immediate.

Case T-Sub: Γ ⊢ λx:S1.s2 : U U <: T1→T2

By the subtyping inversion lemma, U = U1→U2, with T1 <: U1 and
U2 <: T2.

The IH now applies, yielding U1 <: S1 and Γ, x:S1 ⊢ s2 : U2.
From U1 <: S1 and T1 <: U1, rule S-Trans gives T1 <: S1.
From Γ, x:S1 ⊢ s2 : U2 and U2 <: T2, rule T-Sub gives
Γ, x:S1 ⊢ s2 : T2, and we are done.

21

An Inversion Lemma for Typing

Lemma: If Γ ⊢ λx:S1.s2 : T1→T2, then T1 <: S1 and
Γ, x:S1 ⊢ s2 : T2.

Proof: By induction on typing derivations.

Case T-Abs: T1 = S1 T2 = S2 Γ, x:S1 ⊢ s2 : S2

Immediate.

Case T-Sub: Γ ⊢ λx:S1.s2 : U U <: T1→T2

By the subtyping inversion lemma, U = U1→U2, with T1 <: U1 and
U2 <: T2.
The IH now applies, yielding U1 <: S1 and Γ, x:S1 ⊢ s2 : U2.

From U1 <: S1 and T1 <: U1, rule S-Trans gives T1 <: S1.
From Γ, x:S1 ⊢ s2 : U2 and U2 <: T2, rule T-Sub gives
Γ, x:S1 ⊢ s2 : T2, and we are done.

21

An Inversion Lemma for Typing

Lemma: If Γ ⊢ λx:S1.s2 : T1→T2, then T1 <: S1 and
Γ, x:S1 ⊢ s2 : T2.

Proof: By induction on typing derivations.

Case T-Abs: T1 = S1 T2 = S2 Γ, x:S1 ⊢ s2 : S2

Immediate.

Case T-Sub: Γ ⊢ λx:S1.s2 : U U <: T1→T2

By the subtyping inversion lemma, U = U1→U2, with T1 <: U1 and
U2 <: T2.
The IH now applies, yielding U1 <: S1 and Γ, x:S1 ⊢ s2 : U2.
From U1 <: S1 and T1 <: U1, rule S-Trans gives T1 <: S1.

From Γ, x:S1 ⊢ s2 : U2 and U2 <: T2, rule T-Sub gives
Γ, x:S1 ⊢ s2 : T2, and we are done.

21

An Inversion Lemma for Typing

Lemma: If Γ ⊢ λx:S1.s2 : T1→T2, then T1 <: S1 and
Γ, x:S1 ⊢ s2 : T2.

Proof: By induction on typing derivations.

Case T-Abs: T1 = S1 T2 = S2 Γ, x:S1 ⊢ s2 : S2

Immediate.

Case T-Sub: Γ ⊢ λx:S1.s2 : U U <: T1→T2

By the subtyping inversion lemma, U = U1→U2, with T1 <: U1 and
U2 <: T2.
The IH now applies, yielding U1 <: S1 and Γ, x:S1 ⊢ s2 : U2.
From U1 <: S1 and T1 <: U1, rule S-Trans gives T1 <: S1.
From Γ, x:S1 ⊢ s2 : U2 and U2 <: T2, rule T-Sub gives
Γ, x:S1 ⊢ s2 : T2, and we are done.

21

Preservation

Theorem: If Γ ⊢ t : T and t −→ t′, then Γ ⊢ t′ : T.

Proof: By induction on typing derivations.

22

Preservation — subsumption case

Case T-Sub: Γ ⊢ t : S S <: T

By the induction hypothesis, Γ ⊢ t′ : S. By T-Sub, Γ ⊢ t′ : T.

23

Preservation — subsumption case

Case T-Sub: Γ ⊢ t : S S <: T

By the induction hypothesis, Γ ⊢ t′ : S. By T-Sub, Γ ⊢ t′ : T.

23

Preservation — application case

Case T-App:
t = t1 t2 Γ ⊢ t1 : T11→T12 Γ ⊢ t2 : T11 T = T12

By the inversion lemma for evaluation, there are three rules by
which t −→ t′ can be derived: E-App1, E-App2, and
E-AppAbs. Proceed by cases.

Subcase E-App1: t1 −→ t′1 t′ = t′1 t2

The result follows from the induction hypothesis and T-App.

Γ ⊢ t1 : T11→T12 Γ ⊢ t2 : T11

Γ ⊢ t1 t2 : T12
(T-App)

t1 −→ t′1
t1 t2 −→ t′1 t2

(E-App1)

24

Preservation — application case

Case T-App:
t = t1 t2 Γ ⊢ t1 : T11→T12 Γ ⊢ t2 : T11 T = T12

By the inversion lemma for evaluation, there are three rules by
which t −→ t′ can be derived: E-App1, E-App2, and
E-AppAbs. Proceed by cases.

Subcase E-App1: t1 −→ t′1 t′ = t′1 t2

The result follows from the induction hypothesis and T-App.

Γ ⊢ t1 : T11→T12 Γ ⊢ t2 : T11

Γ ⊢ t1 t2 : T12
(T-App)

t1 −→ t′1
t1 t2 −→ t′1 t2

(E-App1)

24

Preservation — application case

Case T-App:
t = t1 t2 Γ ⊢ t1 : T11→T12 Γ ⊢ t2 : T11 T = T12

By the inversion lemma for evaluation, there are three rules by
which t −→ t′ can be derived: E-App1, E-App2, and
E-AppAbs. Proceed by cases.

Subcase E-App1: t1 −→ t′1 t′ = t′1 t2

The result follows from the induction hypothesis and T-App.

Γ ⊢ t1 : T11→T12 Γ ⊢ t2 : T11

Γ ⊢ t1 t2 : T12
(T-App)

t1 −→ t′1
t1 t2 −→ t′1 t2

(E-App1)

24

Case T-App (continued):
t = t1 t2 Γ ⊢ t1 : T11→T12 Γ ⊢ t2 : T11 T = T12

Subcase E-App2: t1 = v1 t2 −→ t′2 t′ = v1 t′2
Similar.

Γ ⊢ t1 : T11→T12 Γ ⊢ t2 : T11

Γ ⊢ t1 t2 : T12
(T-App)

t2 −→ t′2
v1 t2 −→ v1 t′2

(E-App2)

25

Case T-App (continued):
t = t1 t2 Γ ⊢ t1 : T11→T12 Γ ⊢ t2 : T11 T = T12

Subcase E-AppAbs:
t1 = λx:S11. t12 t2 = v2 t′ = [x 7→ v2]t12

By the earlier inversion lemma for the typing relation...

T11 <: S11
and Γ, x:S11 ⊢ t12 : T12.
By T-Sub, Γ ⊢ t2 : S11.
By the substitution lemma, Γ ⊢ t′ : T12, and we are done.

Γ ⊢ t1 : T11→T12 Γ ⊢ t2 : T11

Γ ⊢ t1 t2 : T12
(T-App)

(λx:T11.t12) v2 −→ [x 7→ v2]t12 (E-AppAbs)

26

Case T-App (continued):
t = t1 t2 Γ ⊢ t1 : T11→T12 Γ ⊢ t2 : T11 T = T12

Subcase E-AppAbs:
t1 = λx:S11. t12 t2 = v2 t′ = [x 7→ v2]t12

By the earlier inversion lemma for the typing relation... T11 <: S11
and Γ, x:S11 ⊢ t12 : T12.

By T-Sub, Γ ⊢ t2 : S11.
By the substitution lemma, Γ ⊢ t′ : T12, and we are done.

Γ ⊢ t1 : T11→T12 Γ ⊢ t2 : T11

Γ ⊢ t1 t2 : T12
(T-App)

(λx:T11.t12) v2 −→ [x 7→ v2]t12 (E-AppAbs)

26

Case T-App (continued):
t = t1 t2 Γ ⊢ t1 : T11→T12 Γ ⊢ t2 : T11 T = T12

Subcase E-AppAbs:
t1 = λx:S11. t12 t2 = v2 t′ = [x 7→ v2]t12

By the earlier inversion lemma for the typing relation... T11 <: S11
and Γ, x:S11 ⊢ t12 : T12.
By T-Sub, Γ ⊢ t2 : S11.

By the substitution lemma, Γ ⊢ t′ : T12, and we are done.

Γ ⊢ t1 : T11→T12 Γ ⊢ t2 : T11

Γ ⊢ t1 t2 : T12
(T-App)

(λx:T11.t12) v2 −→ [x 7→ v2]t12 (E-AppAbs)

26

Case T-App (continued):
t = t1 t2 Γ ⊢ t1 : T11→T12 Γ ⊢ t2 : T11 T = T12

Subcase E-AppAbs:
t1 = λx:S11. t12 t2 = v2 t′ = [x 7→ v2]t12

By the earlier inversion lemma for the typing relation... T11 <: S11
and Γ, x:S11 ⊢ t12 : T12.
By T-Sub, Γ ⊢ t2 : S11.
By the substitution lemma, Γ ⊢ t′ : T12, and we are done.

Γ ⊢ t1 : T11→T12 Γ ⊢ t2 : T11

Γ ⊢ t1 t2 : T12
(T-App)

(λx:T11.t12) v2 −→ [x 7→ v2]t12 (E-AppAbs)

26

Subtyping with Other Features

27

Ascription and Casting

Ordinary ascription:

Γ ⊢ t1 : T

Γ ⊢ t1 as T : T
(T-Ascribe)

v1 as T −→ v1 (E-Ascribe)

Casting (cf. Java):

Γ ⊢ t1 : S

Γ ⊢ t1 as T : T
(T-Cast)

⊢ v1 : T

v1 as T −→ v1
(E-Cast)

28

Ascription and Casting

Ordinary ascription:

Γ ⊢ t1 : T

Γ ⊢ t1 as T : T
(T-Ascribe)

v1 as T −→ v1 (E-Ascribe)

Casting (cf. Java):

Γ ⊢ t1 : S

Γ ⊢ t1 as T : T
(T-Cast)

⊢ v1 : T

v1 as T −→ v1
(E-Cast)

28

Subtyping and Variants

<li:Ti
i∈1..n> <: <li:Ti

i∈1..n+k> (S-VariantWidth)

for each i Si <: Ti

<li:Si
i∈1..n> <: <li:Ti

i∈1..n>
(S-VariantDepth)

<kj:Sj
j∈1..n> is a permutation of <li:Ti

i∈1..n>

<kj:Sj
j∈1..n> <: <li:Ti

i∈1..n>

(S-VariantPerm)

Γ ⊢ t1 : T1

Γ ⊢ <l1=t1> : <l1:T1>
(T-Variant)

29

Subtyping and Lists

S1 <: T1

List S1 <: List T1
(S-List)

I.e., List is a covariant type constructor.

30

Subtyping and References

S1 <: T1 T1 <: S1

Ref S1 <: Ref T1
(S-Ref)

I.e., Ref is not a covariant (nor a contravariant) type constructor.
Why?

▶ When a reference is read, the context expects a T1, so if S1 <:
T1 then an S1 is ok.

▶ When a reference is written, the context provides a T1 and if
the actual type of the reference is Ref S1, someone else may
use the T1 as an S1. So we need T1 <: S1.

31

Subtyping and References

S1 <: T1 T1 <: S1

Ref S1 <: Ref T1
(S-Ref)

I.e., Ref is not a covariant (nor a contravariant) type constructor.
Why?

▶ When a reference is read, the context expects a T1, so if S1 <:
T1 then an S1 is ok.

▶ When a reference is written, the context provides a T1 and if
the actual type of the reference is Ref S1, someone else may
use the T1 as an S1. So we need T1 <: S1.

31

Subtyping and References

S1 <: T1 T1 <: S1

Ref S1 <: Ref T1
(S-Ref)

I.e., Ref is not a covariant (nor a contravariant) type constructor.
Why?

▶ When a reference is read, the context expects a T1, so if S1 <:
T1 then an S1 is ok.

▶ When a reference is written, the context provides a T1 and if
the actual type of the reference is Ref S1, someone else may
use the T1 as an S1. So we need T1 <: S1.

31

Subtyping and Arrays

Similarly...

S1 <: T1 T1 <: S1

Array S1 <: Array T1
(S-Array)

S1 <: T1

Array S1 <: Array T1
(S-ArrayJava)

This is regarded (even by the Java designers) as a mistake in the
design.

32

Subtyping and Arrays

Similarly...

S1 <: T1 T1 <: S1

Array S1 <: Array T1
(S-Array)

S1 <: T1

Array S1 <: Array T1
(S-ArrayJava)

This is regarded (even by the Java designers) as a mistake in the
design.

32

References again

Observation: a value of type Ref T can be used in two different
ways: as a source for values of type T and as a sink for values of
type T.

Idea: Split Ref T into three parts:

▶ Source T: reference cell with “read capability”

▶ Sink T: reference cell with “write capability”

▶ Ref T: cell with both capabilities

33

References again

Observation: a value of type Ref T can be used in two different
ways: as a source for values of type T and as a sink for values of
type T.
Idea: Split Ref T into three parts:

▶ Source T: reference cell with “read capability”

▶ Sink T: reference cell with “write capability”

▶ Ref T: cell with both capabilities

33

Modified Typing Rules

Γ | Σ ⊢ t1 : Source T11

Γ | Σ ⊢ !t1 : T11
(T-Deref)

Γ | Σ ⊢ t1 : Sink T11 Γ | Σ ⊢ t2 : T11

Γ | Σ ⊢ t1:=t2 : Unit
(T-Assign)

34

Subtyping rules

S1 <: T1

Source S1 <: Source T1
(S-Source)

T1 <: S1

Sink S1 <: Sink T1
(S-Sink)

Ref T1 <: Source T1 (S-RefSource)

Ref T1 <: Sink T1 (S-RefSink)

35

Algorithmic Subtyping

36

Syntax-directed rules

In the simply typed lambda-calculus (without subtyping), each rule
can be “read from bottom to top” in a straightforward way.

Γ ⊢ t1 : T11→T12 Γ ⊢ t2 : T11

Γ ⊢ t1 t2 : T12
(T-App)

If we are given some Γ and some t of the form t1 t2, we can try
to find a type for t by

1. finding (recursively) a type for t1

2. checking that it has the form T11→T12

3. finding (recursively) a type for t2

4. checking that it is the same as T11

37

Technically, the reason this works is that we can divide the
“positions” of the typing relation into input positions (Γ and t)
and output positions (T).

▶ For the input positions, all metavariables appearing in the
premises also appear in the conclusion (so we can calculate
inputs to the “subgoals” from the subexpressions of inputs to
the main goal)

▶ For the output positions, all metavariables appearing in the
conclusions also appear in the premises (so we can calculate
outputs for the main goal from the outputs of the subgoals)

Γ ⊢ t1 : T11→T12 Γ ⊢ t2 : T11

Γ ⊢ t1 t2 : T12
(T-App)

38

Syntax-directed sets of rules

The second important point about the simply typed
lambda-calculus is that the set of typing rules is syntax-directed, in
the sense that, for every “input” Γ and t, there is only one rule
that can be used to derive typing statements involving t.
E.g., if t is an application, then we must proceed by trying to use
T-App. If we succeed, then we have found a type (indeed, the
unique type) for t. If it fails, then we know that t is not typable.

−→ no backtracking!

39

Non-syntax-directedness of typing

When we extend the system with subtyping, both aspects of
syntax-directedness get broken.

1. The set of typing rules now includes two rules that can be
used to give a type to terms of a given shape (the old one
plus T-Sub)

Γ ⊢ t : S S <: T

Γ ⊢ t : T
(T-Sub)

2. Worse yet, the new rule T-Sub itself is not syntax directed:
the inputs to the left-hand subgoal are exactly the same as
the inputs to the main goal!
(Hence, if we translated the typing rules naively into a
typechecking function, the case corresponding to T-Sub
would cause divergence.)

40

Non-syntax-directedness of subtyping

Moreover, the subtyping relation is not syntax directed either.

1. There are lots of ways to derive a given subtyping statement.

2. The transitivity rule

S <: U U <: T

S <: T
(S-Trans)

is badly non-syntax-directed: the premises contain a
metavariable (in an “input position”) that does not appear at
all in the conclusion.
To implement this rule naively, we’d have to guess a value for
U!

41

What to do?

1. Observation: We don’t need 1000 ways to prove a given
typing or subtyping statement — one is enough.
−→ Think more carefully about the typing and subtyping
systems to see where we can get rid of excess flexibility

2. Use the resulting intuitions to formulate new “algorithmic”
(i.e., syntax-directed) typing and subtyping relations

3. Prove that the algorithmic relations are “the same as” the
original ones in an appropriate sense.

42

What to do?

1. Observation: We don’t need 1000 ways to prove a given
typing or subtyping statement — one is enough.
−→ Think more carefully about the typing and subtyping
systems to see where we can get rid of excess flexibility

2. Use the resulting intuitions to formulate new “algorithmic”
(i.e., syntax-directed) typing and subtyping relations

3. Prove that the algorithmic relations are “the same as” the
original ones in an appropriate sense.

42

When is S-Trans necessary?

{x:Nat, y:{a:Nat, b:Nat}} <: {y:{a:Nat, b:Nat}}

We need all of S-RecPerm, S-RecWidth and S-RecDepth.

Combine them in a single, more powerful rule:

{li:Ti
i∈1..n} ⊆ {kj:Tj

j∈1..n} kj = li implies Sj <: Ti

{kj:Sj
j∈1..n} <: {li:Ti

i∈1..n}
(S-Rcd)

And prove that S <: T can be derived with S-Rcd but not
S-RecPerm, S-RecWidth, S-RecDepth if and only if it can
be derived without S-Rcd.
i.e., they are equivalent, and we can drop S-RecPerm,
S-RecWidth, S-RecDepth in favor of S-Rcd.

43

When is S-Trans necessary?

{x:Nat, y:{a:Nat, b:Nat}} <: {y:{a:Nat, b:Nat}}

We need all of S-RecPerm, S-RecWidth and S-RecDepth.
Combine them in a single, more powerful rule:

{li:Ti
i∈1..n} ⊆ {kj:Tj

j∈1..n} kj = li implies Sj <: Ti

{kj:Sj
j∈1..n} <: {li:Ti

i∈1..n}
(S-Rcd)

And prove that S <: T can be derived with S-Rcd but not
S-RecPerm, S-RecWidth, S-RecDepth if and only if it can
be derived without S-Rcd.
i.e., they are equivalent, and we can drop S-RecPerm,
S-RecWidth, S-RecDepth in favor of S-Rcd.

43

When is S-Trans necessary?

{x:Nat, y:{a:Nat, b:Nat}} <: {y:{a:Nat, b:Nat}}

We need all of S-RecPerm, S-RecWidth and S-RecDepth.
Combine them in a single, more powerful rule:

{li:Ti
i∈1..n} ⊆ {kj:Tj

j∈1..n} kj = li implies Sj <: Ti

{kj:Sj
j∈1..n} <: {li:Ti

i∈1..n}
(S-Rcd)

And prove that S <: T can be derived with S-Rcd but not
S-RecPerm, S-RecWidth, S-RecDepth if and only if it can
be derived without S-Rcd.
i.e., they are equivalent, and we can drop S-RecPerm,
S-RecWidth, S-RecDepth in favor of S-Rcd.

43

Removing S-Trans and S-Refl

It turns out S-Trans can then be removed without loss. Likewise,
S-Refl is redundant.
We can prove that

1. S <: S can be derived without using S-Refl.

2. If S <: T can be derived with S-Trans, it can also be derived
without S-Trans.

What if we have other types, such as Bool?
We need to add specific rules:

Bool <: Bool (S-Bool)

44

Removing S-Trans and S-Refl

It turns out S-Trans can then be removed without loss. Likewise,
S-Refl is redundant.
We can prove that

1. S <: S can be derived without using S-Refl.

2. If S <: T can be derived with S-Trans, it can also be derived
without S-Trans.

What if we have other types, such as Bool?

We need to add specific rules:

Bool <: Bool (S-Bool)

44

Removing S-Trans and S-Refl

It turns out S-Trans can then be removed without loss. Likewise,
S-Refl is redundant.
We can prove that

1. S <: S can be derived without using S-Refl.

2. If S <: T can be derived with S-Trans, it can also be derived
without S-Trans.

What if we have other types, such as Bool?
We need to add specific rules:

Bool <: Bool (S-Bool)

44

Algorithmic subtyping

{li:Ti
i∈1..n} ⊆ {kj:Tj

j∈1..n} kj = li implies ⊢▶ Sj <: Ti

⊢▶ {kj:Sj
j∈1..n} <: {li:Ti

i∈1..n}

(SA-Rcd)

⊢▶ T1 <: S1 ⊢▶ S2 <: T2

⊢▶ S1→S2 <: T1→T2
(SA-Arrow)

45

When is T-Sub necessary?

(λr:{x:Nat}. r.x) {x=0, y=1}

Combine T-Sub with T-App:

Γ ⊢ t1 : T11→T12 Γ ⊢ t2 : T2 T2 <: T11

Γ ⊢ t1 t2 : T12
(T-App)

For the lambda calculus with records and subtyping, that is the
only rule for which T-Sub is necessary. We can remove it.
Some extensions may require changes as well. For example, the
ascription needs a new T-Ascribe:

Γ ⊢ t1 : T1 T1 <: T

Γ ⊢ t1 as T : T
(T-Ascribe)

46

When is T-Sub necessary?

(λr:{x:Nat}. r.x) {x=0, y=1}

Combine T-Sub with T-App:

Γ ⊢ t1 : T11→T12 Γ ⊢ t2 : T2 T2 <: T11

Γ ⊢ t1 t2 : T12
(T-App)

For the lambda calculus with records and subtyping, that is the
only rule for which T-Sub is necessary. We can remove it.
Some extensions may require changes as well. For example, the
ascription needs a new T-Ascribe:

Γ ⊢ t1 : T1 T1 <: T

Γ ⊢ t1 as T : T
(T-Ascribe)

46

When is T-Sub necessary?

(λr:{x:Nat}. r.x) {x=0, y=1}

Combine T-Sub with T-App:

Γ ⊢ t1 : T11→T12 Γ ⊢ t2 : T2 T2 <: T11

Γ ⊢ t1 t2 : T12
(T-App)

For the lambda calculus with records and subtyping, that is the
only rule for which T-Sub is necessary. We can remove it.

Some extensions may require changes as well. For example, the
ascription needs a new T-Ascribe:

Γ ⊢ t1 : T1 T1 <: T

Γ ⊢ t1 as T : T
(T-Ascribe)

46

When is T-Sub necessary?

(λr:{x:Nat}. r.x) {x=0, y=1}

Combine T-Sub with T-App:

Γ ⊢ t1 : T11→T12 Γ ⊢ t2 : T2 T2 <: T11

Γ ⊢ t1 t2 : T12
(T-App)

For the lambda calculus with records and subtyping, that is the
only rule for which T-Sub is necessary. We can remove it.
Some extensions may require changes as well. For example, the
ascription needs a new T-Ascribe:

Γ ⊢ t1 : T1 T1 <: T

Γ ⊢ t1 as T : T
(T-Ascribe)

46

Algorithmic typing

x : T ∈ Γ

Γ ⊢▶ x : T
(TA-Var)

Γ, x : T1 ⊢▶ t2 : T2

Γ ⊢▶ λx : T1.t2 : T1→T2
(TA-Abs)

Γ ⊢▶ t1 : T11→T12 Γ ⊢▶ t2 : T2 ⊢▶ T2 <: T11

Γ ⊢▶ t1 t2 : T12
(TA-App)

for each i Γ ⊢▶ ti : Ti

Γ ⊢▶ {l1=t1, ..., ln=tn} : {l1 : T1, ..., ln : Tn}

(TA-Rcd)

Γ ⊢▶ t1 : {l1 : T1, ..., ln : Tn}

Γ ⊢▶ ti.li : Ti
(TA-Proj)

47

Soundness and Completeness of algorithmic typing

1. Soundness: if Γ ⊢▶ t : T, then Γ ⊢ t : T.

2. Completeness: if Γ ⊢ t : T, then ∃S <: T such that Γ ⊢▶ t : S.

48

Branches

Γ ⊢ t1 : Bool Γ ⊢ t2 : T Γ ⊢ t3 : T

Γ ⊢ if t1 then t2 else t3 : T
(T-If)

Merging T-Sub

Γ ⊢ t1 : Bool Γ ⊢ t2 : T2 Γ ⊢ t3 : T3
T2 <: T T3 <: T

Γ ⊢ if t1 then t2 else t3 : T
(T-If)

What is T?

49

Branches

Γ ⊢ t1 : Bool Γ ⊢ t2 : T Γ ⊢ t3 : T

Γ ⊢ if t1 then t2 else t3 : T
(T-If)

Merging T-Sub

Γ ⊢ t1 : Bool Γ ⊢ t2 : T2 Γ ⊢ t3 : T3
T2 <: T T3 <: T

Γ ⊢ if t1 then t2 else t3 : T
(T-If)

What is T?

49

Branches

Γ ⊢ t1 : Bool Γ ⊢ t2 : T Γ ⊢ t3 : T

Γ ⊢ if t1 then t2 else t3 : T
(T-If)

Merging T-Sub

Γ ⊢ t1 : Bool Γ ⊢ t2 : T2 Γ ⊢ t3 : T3
T2 <: T T3 <: T

Γ ⊢ if t1 then t2 else t3 : T
(T-If)

What is T?

49

Joins

Definition: a type J is called a join of a pair of type S and T,
written S ∨ T = J, if

1. S <: J and T <: J, and

2. for all types U, if S <: U and T <: U, then J <: U.

Example:

{x:Nat, y:Bool} ∨ {y:Bool, z:Bool} = {y:Bool}

{x:Nat, y:Bool} ∨ {y:Bool, x:Nat} = ?

50

Joins

Definition: a type J is called a join of a pair of type S and T,
written S ∨ T = J, if

1. S <: J and T <: J, and

2. for all types U, if S <: U and T <: U, then J <: U.

Example:

{x:Nat, y:Bool} ∨ {y:Bool, z:Bool} = {y:Bool}

{x:Nat, y:Bool} ∨ {y:Bool, x:Nat} = ?

50

Algorithmic typing for branches

Γ ⊢▶ t1 : Bool Γ ⊢▶ t2 : T2 Γ ⊢▶ t3 : T3
T2 ∨ T3 = T

Γ ⊢▶ if t1 then t2 else t3 : T
(T-If)

51

Conclusion

52

Polymorphism

Subtyping is a kind of polymorphism, which in Greek means
“having many forms”.
A polymorphic function may be applied to many different types of
data.

Varieties of polymorphism:

▶ Parametric polymorphism (ML-style)

▶ Subtype polymorphism (OO-style)

▶ Ad-hoc polymorphism (overloading)

53

