Foundations of Software
Spring 2025

Week 8

Plan

PREVIOUSLY: unit, sequencing, let, pairs, sums, recursion

TODAY:
1. state

NEXT: polymorphic (not so simple) typing

References

Mutability

» In most programming languages, variables are mutable — i.e.,
a variable provides both
» a name that refers to a previously calculated value, and
> the possibility of overwriting this value with another (which
will be referred to by the same name)
» In some languages (e.g., OCaml), these features are separate:
» variables are only for naming — the binding between a variable
and its value is immutable
» introduce a new class of mutable values (called reference cells
or references)
> at any given moment, a reference holds a value (and can be
dereferenced to obtain this value)
» a new value may be assigned to a reference

We choose OCaml’s style, which is easier to work with formally.

So a variable of type T in most languages (except OCaml) will
correspond to a Ref T here.

Basic Examples

r =ref 5

(r:=succ('r); !r)

(r:=succ(!r); r:=succ(!r); r:=succ(!r);
r:=succ(!r); !'r)

Basic Examples

r =ref 5

(r:=succ(!'r); !r)

(r:=succ(!r); r:=succ(!r); r:=succ(!r);
r:=succ(!r); !'r)

((((r:=succ(lr); r:=succ(!r)); r:=succ(!r));
r:=succ(!r)); !'r)

Aliasing

A value of type Ref T is a pointer to a cell holding a value of type
T.

If this value is “copied” by assigning it to another variable, the cell

pointed to is not copied.
N

So we can change r by assigning to s:

(s:=6; 'r)

Aliasing all around us
Reference cells are not the only language feature that introduces
the possibility of aliasing.
> object references
> explicit pointers in C
P arrays
» communication channels
» 1/0 devices (disks, etc.)

The difficulties of aliasing

The possibility of aliasing invalidates all sorts of useful forms of
reasoning about programs, both by programmers...
The function A\r:Ref Nat. As:Ref Nat. (r:=2; s:=3; !Ir)
always returns 2 unless and s are aliases.

...and by compilers:
Code motion out of loops, common subexpression elimination,
allocation of variables to registers, and detection of
uninitialized variables all depend upon the compiler knowing
which objects a load or a store operation could reference.

High-performance compilers spend significant energy on alias
analysis to try to establish when different variables cannot possibly
refer to the same storage.

The difficulties of side effects

The order of operations now matters.
f(r:=1) (r :=2)

The benefits of aliasing

The problems of aliasing have led some language designers simply
to disallow it (e.g., Haskell).

But there are good reasons why most languages do provide
constructs involving aliasing:

> efficiency (e.g., arrays)

> “action at a distance” (e.g., symbol tables)

» dependency-driven data flow (e.g., in GUI's)

» shared resources (e.g., locks) in concurrent systems
> etc.

10

Example

c =
incc
decc
incc
decc
o =

ref O
= Ax:Unit. (c := succ (!c); !'c)
= Ax:Unit. (c := pred (!c); !'c)
unit
unit

{i = incc, d = decc}

11

let newcounter =

A_:Unit.
let ¢ = ref 0 in
let incc = Ax:Unit. (c := succ (!c);
let decc = Ax:Unit. (c := pred (!c);

let
o)

o = 4{i = incc, d = decc} in

Ic) in
Ic) in

12

Syntax

t o= ... terms
unit unit value
ref t reference creation
't dereference
t:=t assignment
T = ... types
Unit unit type
Ref T reference type

... plus other familiar terms and types, in examples.

13

Typing Rules

Mt : Ty
Fref t1 : Ref T

[ty :Ref Ty
[F1t; Ty

[Ft1:Ref Tq M to

Ty

[ti:=ty : Unit

(T-REF)

(T-DEREF)

(T-AsSIGN)

14

Final example

NatArray

newarray

lookup =

Ref (Nat—Nat);

A_:Unit. ref (A\n:Nat.0);
: Unit — NatArray

Aa:NatArray. An:Nat. (!a) n;

: NatArray — Nat — Nat

update =

Aa:NatArray. Am:Nat. Av:Nat.
let oldf = 'a in

a := (An:Nat. if equal m n then v else oldf n);
: NatArray — Nat — Nat — Unit

15

Evaluation

Clicker question: What is the value of the expression ref 07

A0

B. ref 0, i.e., reference terms with value "arguments” are values
themselves, like succ v

C. it has no value; it remains as a stuck term

D. something else

URL: ttpoll.eu
Session ID: cs452

16

Evaluation

What is the value of the expression ref 07
Crucial observation: evaluating ref 0 must do something.

Otherwise,
r =ref O
s =ref O
and
=ref O
s =r

would behave the same.

17

Evaluation

What is the value of the expression ref 07
Crucial observation: evaluating ref 0 must do something.

Otherwise,
r =ref O
s =ref O
and
=ref O
s =r

would behave the same.
Specifically, evaluating ref 0 should allocate some storage and
yield a reference (or pointer) to that storage.

17

Evaluation

What is the value of the expression ref 07
Crucial observation: evaluating ref 0 must do something.

Otherwise,
r =ref O
s =ref O
and
=ref O
s =r

would behave the same.

Specifically, evaluating ref 0 should allocate some storage and
yield a reference (or pointer) to that storage.

So what is a reference?

17

The Store

A reference names a location in the store (also known as the heap
or just the memory).

What is the store?

18

The Store

A reference names a location in the store (also known as the heap
or just the memory).
What is the store?

» Concretely: An array of 8-bit bytes, indexed by 64-bit
integers.

18

The Store

A reference names a location in the store (also known as the heap
or just the memory).
What is the store?

» Concretely: An array of 8-bit bytes, indexed by 64-bit
integers.

» More abstractly: an array of values

18

The Store

A reference names a location in the store (also known as the heap
or just the memory).

What is the store?

» Concretely: An array of 8-bit bytes, indexed by 64-bit
integers.

» More abstractly: an array of values

» Even more abstractly: a partial function from locations to
values.

18

Locations

Syntax of values:

v o=
unit
Ax:T.t
/

values
unit constant
abstraction value
store location

. and since all values are terms...

19

Syntax of Terms

t = terms
unit unit constant
X variable
Ax:T.t abstraction
tt application
ref t reference creation
It dereference
t:=t assignment
/ store location

20

Aside

Does this mean we are going to allow programmers to write
explicit locations in their programs??

No: This is just a modeling trick. We are enriching the “source
language” to include some run-time structures, so that we can
continue to formalize evaluation as a relation between source
terms.

Aside: If we formalize evaluation in the big-step style, then we can
add locations to the set of values (results of evaluation) without
adding them to the set of terms.

21

Evaluation

The result of evaluating a term now depends on the store in which
it is evaluated. Moreover, the result of evaluating a term is not
just a value — we must also keep track of the changes that get
made to the store.

l.e., the evaluation relation should now map a term and a store to
a reduced term and a new store.

tlp—t|

We use the metavariable ;. to range over stores.

22

Evaluation

An assignment t;:=t, first evaluates t; and to until they become
values...

£ | n— | o

— o : (E-AssiGN1)
tii=ty | p—> tii=to | p

to | p—ty [

T (E-AsSIGN2)
V1=t | —> vii=th | p

. and then returns unit and updates the store:

[:=vy | p — unit | [— v2]p (E-ASSIGN)

23

A term of the form ref t; first evaluates inside t; until it
becomes a value...

£ | n—) |

E-REF
ref t1|pu—>ref t) | ()

. and then chooses (allocates) a fresh location /, augments the
store with a binding from / to vy, and returns /:

I ¢ dom(1)

(E-REFV)
ref vi|pu— 1| (u, — v1)

24

A term !t first evaluates in t1 until it becomes a value...

ty | p—t |

E-DEREF
Pty | — 1ty | 1/ ()

. and then looks up this value (which must be a location, if the
original term was well typed) and returns its contents in the
current store:

u(h)y =v

R —— (E-DEREFLOC)
Ulp—v|p

25

Evaluation rules for function abstraction and application are
augmented with stores, but don't do anything with them directly.

ti] p— £y 4

; ; (E-APppP1)
t1 to| p—> t] to| p

to| p— 5| 4/

E-AppP2
vy to| p— vy th| ()

(Ax:T11.t12) vo| o — [x +— va]tiz| pu (E-APPABS)

26

Aside: garbage collection

Note that we are not modeling garbage collection — the store just
grows without bound.

27

Aside: pointer arithmetic

We can’t do any!

28

Store Typings

29

Typing Locations

Q: What is the type of a location?

30

Typing Locations
Q: What is the type of a location?
A: It depends on the store!

E.g., in the store (/; v unit, h ~» unit), the term !/, has type
Unit.

But in the store (/; + unit, h ~ Ax:Unit.x), the term !/, has
type Unit—Unit.

30

Typing Locations — first try
Roughly:

FeEp(l):Te

[/ :Ref Ty

31

Typing Locations — first try
Roughly:

MEu(l): T
[/:Ref Ty

More precisely:

b p(l): Ty
M puk/l:Ref Ty

l.e., typing is now a four-place relation (between contexts, stores,
terms, and types).

31

Problem

However, this rule is not completely satisfactory. For one thing, it

can make typing derivations very large!

Eg.,if

(n=hr— Ix:
b — A\x:
I3 — Ax:
Iy — Ax:
Is — A\x:

Nat.
Nat.
Nat.
Nat.
Nat.

999,

'h ('K
'h (Mh
' (ks
Yy (M

then how big is the typing derivation for !/57

X),
X),
x),

),

32

Problem!

But wait... it gets worse. Suppose

(uw="hr— Ax:Nat. 'k x,

b — Ax:Nat. !h x),

Now how big is the typing derivation for !/,?

33

Store Typings

Observation: The typing rules we have chosen for references
guarantee that a given location in the store is always used to hold
values of the same type.

These intended types can be collected into a store typing — a
partial function from locations to types.

34

E.g., for
= (h+— Ax:Nat. 999,
b+ Ax:Nat. ' (1h x),
I3 — Ax:Nat. 'h ('h x),
lg — Ax:Nat. 'l ('l %),
I — Ax:Nat. 'y (Mg %)),

A reasonable store typing would be

Y = (h — Nat—Nat,
I +— Nat—Nat,
I3 — Nat—Nat,
I4 — Nat—Nat,
Is — Nat—Nat)

Now, suppose we are given a store typing > describing the store 1
in which we intend to evaluate some term t. Then we can use >
to look up the types of locations in t instead of calculating them
from the values in 1.

() =T

(T-Loc)
[|SF/:Ref Ty

l.e., typing is now a four-place relation between between contexts,
store typings, terms, and types.

36

Final typing rules

Y(I)=T,
M XH/:Ref Tq

I'\Zl—tlle
N XHref t; : Ref Tg

F|Zkt1:Ref T11
F]ZF!tl:Tll

F‘ZFtllRef T11 |—|Z'—t2

: T11

[ZFty:=tp : Unit

(T-Loc)

(T-REF)

(T-DEREF)

(T-AsSIGN)

37

Q: Where do these store typings come from?

38

Q: Where do these store typings come from?

A: When we first typecheck a program, there will be no explicit
locations, so we can use an empty store typing.

So, when a new location is created during evaluation,

I ¢ dom()

(E-REFV)
ref vi|pu— 1| (pu, I+ v1)

we can extend the “current store typing” with the type of v;.

38

Safety

39

Preservation

First attempt: just add stores and store typings in the appropriate

places.
Theorem (?): If I |2t : Tand t | —t' |/, then
MNk-+:T.

40

Preservation

First attempt: just add stores and store typings in the appropriate
places.

Theorem (?): If I |2t : Tand t | —t' |/, then
Mkt :T. Wrong!

Why is this wrong?

40

Preservation

First attempt: just add stores and store typings in the appropriate
places.

Theorem (?): If I |2t : Tand t | —t' |/, then
M+t : T. Wrong!

Why is this wrong?

Because > and . here are not constrained to have anything to do
with each other!

(Exercise: Construct an example that breaks this statement of
preservation.)

40

Preservation

A store 1 is said to be well typed with respect to a typing context
[and a store typing X, written [| X I 1, if dom(p) = dom(X)
and [| Z b pu(/) © X(/) for every | € dom(p).

41

Preservation

A store 1 is said to be well typed with respect to a typing context
[and a store typing X, written [| X I 1, if dom(p) = dom(X)
and [| Z b pu(/) © X(/) for every | € dom(p).

Next attempt:

Theorem (7): If
MXFt:T
tlp—t [y
MNMIXkup

then | Xt/ :T.

41

Preservation

A store 1 is said to be well typed with respect to a typing context
[and a store typing X, written [| X I 1, if dom(p) = dom(X)
and [| Z b pu(/) © X(/) for every | € dom(p).

Next attempt:
Theorem (7): If

MSkFt:T
tlp—t |y
MXkpw
then | Xt/ : T. Still wrong!

What's wrong now?

41

Preservation

A store 1 is said to be well typed with respect to a typing context
[and a store typing X, written [| X I 1, if dom(p) = dom(X)
and [| Z b pu(/) © X(/) for every | € dom(p).

Next attempt:
Theorem (7): If

MSkt:T
t|lpu—t |y
MNMIXkup
then | Xt/ :T. Still wrong!

Creation of a new reference cell...
I ¢ dom(1)
ref vi|pu— 1| (pu, — v1)

(E-REFV)

... breaks the correspondence between the store typing and the
store.

41

Preservation (correct version)

Theorem: If
MNMIzxkEt:T
Mk
o gt |

then, for some ¥’ O ¥,
M Fe T
s

42

Preservation (correct version)

Theorem: If
MEXkFt:T
Mk
tlp—t |y

then, for some ¥’ O ¥,
Mxket:T
Cx b,

Proof: Easy extension of the preservation proof for A_,.

42

Progress

Theorem: Suppose t is a closed, well-typed term (that is,

()| X+t : Tfor some T and). Then either t is a value or else,
for any store ;. such that () | & t 1, there is some term t’ and store
' owith © | ——t" | .

43

Reading for next week

» Chapter 22 — Type Reconstruction
But do not pay too much attention to the X sets.

44

