Foundations of Software
Spring 2025

Week 10

Subtyping

Motivation

With our usual typing rule for applications

M=ty @ T11—To2 M=ty T1
M=t1 t2: Ti2

the term
(Ar:{x:Nat}. r.x) {x=0,y=1}

is not well typed.

(T-AppP)

Motivation
With our usual typing rule for applications

Mty T11—T1o Mty T

MEty to: Tio

(T-App)

the term
(Or:{x:Nat}. r.x) {x=0,y=1}

is not well typed.

But this is silly: all we're doing is passing the function a better
argument than it needs.

Similarly, in object-oriented languages, we want to be able to
define hierarchies of classes, with classes lower in the hierarchy
having richer interfaces than their ancestors higher in the hierarchy,
and use instances of richer classes in situations where one of their
ancestors are expected.

Subsumption

We achieve the effect we want by:
1. a subtyping relation between types, written S <: T

2. a rule of subsumption stating that, if S <: T, then any value of
type S can also be regarded as having type T

Example

We will define subtyping between record types so that, for example,

{x:Nat, y:Nat} <: {x:Nat}

So, by subsumption,

Fr=t:s S< T
(T-SuB)
M=t :T
I-REC S-RepWiDT
F {x=0,y=1} : {x:Nat, y:Nat} {x:Nat, y:Nat} < {x:Nat}
I-SuB
F{x=0,y=1} : {x:Nat}
and hence
(Ar:{x:Nat}. r.x) {x=0,y=1}
is well typed.
The Subtype Relation: Records The Subtype Relation: Records
“Width subtyping” (forgetting fields on the right): Permutation of fields:
{1;:T; '€k} < {1;:T; €} (S—RCDWIDTH) {kjlsj J€1-n} is 3 permutation of {1;:T; "€*"}

Intuition: {x:Nat} is the type of all records with at least a
numeric x field.

Note that the record type with more fields is a subtype of the
record type with fewer fields.

Reason: the type with more fields places a stronger constraint on
values, so it describes fewer values.

(S-RCDPERM)
{kJ'ZSj Jelny <& {1,‘:T,‘ i€ty

By using S-RCDPERM together with S-RCDWIDTH and
S-TRANS allows us to drop arbitrary fields within records.

The Subtype Relation: Records
"Depth subtyping” within fields:

foreachi S;< T;
{1;:8; €1} < {1;:T; €3

(S-RcpDEPTH)

The types of individual fields may change.

Example

S-RepWinTH ———— S-RcoWinTn

{m:Nat} <: {}

{x:{a:Nat,b:Nat},y:{m:Nat}} < {x:{a:Nat},y:{}}

{a:Nat,b:Nat} <: {a:Nat}

S-RcDDEPTH

8 9
Variations The Subtype Relation: Arrow types
Real languages often choose not to adopt all of these record
subtyping rules. For example, in Java, hi<s S<h (S-ARROW)
> A subclass may not change the argument types of a method 51782 < Ti=Te
s superclass. (i-e., no depth subtyp.lng)]) Note the order of T; and S; in the first premise. The subtype
»> Each class has just one superclass (“single inheritance” of relation is contravariant in the left-hand sides of arrows and
classes) covariant in the right-hand sides.
— each class member (field or method) can be assigned o)
a single index, adding new indices “on the right” as more Intuition: if we have a function f of type S;—S», then we know
members are added in subclasses that £ accepts elements of type Si; clearly, £ will also accept
(i.e., no permutation for classes) elements of any subtype T; of S;. The type of £ also tells us that
it returns elements of type So; we can also view these results
> A class may implement multiple interfaces (“multiple belonging to any supertype T» of S,. That is, any function £ of
inheritance” of interfaces) type S;—S» can also be viewed as having type T;—Tos.
l.e., permutation is allowed for interfaces.
10 11

The Subtype Relation: Top

It is convenient to have a type that is a supertype of every type.

The Subtype Relation: General rules

We introduce a new type constant Top, plus a rule that makes Top 5<8 (S-REFL)
a maximum element of the subtype relation.
S<U U< T ST
S <: Top (S-Top) S<T (S-TraNs)
Cf. Object in Java (more or less) or AnyKind in Scala.
12 13
Subtype relation Aside: Structural vs. declared subtyping
S<'s (S-REFL) The subtype relation we have defined is structural: We decide
whether S is a subtype of T by examining the structure of S and T.
S<U U< T
S< T (S-TRrANS) By contrast, the subtype relation in most OO languages (e.g.,

{1;:T; Sty < {150 T <" (S-ReDWIDTH)

foreach i S; < T;
{1,’:8,’ i€l. n} <: {1,:T, i€l. n}

(S-RcpDEPTH)

{k;:S; /<""} is a permutation of {1;:T; "¢*"
{kjsj jel n} <: {li :T,‘ i€l n}

(S-RcpPERM)

T1<: Sy Sy < Tp (S ARROW)
S1—8y <: T1—T»
S <: Top (S-Top)

14

Java) is explicitly declared: S is a subtype of T only if the
programmer has stated that it should be.

There are pragmatic arguments for both.

For the moment, we'll concentrate on structural subtyping, which
is the more fundamental of the two. (It is sound to declare S to be
a subtype of T only when S is structurally a subtype of T.)

We'll come back to declared subtyping when we talk about
Featherweight Java.

15

Properties of Subtyping

Questions (1)

Clicker question: How many different T's are there such that
F{a=0} : T?

A. there is no such T

B. there is exactly one such T

C. thereare n € N, n > 1 such T's

D. there are infinitely many such T's

URL: ttpoll.eu
Session ID: cs452

16 17
Questions (2) Safety
Clicker question: Given I' = t; {a=0} : T, what is the last typing Statements of progress and preservation theorems are unchanged
rule used in the typing derivation tree? from A_.
A. T-REC Proofs become a bit more involved, because the typing relation is
B T-App no longer syntax directed.
C. T-SUB Given a derivation, we don't always know what rule was used in
D. there are several correct answers the last step. The rule T-SUB could appear anywhere.
E. we do not know FEt:s ST
- (T-SuB)
URL: ttpoll.eu FEe:T
Session ID: cs452
18 19

An Inversion Lemma for Subtyping

Lemma: If U <: T;—T,, then U has the form U; —U,, with Ty <: Uy
and U, <: To.

Proof: By induction on subtyping derivations.

An Inversion Lemma for Subtyping
Lemma: If U <: T;—T,, then U has the form U;—Us, with T; <: Uy
and U, <: Tp.
Proof: By induction on subtyping derivations.

Case S-ARROW: U=U1—Up Ty < Up Up < Ty

20 20
An Inversion Lemma for Subtyping An Inversion Lemma for Subtyping
Lemma: If U <: T;—T,, then U has the form U; —U,, with Ty <: Uy Lemma: If U <: T;—T,, then U has the form U;—Us, with T; <: Uy
and Uy <: To. and Uy < To.
Proof: By induction on subtyping derivations. Proof: By induction on subtyping derivations.
Case S-ARROW: U=U;—Us T, <t Uy Us <: Tp Case S-ARROW: U=U;—0U Ty < Uy Uy <: To
Immediate. Immediate.
Case S-REFL: U=T1—Ts
20 20

An Inversion Lemma for Subtyping

Lemma: If U <: T;—T,, then U has the form U; —U,, with Ty <: Uy
and U, <: To.

Proof: By induction on subtyping derivations.

Case S-ARROW: U =U;—-U; T; < Uy Uy <: To
Immediate.
Case S-REFL: U=T1—Ts

By S-REFL (twice), T1 <: T; and T» <: Ty, as required.

An

Inversion Lemma for Subtyping

Lemma: If U <: T;—T,, then U has the form U;—Us, with T; <: Uy
and U, <: Tp.

Proof: By induction on subtyping derivations.

Case S-ARROW: U="U;—Up T <: Uy Up <: To
Immediate.

Case S-REFL: U=T1—Ts

By S-REFL (twice), T1 <: T; and T, <: Ty, as required.

Case S-TRANS: U<:w W< Ti—To

20 20
An Inversion Lemma for Subtyping An Inversion Lemma for Subtyping
Lemma: If U <: T;—T,, then U has the form U; —U,, with Ty <: Uy Lemma: If U <: T;{—T,, then U has the form U;—U,, with T; <: Uy
and Up <: Ts. and Up <: To.
Proof: By induction on subtyping derivations. Proof: By induction on subtyping derivations.
Case S-ARROW: U="U;—0Up T <t Uq U < Tp Case S-ARROW: U=U;1—Up Ty <t Up Up <: Tp
Immediate. Immediate.
Case S-REFL: U=T1—T» Case S-REFL: U=T1—Ts
By S-REFL (twice), T <: T1 and T» <: Ty, as required. By S-REFL (twice), T1 <: T; and T, <: T», as required.
Case S-TRANS: U<t w W< Ti—To Case S-TRANS: U<t w W< Ty—To
Applying the IH to the second subderivation, Applying the IH to the second subderivation, we find that W has
the form W;—W,, with T < Wy and Wy <: To.
20 20

An Inversion Lemma for Subtyping An Inversion Lemma for Subtyping

Lemma: If U <: T;—T,, then U has the form U; —U,, with Ty <: Uy Lemma: If U <: T;—T,, then U has the form U;—Us, with T; <: Uy
and U, <: To. and U, <: Tp.
Proof: By induction on subtyping derivations. Proof: By induction on subtyping derivations.
Case S-ARROW: U="U;—Us T1 < U Uy <: To Case S-ARROW: U="U;—Up T <: Uy Up <: To
Immediate. Immediate.
Case S-REFL: U=T1—Ts Case S-REFL: U=T1—Ts
By S-REFL (twice), T1 <: T; and T» <: Ty, as required. By S-REFL (twice), T1 <: T; and T, <: Ty, as required.
Case S-TRANS: U< w W<: T1—To Case S-TRANS: U< W W< Ti—To
Applying the IH to the second subderivation, we find that W has Applying the IH to the second subderivation, we find that W has
the form W;—Wo, with T; <: Wy and W, <: T». Now the IH applies the form Wy —Wy,, with T; <: Wy and Wy <: To. Now the IH applies
again (to the first subderivation, which became U <: W;—W>), again (to the first subderivation, which became U <: W;—1>),
telling us that U has the form U;—Us, with Wy <: U; and Uy <: Wo. telling us that U has the form U;—U,, with Wy <: Uy and Uy <t Wp.

By S-TRANS, T; <: Uy, and, by S-TRANS again, U, <: Ty, as

required.

20 20
An Inversion Lemma for Typing An Inversion Lemma for Typing

Lemma: If [= Ax:S1.s5 : T{—T», then Ty < S; and Lemma: If [= Ax:S1.s, : T1—T», then T; <: S; and
r‘x:51FSQ:T2. FXZSl}*SQ :T2.
Proof: By induction on typing derivations. Proof: By induction on typing derivations.

Case T-ABs: T1 =851 To = So I x:81Fsy: S

21 21

An Inversion Lemma for Typing

Lemma: If I - Ax:S87.s5 ¢
F, x:31 I so & To.
Proof: By induction on typing derivations.

T1—Tp, then Ty <: Sy and

Case T-ABs: T =951 Tp = 9S> F, x:81F sy : 8o
Immediate.
Case T-SuB: FAx:S1.82: U U< T1—T

An

Inversion Lemma for Typing

Lemma: If [A\x:81.8p ¢
I', x:51 - sp @ To.
Proof: By induction on typing derivations.

T1—Tp, then Ty < S; and

Case T-ABs: T1 =5 Ty =37 r, x:S1 F So & Sp
Immediate.
Case T-SUB: FAx:81.80 : U U<: T1—Ts

By the subtyping inversion lemma, U = U;—U», with T; <: U; and
Uy <: To.

21 21
An Inversion Lemma for Typing An Inversion Lemma for Typing
Lemma: If [= Ax:S1.s5 : T{—T», then Ty < S; and Lemma: If [= Ax:S1.s, : T1—T», then T; <: S; and
[x:S1F sy : To. [x:S1Fsy: To.
Proof: By induction on typing derivations. Proof: By induction on typing derivations.
Case T-ABs: T =5; Tr =9 I', x:81F sy S Case T-ABs: T1 =951 Ty = So I x:81Fsy:S)
Immediate. Immediate.
Case T-SuB: M Ax:81.80: U U< T1—To Case T-SuUB: M Ax:81.80: U U< T1—Ts
By the subtyping inversion lemma, U = U;—U,, with Ty <: U; and By the subtyping inversion lemma, U = U;—U,, with T; <: U; and
Up <: T». Up <t To.
The IH now applies, yielding Uy <: Sy and ', x:51 F sp @ Us. The IH now applies, yielding U; <: Sy and ', x:S1 F so © Us.
From U; <: 81 and Ty <: Uy, rule S-TRANS gives T; <: Sj.
21 21

An Inversion Lemma for Typing

Lemma: If I = Ax:81.sp @ Ty—To, then Ty <: S; and
F, x:31 I so & To.

Proof: By induction on typing derivations.
Case T-ABs: T =951 Tp = 9S>
Immediate.

Case T-SuB: FAx:S1.82: U U< T1—T

By the subtyping inversion lemma, U = U;—U,, with T; <: U; and
Up <: To.

The IH now applies, yielding U; <: S; and [, x:S; 55 @ Us.
From Uy <: S and Ty <: Uy, rule S-TRANS gives T; <: Si.

From I', x:S1 = so : Uy and Uy < Ty, rule T-SUB gives

[, x:51F s> : Ty, and we are done.

F,x:31F52 : Sp

Preservation
Theorem: If T+t : Tand t — t/, then [-t/ : T.

Proof: By induction on typing derivations.

21 22
Preservation — subsumption case Preservation — subsumption case
Case T-SuB: F=t:s S< T Case T-SuB: F=t:8 S< T
By the induction hypothesis, [-t/ : S. By T-SuB, [-t/ : T.
23 23

Preservation — application case

Case T-App:

t=1t1 t2 M=ty : T11 T =Ty
By the inversion lemma for evaluation, there are three rules by
which t — t/ can be derived: E-AprP1, E-APP2, and
E-ApPpPABS. Proceed by cases.

M=ty : T11—T12

Preservation — application case

Case T-App:

t=t; to M=t1 @ T11—Ti2 Mty Top T="Ti
By the inversion lemma for evaluation, there are three rules by
which t — t’ can be derived: E-APP1, E-APP2, and
E-APPABS. Proceed by cases.
Subcase E-AppP1:
The result follows from the induction hypothesis and T-APpP.

t] — t) t' =1t t2

M= t1 : T11—Tr2 M= to @ T11 (T-APP)
FFty tr @ T
24 24
Preservation — application case Case T-APP (CONTINUED):
t=1t1 to Mty T11—=To MEty @ T T="Tio
Case T-App: , , ,
t=1t1 t Mty : T1i—To Mty @ Ti1 T =T Subcase E-ApPpP2: ti1=v1 to — t) t=wv1t;
By the inversion lemma for evaluation, there are three rules by Similar.
which t — t/ can be derived: E-ApPP1, E-APP2, and
E-ApPABS. Proceed by cases.
Subcase E-ApPP1l: t; — t t' =1t t
The result follows from the induction hypothesis and T-APpp. Mty : T11—Ti2 Mty Ty (T-App)
[Ft1 tr: T
M=ty @ Ty —T M=ty : T
e N (T-Ave) e T (E-ApP2)
Mty t2: Ti2 vt /]
1 to » vy th
t] — t)
(E-Appr1)

t1 to —t] t2

24

25

Case T-APP (CONTINUED):

Case T-APP (CONTINUED):

t=1t; to Mty T11—Ti2 Mty @ T1a T="Tio t=1t1 to Nty T11—Tio Mty @ T T="Tio
Subcase E-APPABSs: Subcase E-APPABS:
t1 = Ax:S11. t1o tr =V t' = [X — Vg]tlz t1 = Ax:S11. t1o ty = Vo t' = [X — V2]t12
By the earlier inversion lemma for the typing relation... By the earlier inversion lemma for the typing relation... T11 <: Sy
and I, x:S11 F t12 ¢ Tio.
26 26
Case T-APP (CONTINUED): Case T-APP (CONTINUED):
t=1t1 t2 MN=t1 : T11—T2 Mty Tp T="Ti2 t=t1 t2 MNEty: T11—T2 MEty @ T T="Tio
Subcase E-APPABS: Subcase E-APPABS:
t1 = Ax:S11. t12 tr =y t = [X = V2]t12 t; = Ax:S11. t12 to = t = [X = V2]t12
By the earlier inversion lemma for the typing relation... T;; < Sy By the earlier inversion lemma for the typing relation... T1; <: Sq
and [, x:S11 F t1o : Tio. and I, x:S11 F t1o : T1o.
By T-Sus, I -+ to ¢ S11. By T-Sus, [-+ to : S11.
By the substitution lemma, I =t/ : Ty, and we are done.
M= t1 @ T11—To2 [+ to : T11
(T-App)
FEty to: T
(Ax:Tq11.t12) vo —> [X = V2]t12 (E—APPABS)
26 26

Subtyping with Other Features

Ascription and Casting

Ordinary ascription:

M=ty : T
[ty as T: T

vias T— vy

(T-ASCRIBE)

(E-ASCRIBE)

27 28
Ascription and Casting Subtyping and Variants
Ordinary ascription:
<L T /S0m> < <1 Ty etk (S-VARIANTWIDTH)
lEty: T (T A)
B T — -ASCRIBE .
-t; as T: T foreachi Si< T (S-VARIANTDEPTH)
<1;:S; €n> < <1 Ty >
vi as T— v (E-ASCRIBE)
<k;:8;/<!~"> is a permutation of <1;:T; "¢*">
Casting (cf. Java): <18 <& <1:T; R0
Mty .S (S-VARIANTPERM)
- (T-CasT)
Fty as T: T M=ty : Ty
(T-VARIANT)
[+ <1l1=t1> : <11:T1>
= vy T
—— (E-CasT)
vi as T— vy
28 29

Subtyping and Lists

S1 < Ty

Subtyping and References

S1< Ty T <t Sq
- (S-List) - (S-REF)
List S; < List T; Ref S; <: Ref Ty

l.e., List is a covariant type constructor. l.e., Ref is not a covariant (nor a contravariant) type constructor.
Why?
30 31
Subtyping and References Subtyping and References
S1 <t Ty T1<: Sy S1<t Ty T < 81
(S-REF)

Ref S; <t Ref T;

l.e., Ref is not a covariant (nor a contravariant) type constructor.
Why?

» When a reference is read, the context expects a Ty, so if S; <:
Tq then an S; is ok.

31

- (S-REF)
Ref S;<: Ref T;

l.e., Ref is not a covariant (nor a contravariant) type constructor.
Why?
» When a reference is read, the context expects a Ty, so if S; <t
Ty then an S; is ok.

» When a reference is written, the context provides a T; and if

the actual type of the reference is Ref S, someone else may
use the T; as an S;. So we need T; <: S;.

31

Subtyping and Arrays

Subtyping and Arrays

Similarly... Similarly...
S1 < Ty T1 < 8 S1< Ty Ty <0 Sq
(S-ARRAY) (S-ARRAY)
Array S; <: Array Tp Array S; <: Array Tp
S1 < Ty
(S-ARRAYJAVA)
Array S; < Array T;
This is regarded (even by the Java designers) as a mistake in the
design.
32 32
References again References again
Observation: a value of type Ref T can be used in two different Observation: a value of type Ref T can be used in two different
ways: as a source for values of type T and as a sink for values of ways: as a source for values of type T and as a sink for values of
type T. type T.
Idea: Split Ref T into three parts:
» Source T: reference cell with “read capability”
» Sink T: reference cell with “write capability”
» Ref T: cell with both capabilities
33 33

Modified Typing Rules

| XFt; : Source Ty
I—\ZF!tlzTu

(T-DEREF)

F\Zktl:Sinan r‘zktgiTn(

T-ASSIGN)
M XFty:=ty : Unit

34

Subtyping rules

S1 < Ty
(S-SOURCE)
Source S; <: Source T;
T <: 8
(S-SINk)

Sink Sp <: Sink T
Ref Ty <: Source T; (S-REFSOURCE)

Ref T; <: Sink T (S-REFSINK)

35

Algorithmic Subtyping

36

Syntax-directed rules

In the simply typed lambda-calculus (without subtyping), each rule
can be “read from bottom to top” in a straightforward way.

MEty: T11—T12 MEto: T

FEty to: Too

(T-AppP)

If we are given some I and some t of the form t; t,, we can try
to find a type for t by

1. finding (recursively) a type for t;

2. checking that it has the form T11—T1»
3. finding (recursively) a type for t»

4. checking that it is the same as T1;

37

Technically, the reason this works is that we can divide the
“positions” of the typing relation into input positions (I and t)
and output positions (T).

» For the input positions, all metavariables appearing in the
premises also appear in the conclusion (so we can calculate
inputs to the “subgoals” from the subexpressions of inputs to
the main goal)

> For the output positions, all metavariables appearing in the
conclusions also appear in the premises (so we can calculate
outputs for the main goal from the outputs of the subgoals)

M=ty : T11—T12 M=ty @ T11
Mty to @ Tio

(T-ApP)

Syntax-directed sets of rules

The second important point about the simply typed
lambda-calculus is that the set of typing rules is syntax-directed, in
the sense that, for every “input” I and t, there is only one rule
that can be used to derive typing statements involving t.

E.g., if t is an application, then we must proceed by trying to use
T-APP. If we succeed, then we have found a type (indeed, the
unique type) for t. If it fails, then we know that t is not typable.

— no backtracking!

38 39
Non-syntax-directedness of typing Non-syntax-directedness of subtyping
When we extend the system with subtyping, both aspects of Moreover, the subtyping relation is not syntax directed either.
syntax-directedness get broken. 1. There are Jots of ways to derive a given subtyping statement.
1. The set of typing rules now includes two rules that can be 2. The transitivity rule
used to give a type to terms of a given shape (the old one
plus T-SUB) S<:U UT
(S-TrANS)
sS<T
Fr=t:s S<: T
(T-SuB)
M=t :T is badly non-syntax-directed: the premises contain a
metavariable (in an “input position”) that does not appear at
2. Worse yet, the new rule T-SUB itself is not syntax directed: all in the conclusion.
the inputs to the left-hand subgoal are exactly the same as To implement this rule naively, we'd have to guess a value for
the inputs to the main goal! ul
(Hence, if we translated the typing rules naively into a
typechecking function, the case corresponding to T-SUB
would cause divergence.)
40 41

What to do?

What to do?

1. Observation: We don't need 1000 ways to prove a given
typing or subtyping statement — one is enough.
— Think more carefully about the typing and subtyping
systems to see where we can get rid of excess flexibility

2. Use the resulting intuitions to formulate new “algorithmic”
(i.e., syntax-directed) typing and subtyping relations

3. Prove that the algorithmic relations are “the same as” the
original ones in an appropriate sense.

42 42
When is S-TRANS necessary? When is S-TRANS necessary?
{x:Nat, y:{a:Nat, b:Nat}} <: {y:{a:Nat, b:Nat}} {x:Nat, y:{a:Nat, b:Nat}} <: {y:{a:Nat, b:Natl}}
We need all of S-RECPERM, S-RECWIDTH and S-RECDEPTH. We need all of S-RECPERM, S-RECWIDTH and S-RECDEPTH.
Combine them in a single, more powerful rule:
{1;:T; €17} C {kj:T‘{/H LA :’71,- implies S; <: T; (S-Rep)
{kj:Sj Jel.n} <. {1;:T; f€l.n}
43 43

When is S-TRANS necessary?

{x:Nat, y:{a:Nat, b:Nat}} <: {y:{a:Nat, b:Nat}}

We need all of S-RECPERM, S-RECWIDTH and S-RECDEPTH.

Combine them in a single, more powerful rule:

{1;:T; <0 C {x;: T /<) kj = 1; implies §; <: T;
{kj:S/ JE€1 n} <: {I[ZT,' i€l n}

(S-Rep)

And prove that S <: T can be derived with S-RCD but not
S-RECPERM, S-RECWIDTH, S-RECDEPTH if and only if it can
be derived without S-RcD.

i.e., they are equivalent, and we can drop S-RECPERM,
S-RECWIDTH, S-RECDEPTH in favor of S-RcD.

Removing S-TRANS and S-REFL

It turns out S-TRANS can then be removed without loss. Likewise,
S-REFL is redundant.
We can prove that
1. S <: S can be derived without using S-REFL.
2. If S <: T can be derived with S-TRANS, it can also be derived
without S-TRANS.

43 44
Removing S-TRANS and S-REFL Removing S-TRANS and S-REFL
It turns out S-TRANS can then be removed without loss. Likewise, It turns out S-TRANS can then be removed without loss. Likewise,
S-REFL is redundant. S-REFL is redundant.
We can prove that We can prove that
1. S <: S can be derived without using S-REFL. 1. S <: S can be derived without using S-REFL.
2. If S < T can be derived with S-TRANS, it can also be derived 2. If S < T can be derived with S-TRANS, it can also be derived
without S-TRANS. without S-TRANS.
What if we have other types, such as Bool? What if we have other types, such as Bool?
We need to add specific rules:
Bool <: Bool (S-Boor)
44 44

Algorithmic subtyping

{1,‘:T,‘ €1y - {kj:Tj JeLny kj =1; implies id Sj < T;
> {kj:Sj jerny <o {1;:T; €11}

When is T-SUB necessary?

(Ar:{x:Nat}. r.x) {x=0, y=1}

(SA-Rcp)
B T;<: S S, < T
: ! 2 2 (SA-ARROW)
P 81—8y <t T1—To
45 46
When is T-SUB necessary? When is T-SUB necessary?
(Ar:{x:Nat}. r.x) {x=0, y=1} (Ar:{x:Nat}. r.x) {x=0, y=1}
Combine T-SuUB with T-APpp: Combine T-SUB with T-App:
M-ty T1n—T Mty T Tp<: T M=ty T11—T M=ty T Tp<: T
1 Tu—=To 2:Ts 2 11 (T-App) 1 Tui—=Ti2 2: T2 2 11 (T-App)
Fty tr: T [Fty to: Tio
For the lambda calculus with records and subtyping, that is the
only rule for which T-SUB is necessary. We can remove it.
46 46

When is T-SUB necessary?

Algorithmic typing

:Tel
(Ar:{x:Nat}. r.x) {x=0, y=1} ?%’761“ (TA-VAR)
X :
Combine T-SuB with T-App: Mx:TiPty:To (TA-Aps)
-ABs
FEty: Ty oTh Mty Ty Ty < Ty (1-Are) e Ax Tty : Ti—=Ts
-App
FEty t2: T Fbty: T11—=To [Pty : Ty B Ty < Ty1 (TA—APP)
For the lambda calculus with records and subtyping, that is the Pt tr: T
only rule for which T-SUB is necessary. We can remove it. foreachi Tk t::T:
Some extensions may require changes as well. For example, the T - - l. I -
ascription needs a new T-ASCRIBE: {11=t1, o Lp=tp}r i {1 0 Ty, - 1 (.’ITA}RCD)
FTEty:Ty Ti< T (T-ASCRIBE) Mty : {11 0Ty, ooy 1n 0 Ty}
-ty as T: T 1T (TA-ProJ)
R B 1
46 47
Soundness and Completeness of algorithmic typing Branches
1. Soundness: if [t : T, then -t : T. MFt; : Bool FTht,:T Mhts:T
2. Completeness: if '+t : T, then 39S <: T such that ' bt : S. [if t; then t, else t3 : T (T-Tr)
48 49

Branches

Branches

'ty : Bool Mty : T lEt3:T 1ty : Bool 'ty : T M=t3:T
(T-Ir) (T-Ir)
[Hif t; then t, else t3: T -if t; then t; else t3 : T
Merging T-SuB Merging T-SuB
'ty : Bool M=ty : To MEt3: T3 ['F+ty : Bool M-ty @ To M-t3: T3
To <t T T3<: T Tr <t T T3<: T
- (T-Ir) - (T-1Ir)
[Fif t; then t; else t3: T if t; then tp else t3 : T
What is T?
49 49
Joins Joins

Definition: a type J is called a join of a pair of type S and T,
written SV T = J, if

1. S< Jand T<: J, and
2. for all types U, if S <: U and T <: U, then J <: U.
Example:

{x:Nat, y:Bool} V {y:Bool, z:Bool} = {y:Bool}

50

Definition: a type J is called a join of a pair of type S and T,
written SV T = J, if

1. s< Jand T<: J, and
2. for all types U, if S<: Uand T <: U, then J <: U.
Example:

{x:Nat, y:Bool} V {y:Bool, z:Bool} = {y:Bool}

{x:Nat, y:Bool} V {y:Bool, x:Nat} =7

50

Algorithmic typing for branches

[Pty : Bool ety : Ty F>t3: T3
ToVT3 =T
[P if t; then t, else t3 : T

(T-Ir)

51

Conclusion

52

Polymorphism

Subtyping is a kind of polymorphism, which in Greek means
“having many forms”.
A polymorphic function may be applied to many different types of
data.
Varieties of polymorphism:

» Parametric polymorphism (ML-style)

» Subtype polymorphism (OO-style)

» Ad-hoc polymorphism (overloading)

53

