Foundations of Software
Spring 2025

Week 10

Subtyping

Motivation

With our usual typing rule for applications

=1t1 : T11—T1o 1ty : T3

(T-Aprp)
[Ft1 to @ Too
the term
(Ar:{x:Nat}. r.x) {x=0,y=1}
is not well typed.
Motivation
With our usual typing rule for applications
Fty @ T11—T Fty : T
1 Tin—=To 2 ¢ T (T-ApP)

[Ht1 to @ Too

the term
(Ar:{x:Nat}. r.x) {x=0,y=1}

is not well typed.

But this is silly: all we're doing is passing the function a better

argument than it needs.

Similarly, in object-oriented languages, we want to be able to
define hierarchies of classes, with classes lower in the hierarchy
having richer interfaces than their ancestors higher in the hierarchy,
and use instances of richer classes in situations where one of their

ancestors are expected.

Subsumption

We achieve the effect we want by:
1. a subtyping relation between types, written S <: T

2. a rule of subsumption stating that, if S <: T, then any value of
type S can also be regarded as having type T

't :8S ST
[Ft:T

(T-SuB)

Example

We will define subtyping between record types so that, for example,

{x:Nat, y:Nat} <: {x:Nat}

So, by subsumption,

T-REC S-RepWinT

F {x=0,y=1} : {x:Nat, y:Nat} {x:Nat, y:Nat} <: {x:Nat}

T-SuB

F{x=0,y=1} : {x:Nat}

and hence
(Ar:{x:Nat}. r.x) {x=0,y=1}

is well typed.

The Subtype Relation: Records
“Width subtyping” (forgetting fields on the right):

{1;:T; < Fy < {1;:T; <"} (S-RepWIDTH)

Intuition: {x:Nat} is the type of all records with at least a
numeric x field.

Note that the record type with more fields is a subtype of the
record type with fewer fields.

Reason: the type with more fields places a stronger constraint on
values, so it describes fewer values.

The Subtype Relation: Records

Permutation of fields:

{k;:S;/<"""} is a permutation of {1;:T; '¢*"}

: : (S-RcDPERM)
{kj:sj J€1.4n} <: {l,:T, IEZ..n}

By using S-RCDPERM together with S-RcDWIDTH and
S-TRANS allows us to drop arbitrary fields within records.

The Subtype Relation: Records
“Depth subtyping” within fields:

foreach i 8; < T;
{1;:8; €0} < {1;:T; €'}

(S-RcpDEPTH)

The types of individual fields may change.

Example

S-RcpWIDTH S-RcoWIDTH

{a:Nat,b:Nat} <: {a:Nat} {m:Nat} <: {}

S-RepDepTH

{x:{a:Nat,b:Nat},y:{m:Nat}} <: {x:{a:Nat},y:{}}

Variations

Real languages often choose not to adopt all of these record
subtyping rules. For example, in Java,

» A subclass may not change the argument types of a method
of its superclass (i.e., no depth subtyping)

» Each class has just one superclass (“single inheritance” of
classes)
— each class member (field or method) can be assigned
a single index, adding new indices “on the right” as more
members are added in subclasses
(i.e., no permutation for classes)

> A class may implement multiple interfaces (“multiple
inheritance” of interfaces)
l.e., permutation is allowed for interfaces.

10

The Subtype Relation: Arrow types

T <: 81 Sy <: To

(S-ARROW)
S1—Sy < T1—T»

Note the order of T; and S; in the first premise. The subtype
relation is contravariant in the left-hand sides of arrows and
covariant in the right-hand sides.

Intuition: if we have a function f of type S;—S,, then we know
that £ accepts elements of type Sq; clearly, £ will also accept
elements of any subtype T; of S;. The type of f also tells us that
it returns elements of type S»; we can also view these results
belonging to any supertype T, of S». That is, any function f of
type S1—S> can also be viewed as having type T;—To.

11

The Subtype Relation: Top

It is convenient to have a type that is a supertype of every type.
We introduce a new type constant Top, plus a rule that makes Top
a maximum element of the subtype relation.

S <: Top (S-Tor)

Cf. Object in Java (more or less) or AnyKind in Scala.

12

The Subtype Relation: General rules

S<:S (S-REFL)

S U U< T

(S-TRANS)
S<: T

13

Subtype relation
S<:S (S-REFL)

S< U U< T
S< T

(S-TRANS)

{1;:T; < Fy < {1;:T; <"} (S-RCDWIDTH)

foreach /i S; < T;
{1,’:8,’ fGlA.n} <: {1i:Ti iElun}

(S-RCDDEPTH)

{k;:S;/€*"} is a permutation of {1;:T; "¢*-"}
{kasj J'El.ﬂ} < {1’_ :T; fEl..n}

(S-RCDPERM)

T1 <0 51 Sy <: To
S1—Sy < T1—TH

(S-ARROW)

S <: Top (S-Top)

14

Aside: Structural vs. declared subtyping

The subtype relation we have defined is structural: We decide
whether S is a subtype of T by examining the structure of S and T.

By contrast, the subtype relation in most OO languages (e.g.,
Java) is explicitly declared: S is a subtype of T only if the
programmer has stated that it should be.

There are pragmatic arguments for both.

For the moment, we'll concentrate on structural subtyping, which
is the more fundamental of the two. (It is sound to declare S to be
a subtype of T only when S is structurally a subtype of T.)

We'll come back to declared subtyping when we talk about
Featherweight Java.

15

Properties of Subtyping

16

Questions (1)

Clicker question: How many different T's are there such that
- {a=0} : T?

A. there is no such T

B. there is exactly one such T

C. thereare n N, n > 1 such T's

D. there are infinitely many such T's

URL: ttpoll.eu
Session ID: cs452

17

Questions (2)

Clicker question: Given [= t; {a=0} : T, what is the last typing
rule used in the typing derivation tree?

A. T-REC

B. T-Aprp

C. T-SuB

D. there are several correct answers

E. we do not know

URL: ttpoll.eu
Session ID: cs452

18

Safety

Statements of progress and preservation theorems are unchanged
from _,.

Proofs become a bit more involved, because the typing relation is
no longer syntax directed.

Given a derivation, we don't always know what rule was used in
the last step. The rule T-SUB could appear anywhere.

't :S ST
[Ft:T

(T-SuB)

19

An Inversion Lemma for Subtyping

Lemma: If U<: T;{—T», then U has the form U; —U,, with Ty <: Uy
and U, < T».

Proof: By induction on subtyping derivations.

20

An Inversion Lemma for Subtyping

Lemma: If U <: T{—T», then U has the form U;—U»,, with T; <: Uy
and Us <: To.

Proof: By induction on subtyping derivations.
Case S-ARROW: U="U;—0Us Ty <: Uy Us <: T»

20

An Inversion Lemma for Subtyping
Lemma: If U<: T;{—T», then U has the form U; —U,, with Ty <: Uy
and U, < T».
Proof: By induction on subtyping derivations.
Case S-ARROW: U=U;—0Us Ty <. Uy Us < T»
Immediate.
20
An Inversion Lemma for Subtyping

Lemma: If U <: T{—T», then U has the form U;—U»,, with T; <: Uy
and U, <: T».

Proof: By induction on subtyping derivations.

Case S-ARROW: U="U;—0Us Ty <: Uy Us <: T»
Immediate.

Case S-REFL: U=T;—Ts

20

An Inversion Lemma for Subtyping

Lemma: If U<: T;{—T», then U has the form U; —U,, with Ty <: Uy
and U <: To.

Proof: By induction on subtyping derivations.

Case S-ARROW: U=U;—Us T; < Uy Uy <: To
Immediate.

Case S-REFL: U=T1—T>

By S-REFL (twice), T; <: T; and T <: Ty, as required.

20

An Inversion Lemma for Subtyping

Lemma: If U <: T{—T», then U has the form U;—U»,, with T; <: Uy
and U, <: T».

Proof: By induction on subtyping derivations.

Case S-ARROW: U="U;—0Us Ty <: Uy Us <: T»
Immediate.

Case S-REFL: U=T;—Ts

By S-REFL (twice), T; <t Ty and T, <: Ty, as required.

Case S-TRANS: U<: W W< T1—Ts

20

An Inversion Lemma for Subtyping

Lemma: If U <: T{—T», then U has the form U;—Us,, with T; <: Uy
and U <: To.

Proof: By induction on subtyping derivations.

Case S-ARROW: U=U;—Us T; < Uy Us <: To
Immediate.

Case S-REFL: U=T1—T>

By S-REFL (twice), T; <: T; and T <: Ty, as required.

Case S-TRANS: U< W W< Ti—To

Applying the IH to the second subderivation,

20

An

Inversion Lemma for Subtyping

Lemma: If U <: T{—T», then U has the form U;—U»,, with T; <: Uy
and U, <: T».

Proof: By induction on subtyping derivations.

Case S-ARROW: U="U;—0Us Ty <: Uy Us <: T»
Immediate.

Case S-REFL: U=T;—Ts

By S-REFL (twice), T; <t Ty and T, <: Ty, as required.

Case S-TRANS: U<: W W< T1—Ts

Applying the IH to the second subderivation, we find that W has
the form W;—W»>, with T; <: W; and Wy <: T».

20

An

Inversion Lemma for Subtyping

Lemma: If U <: T{—T», then U has the form U;—Us,, with T; <: Uy
and U <: To.

Proof: By induction on subtyping derivations.

Case S-ARROW: U=U;—Us T; < Uy Us <: To
Immediate.

Case S-REFL: U=T1—T>

By S-REFL (twice), T; <: T; and T <: Ty, as required.

Case S-TRANS: U< W W< Ti—To

Applying the IH to the second subderivation, we find that W has
the form W;—W,, with T; < W; and Wy <: To. Now the IH applies
again (to the first subderivation, which became U <: W;—W>),
telling us that U has the form U;—U,, with Wy <: U; and U <: Wo.

20

An

Inversion Lemma for Subtyping

Lemma: If U <: T{—T», then U has the form U;—U»,, with T; <: Uy
and U, <: T».

Proof: By induction on subtyping derivations.

Case S-ARROW: U="U;—0Us Ty <: Uy Us <: T»
Immediate.

Case S-REFL: U=T;—Ts

By S-REFL (twice), T; <t Ty and T, <: Ty, as required.

Case S-TRANS: U<: W W< T1—Ts

Applying the IH to the second subderivation, we find that W has
the form W;—W,, with T; < W; and Wy <: T». Now the IH applies
again (to the first subderivation, which became U <: W;—W>),
telling us that U has the form U;—U,, with Wy <: Uy and Uy <: Wo.
By S-TRANS, Ty <: Uy, and, by S-TRANS again, Uy <: Ty, as
required.

20

An Inversion Lemma for Typing

Lemma: If = Ax:S1.85 : T{—T», then T; < S; and
[, x:81F sy : To.

Proof: By induction on typing derivations.

21

An Inversion Lemma for Typing

Lemma: If = Ax:S1.85 : T1—T», then T; < S; and
[,x:S1F s : To.

Proof: By induction on typing derivations.

Case T-ABS: T =S Tr» =S5 L x:S1Fsy: S

21

An Inversion Lemma for Typing
Lemma: If = Ax:S1.85 : T{—T», then T; < S; and
[, x:81F sy : To.
Proof: By induction on typing derivations.
Case T-ABS: T, =S T =S5 L x:S1Fsy: S
Immediate.

Case T-SuB: FAx:81.82 : U U< T1—Ts

21

An Inversion Lemma for Typing
Lemma: If = Ax:S1.85 : T1—T», then T; < S; and
[,x:S1F s : To.
Proof: By induction on typing derivations.
Case T-ABS: T =S Tr» =S5 L x:S1Fsy: S
Immediate.
Case T-SUB: FAx:81.82 : U U< T1—To

By the subtyping inversion lemma, U = U;—Us, with T; <: U; and
Us <: To.

21

An Inversion Lemma for Typing
Lemma: If = Ax:S1.85 : T{—T», then T; < S; and
[, x:81F sy : To.
Proof: By induction on typing derivations.
Case T-ABS: T, =S T =S5 L x:S1Fsy: S
Immediate.
Case T-SuB: FAx:81.82 : U U< T1—Ts

By the subtyping inversion lemma, U = U;—Us, with T; < U; and
Us <: To.
The IH now applies, yielding U; <: Sy and [, x:S; s @ Uy,

21

An Inversion Lemma for Typing

Lemma: If = Ax:S1.85 : T1—T», then T; < S; and

[,x:S1F s : To.

Proof: By induction on typing derivations.

Case T-ABS: T =S Tr» =S5 L x:S1Fsy: S
Immediate.

Case T-SUB: FAx:81.82 : U U< T1—To

By the subtyping inversion lemma, U = U;—Us, with T; <: U; and
Us <: To.

The IH now applies, yielding U; <: S; and [, x:S; s : Us.
From U; < S; and Ty <: Uy, rule S-TRANS gives T <: Sq.

21

An Inversion Lemma for Typing

Lemma: If = Ax:S1.85 : T{—T», then T; < S; and

[, x:81F sy : To.

Proof: By induction on typing derivations.

Case T-ABs: T =951 To =55 F, x:S1Fsy: S
Immediate.

Case T-SuB: FAx:81.82 : U U< T1—Ts

By the subtyping inversion lemma, U = U;—Us, with T; < U; and
Us <: To.

The IH now applies, yielding U; <: Sy and [, x:S; s @ Uy,
From U; < S; and Ty <: Uy, rule S-TRANS gives Ty <: S,
From I, x:S1 s @ Uy and Uy <: T», rule T-SUB gives

[, x:81F s : Ty, and we are done.

21

Preservation

Theorem: If Tt : Tand t — t/, then [-t/ : T.

Proof: By induction on typing derivations.

22

Preservation — subsumption case

Case T-SUB: NNt :8 S<: T

23

Preservation — subsumption case

Case T-SUB: Nt :8 S<: T
By the induction hypothesis, [- t' : S. By T-SuB, [-t/ : T.

23

Preservation — application case

Case T-App:
t=1t1 to Ft1: T11—T [Fty : T11 T =Tqo

By the inversion lemma for evaluation, there are three rules by
which t — t/ can be derived: E-APP1, E-APP2, and
E-APPABS. Proceed by cases.

24
Preservation — application case
Case T-APp:
t=1t; to Ft1 : T11—To Fto : T11 T="Tio
By the inversion lemma for evaluation, there are three rules by
which t — t’/ can be derived: E-APpP1, E-APP2, and
E-APPABS. Proceed by cases.
Subcase E-AppPl: t; — t] th=1t] t2
The result follows from the induction hypothesis and T-APP.
Fty @ T11—T [Fty : T
1 Tin—=To2 2 - T (T-App)

[Ft1 to: Too

24

Preservation — application case

Case T-App:
t=1t1 to Ft1: T11—T [Fty : T11 T =Tqo

By the inversion lemma for evaluation, there are three rules by
which t — t/ can be derived: E-APP1, E-APP2, and
E-APPABS. Proceed by cases.

Subcase E-AppPl: t; — t] t'=1t] to
The result follows from the induction hypothesis and T-APP.

=1t1 : T11—T1o 1ty : T3

(T-App)
[H1t1 to: To
t] — tf
' ,1 (E-App1)
ty to —t; t2
24

Case T-APP (CONTINUED):
t=1t1 to NFt1: T11—T12 Fty @ T11 T="Ti>

Subcase E-APpP2: t1 =v1 ty — t) th =vy th

Similar.

Ht1 : T11—T12 1ty : T1q

(T-App)
[Ft1 to: T2

t) — t/
’ ° (E-AprpP2)

vy to — V1 t/2

25

Case T-APP (CONTINUED):
t=1t;1 to [Ht1: T11—T12 [ty : Tq1 T="Ti»

Subcase E-APPABS:
t1 = Ax:S11. tio to = Vo t/ = [X — V2]t12

By the earlier inversion lemma for the typing relation...

26

Case T-APP (CONTINUED):
t=1t1 to NFt1: T11—T12 Fty @ T11 T="Ti>

Subcase E-APPABS:

t1 = Ax:S11. t12 tr = v t/ = [X > V2]t12
By the earlier inversion lemma for the typing relation... T1; < Sy
and [, x:S11 F t1o @ Tio.

26

Case T-APP (CONTINUED):
t=1%t;1 t Ft1 : T11—T Fto : T11 T="Tio

Subcase E-APPABS:
t1 = Ax:S11. tio to = Vo t/ = [X — V2]t12
By the earlier inversion lemma for the typing relation... T1; <: Sq1
and F, x:S11 F t12 & Tio.
By T-SuB, [=t : Sq1.

26

Case T-APP (CONTINUED):

t=1t1 to NFt1: T11—T12 Fty @ T11 T="Ti>
Subcase E-APPABS:

t1 = Ax:S11. t12 tr = v t/ = [X > V2]t12
By the earlier inversion lemma for the typing relation... T1; < Sy
and [, x:S11 F t1o @ Tio.
By T-SuB, [=ty @ Sq1.
By the substitution lemma, I - t’ : Tq5, and we are done.

=t1 : T11—T1o 1ty : T11
(T-App)

r|_t1 to @ Tio

(Ax:Ty1.t12) vo — [x+— vo]ti2 (E-APPABS)

26

Subtyping with Other Features

27

Ascription and Casting

Ordinary ascription:

[ty : T
[Ft; as T: T

vi as T— vy

(T-ASCRIBE)

(E-ASCRIBE)

28

Ascription and Casting

Ordinary ascription:

[t : T
[ty as T: T

vi as T — vy
Casting (cf. Java):

—t1:8

(T-ASCRIBE)

(E-ASCRIBE)

(T-CaAsT)

[Ft; as T: T

Fvy T

' (E-CasT)

vi as T — vy

28
Subtyping and Variants

<1;:T; '€1"> <& <1 T; €tk (S-VARIANTWIDTH)

foreach i S; < T;
<L;:S; > <& <1GaTy >

<k;:S; /"> is a permutation of <1;:T; €' ">

<ijSj Jj€l..ny <: <1i:Ti i€l..ny

Ht1: Ty
M <11=t1> : <11:T1>

(S-VARIANTDEPTH)

(S-VARIANTPERM)

(T-VARIANT)

29

Subtyping and Lists

S1 <t Tq
(S-LisT)
List S; < List Ty
l.e., List is a covariant type constructor.
30
Subtyping and References
S1<Tq T1 <: Sy
(S-REF)

Ref Sy <: Ref T4

l.e., Ref is not a covariant (nor a contravariant) type constructor.
Why?

31

Subtyping and References

S1 <t Tq Ty <0 51
Ref S; <t Ref T;

(S-REF)

l.e., Ref is not a covariant (nor a contravariant) type constructor.
Why?
» When a reference is read, the context expects a Tq, so if S; <
Ty then an S; is ok.

31

Subtyping and References

S1<Tq T1 <: Sy
Ref Sy <: Ref T4

(S-REF)

l.e., Ref is not a covariant (nor a contravariant) type constructor.
Why?
» When a reference is read, the context expects a T1, so if S; <

T1 then an S; is ok.

» When a reference is written, the context provides a T; and if
the actual type of the reference is Ref Si, someone else may
use the T; as an S;. So we need T; <: Sj.

31

Subtyping and Arrays

Similarly...
S1<T T1 <S8
' : ' - (S-ARRAY)
Array S; <t Array T
32
Subtyping and Arrays
Similarly...
S1 < T T < S
: . : . (S-ARRAY)

Array S; <! Array T

S1 <t Tq

(S-ARRAYJAVA)
Array S; <! Array T

This is regarded (even by the Java designers) as a mistake in the
design.

32

References again

Observation: a value of type Ref T can be used in two different
ways: as a source for values of type T and as a sink for values of
type T.

33

References again

Observation: a value of type Ref T can be used in two different
ways: as a source for values of type T and as a sink for values of
type T.

Idea: Split Ref T into three parts:

» Source T: reference cell with “read capability”
» Sink T: reference cell with “write capability”
» Ref T: cell with both capabilities

33

Modified Typing Rules

| X Ft; : Source Tyg

(T-DEREF)
[‘ > HE 'ty Ty
M XkFty:8ink T M Xkt :T
| ! H | S (T-ASSIGN)
I | > Fti:=to : Unit
34
Subtyping rules
S1<¢ T
. ' (S-SOURCE)
Source S <! Source Tq
T < S
: : (S-SINK)

Sink S; <: Sink Ty

Ref T; <: Source T;

Ref T1 < Sink T;

(S-REFSOURCE)

(S-REFSINK)

35

Algorithmic Subtyping

36

Syntax-directed rules

In the simply typed lambda-calculus (without subtyping), each rule
can be “read from bottom to top” in a straightforward way.

Ft1: T11—To 1ty : T11
=1t1 to @ T2

(T-App)

If we are given some [and some t of the form t; t,, we can try
to find a type for t by

finding (recursively) a type for t;
checking that it has the form T1;—T1»
finding (recursively) a type for t,

b S

checking that it is the same as Tq;

37

Technically, the reason this works is that we can divide the
“positions” of the typing relation into input positions (I" and t)
and output positions (T).

» For the input positions, all metavariables appearing in the
premises also appear in the conclusion (so we can calculate
inputs to the “subgoals” from the subexpressions of inputs to
the main goal)

» For the output positions, all metavariables appearing in the
conclusions also appear in the premises (so we can calculate
outputs for the main goal from the outputs of the subgoals)

=t1 : T11—T1o [ty : T
[Ftl to 1 Tqo

(T-Aprp)

38

Syntax-directed sets of rules

The second important point about the simply typed
lambda-calculus is that the set of typing rules is syntax-directed, in
the sense that, for every “input” I and t, there is only one rule
that can be used to derive typing statements involving t.

E.g., if t is an application, then we must proceed by trying to use
T-App. If we succeed, then we have found a type (indeed, the
unique type) for t. If it fails, then we know that t is not typable.

— no backtracking!

39

Non-syntax-directedness of typing

When we extend the system with subtyping, both aspects of
syntax-directedness get broken.

1. The set of typing rules now includes two rules that can be
used to give a type to terms of a given shape (the old one
plus T-SuB)

[t :S ST
lt: T

(T-SuB)

2. Worse yet, the new rule T-SUB itself is not syntax directed:
the inputs to the left-hand subgoal are exactly the same as
the inputs to the main goal!

(Hence, if we translated the typing rules naively into a
typechecking function, the case corresponding to T-SUB
would cause divergence.)

40

Non-syntax-directedness of subtyping

Moreover, the subtyping relation is not syntax directed either.
1. There are lots of ways to derive a given subtyping statement.

2. The transitivity rule

S<U U<t T

(S-TRANS)
S<: T

is badly non-syntax-directed: the premises contain a
metavariable (in an “input position”) that does not appear at
all in the conclusion.

To implement this rule naively, we'd have to guess a value for
Ul

41

What to do?

42

What to do?

1. Observation: We don't need 1000 ways to prove a given
typing or subtyping statement — one is enough.
—— Think more carefully about the typing and subtyping
systems to see where we can get rid of excess flexibility

2. Use the resulting intuitions to formulate new “algorithmic”
(i.e., syntax-directed) typing and subtyping relations

3. Prove that the algorithmic relations are “the same as” the
original ones in an appropriate sense.

42

When is S-TRANS necessary?

{x:Nat, y:{a:Nat, b:Nat}} <: {y:{a:Nat, b:Natl}}

We need all of S-RECPERM, S-RECWIDTH and S-RECDEPTH.

43

When is S-TRANS necessary?

{x:Nat, y:{a:Nat, b:Nat}} <: {y:{a:Nat, b:Natl}}

We need all of S-RECPERM, S-RECWIDTH and S-RECDEPTH.
Combine them in a single, more powerful rule:

{1;:T; i€l.ny - {kj:Tj Jel..ny kj =1; implies SJ' <:T;
{k_IS_j jelun} <: {li:Ti iEl..n}

(S-Rcp)

43

When is S-TRANS necessary?

{x:Nat, y:{a:Nat, b:Nat}} <: {y:{a:Nat, b:Natl}}

We need all of S-RECPERM, S-RECWIDTH and S-RECDEPTH.
Combine them in a single, more powerful rule:

{1,’2T,‘ iel“"} - {kj:TJ' jel""} kj =1; implies SJ' < T;
{kjsj jEl..n} < {llTl /61..n}

(S-Rcp)

And prove that S <: T can be derived with S-RcD but not
S-RECPERM, S-RECWIDTH, S-RECDEPTH if and only if it can
be derived without S-RcD.

i.e., they are equivalent, and we can drop S-RECPERM,
S-RECWIDTH, S-RECDEPTH in favor of S-RcCD.

43

Removing S-TRANS and S-REFL

It turns out S-TRANS can then be removed without loss. Likewise,
S-REFL is redundant.
We can prove that

1. S <: S can be derived without using S-REFL.

2. If S <. T can be derived with S-TRANS, it can also be derived
without S-TRANS.

44

Removing S-TRANS and S-REFL

It turns out S-TRANS can then be removed without loss. Likewise,
S-REFL is redundant.
We can prove that

1. S <: S can be derived without using S-REFL.

2. If S <: T can be derived with S-TRANS, it can also be derived
without S-TRANS.

What if we have other types, such as Bool?

44

Removing S-TRANS and S-REFL

It turns out S-TRANS can then be removed without loss. Likewise,
S-REFL is redundant.
We can prove that

1. S <: S can be derived without using S-REFL.

2. If S <. T can be derived with S-TRANS, it can also be derived
without S-TRANS.

What if we have other types, such as Bool?
We need to add specific rules:

Bool <: Bool (S-Boor)

44

Algorithmic subtyping

{l,':T,' iel""} - {kj:Tj jel"”} kj =1; implies 1 Sj < T;
b {kj:Sj jelnn} <: {1i3Ti iel..n}

(SA-RcD)

P T, <: S1 P Sy <: Tp
P S1—Sy < T1—Ts

(SA-ARROW)

45

When is T-SUB necessary?

(Ar:{x:Nat}. r.x) {x=0, y=1}

46

When is T-SUB necessary?
(Ar:{x:Nat}. r.x) {x=0, y=1}

Combine T-SuUB with T-APP:

Ft1: T11—To [ty 1 To To <: Tq1

(T-App)
[Ft1 to @ T2
46
When is T-SUB necessary?
(Ar:{x:Nat}. r.x) {x=0, y=1}
Combine T-SuB with T-APpp:
1ty @ T11—T M=ty T To<: T
1 Tua—=To 21 T 2 11 (T-App)

I_Ftl to @ Tio

For the lambda calculus with records and subtyping, that is the
only rule for which T-SUB is necessary. We can remove it.

46

When is T-SUB necessary?
(Ar:{x:Nat}. r.x) {x=0, y=1}

Combine T-SuUB with T-APP:

Ht1 : T11—T1o [ty : To To <: Tq1
[Ft1 to @ T2

(T-App)

For the lambda calculus with records and subtyping, that is the
only rule for which T-SUB is necessary. We can remove it.
Some extensions may require changes as well. For example, the
ascription needs a new T-ASCRIBE:

[t : Ty T1<: T

(T-ASCRIBE)
[ty as T: T

46

Algorithmic typing

:Tel
S (TA-VAR)
Px:T
Mx:TyPty:T
SR (TA-ABs)

P Ax :Ti.ty : T1—To

[P t; : T11—T12 [Pty 1 To b Ty <:
[Pt to: T2

T
H (TA-App)

foreachi 'k t; : T;

M {11=ty, ..., 1=t} {11 : Ty, ..., 1, :T,}
(TA-Rcp)
Mty : {17 :T¢, ..., 1, :Tht
S L (TA-Proy)
P t;.1; : T;

47

Soundness and Completeness of algorithmic typing

1. Soundness: if [t : T, then -t : T.
2. Completeness: if [=t : T, then 4S < T such that [» ¢ : S.

48

Branches

[+t : Bool [Hty o T Ft3: T
[if t; then tp else t3 : T

(T-Ir)

49

Branches

[+ t1 : Bool Fty : T Ft3: T

(T-Ir)
[~if t; then ty else t3 : T
Merging T-SuB
[+t : Bool [ty 1 To Ft3 : T3
To<: T T3 < T
(T-Ir)
[+if t; then to else t3 : T
49
Branches
[+t : Bool Fty : T [Ft3: T
1 2 3 (T-TF)
[+if t; then t, else t3 : T
Merging T-SuB
[+ t7 : Bool [Fty : To [Ft3: T3
To<: T T3 < T
(T-Ir)

[~if t; then t, else t3 : T

What is T?

49

Joins

Definition: a type J is called a join of a pair of type S and T,
written SV T = J, if

1. S< Jand T < J, and

2. for all types U, if S<: Uand T <: U, then J <: U.

Example:

{x:Nat, y:Bool} V {y:Bool, z:Bool} = {y:Bool}

50

Joins

Definition: a type J is called a join of a pair of type S and T,
written SV T = J, if

1. S<: Jand T <: J, and
2. for all types U, if S<: Uand T <: U, then J <: U.

Example:

{x:Nat, y:Bool} V {y:Bool, z:Bool} = {y:Bool}

{x:Nat, y:Booll} V {y:Bool, x:Nat} =7

50

Algorithmic typing for branches

[Pt : Bool [ty : To [Pty : T3
To VT3 =T
[if t; then t, else t3 : T

(T-Ir)

51

Conclusion

52

Polymorphism

Subtyping is a kind of polymorphism, which in Greek means
“having many forms"”.
A polymorphic function may be applied to many different types of
data.
Varieties of polymorphism:

» Parametric polymorphism (ML-style)

» Subtype polymorphism (OO-style)

» Ad-hoc polymorphism (overloading)

53

