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Plan

PREVIOUSLY: Extensions to STLC (Pairs, Sums, Records,
Recursion, State, etc.)

TODAY: Polymorphism (System F)

1. Motivation: Code Reuse and Encapsulation

2. Intuitive Construction of System F

3. Formal Definition: Syntax, Typing, Reduction

4. Encodings in System F: Booleans, Naturals, Pairs,
Encapsulation

5. Metatheory: Soundness, Normalization, Evaluation

6. Parametricity and Theorems for Free

7. Curry-Howard for System F

8. Other Kinds of Polymorphism
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Motivation (1/2): Code Repetition

Consider writing common functions in λ→:

I map : (Int→Int)→List Int→List Int

I map : (Bool→Bool)→List Bool→List Bool

I sort : (Int→Int→Bool)→List Int→List Int

Problem: The core logic is identical, but λ→ forces us to write
separate versions for each type. We cannot write a single generic
map or sort.

We want a way to parameterize functions by types.
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Motivation (2/2): Encapsulation

Imagine providing a Stack data structure:
I We want to offer an interface:

I empty : StackInt
I push : Int→StackInt→StackInt
I pop : StackInt→(Int × StackInt)
I isEmpty : StackInt→Bool

I We want to *hide* the concrete implementation (e.g., using
lists, arrays). Users should *only* interact through the
interface types.

Problem: λ→ doesn’t directly support hiding implementation
details behind an abstract type interface. We want machinery for
abstract data types. Polymorphism (System F) will provide
(partial) solutions for both code reuse and encapsulation.

Bonus: Church encodings will be legal again!
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Intuitive Construction of System F

Idea: Allow types themselves to be parameters.

Example: A generic ‘const‘ function: const 42, or const true

I We want to abstract over the return type of the domain, say
β. Sometimes it will be int, or bool.

I Return a function that should itself accept different types!
const 42 0 = 42, const 42 false = 42
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Intuitive Construction of System F

We introduce:

I Type variables (e.g., α, β) as placeholders for types.

I Type abstraction (Λα.t) to create functions that take a type
as an argument.

I Type application (t[τ ]) to provide a concrete type to a
polymorphic function, specializing it.

Example: Polymorphic constant function (‘const‘)

const = Λβ.λx : β.Λα.λy : α.x

This function takes one type argument β and one term argument
(x of type β), and returns a function that takes one type argument
α and a term argument of type α and returns x .

The type of const is: ∀β.β→(∀α.α→β)
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Example in intuitive System F

const = Λβ.λx : β.Λα.λy : α.x

Applying the function: We can specialize ‘const‘ by providing a
first concrete type:

const[Int]

This specialized function has type: Int→∀β, β→Int
Then apply it to the value, then the other type and the value :

(const[Int] 42)[Bool] true

This evaluates to 42.

(const[Int] 42)[Int] 13

This evaluates to 42.
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System F: Formal Syntax

τ ::= Types
α Type variable
τ1→τ2 Function type
∀α.τ Universal type

t ::= Terms
x Variable
λx : τ.t Lambda abstraction
t1 t2 Application
Λα.t Type abstraction
t[τ ] Type application

Γ ::= Contexts
∅ Empty context
Γ, x : τ Term variable binding
Γ, α Type variable binding
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System F: Values

Values represent the results of computation. In System F, these
are functions (waiting for a term argument) and polymorphic
functions (waiting for a type argument).

v ::= Values
λx : τ.t Lambda abstraction value
λα.t Type abstraction value

Note: Variables (x), applications (t1 t2), and type applications
(t[τ ]) are *not* values. Evaluation will proceed until one of the
value forms above is reached.
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System F: Typing Rules (1/2)

Variables and Abstraction/Application (like STLC, but context can
have type variables):

x : τ ∈ Γ

Γ ` x : τ
(T-Var)

Γ, x : τ1 ` t2 : τ2

Γ ` λx : τ1.t2 : τ1→τ2
(T-Abs)

Γ ` t1 : τ11→τ12 Γ ` t2 : τ11

Γ ` t1 t2 : τ12
(T-App)
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System F: Typing Rules (2/2)

New rules for Polymorphism:

Γ, α ` t : τ (α not free in Γ)

Γ ` Λα.t : ∀α.τ
(T-TAbs)

(Introduces a polymorphic type)

Γ ` t1 : ∀α.τ11 Γ ` τ12 type

Γ ` t1[τ12] : [α 7→ τ12]τ11
(T-TApp)

(Eliminates a polymorphic type by substitution)
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System F: Reduction Rules 1/2

Standard Beta-reduction:

(λx : τ1.t12) v2 −→ [x 7→ v2]t12 (E-AppAbs)

New reduction for Type Application:

(Λα.t11)[τ2] −→ [α 7→ τ2]t11 (E-TAppTAbs)

(Substitution happens in the term, not just the type)
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System F: Reduction Rules (Congruence)

Congruence rules (standard for App1, App2, plus new one):

t1 −→ t ′1
t1 t2 −→ t ′1 t2

(E-App1)

t2 −→ t ′2
v1 t2 −→ v1 t ′2

(E-App2)

t −→ t ′

t[τ ] −→ t ′[τ ]
(E-TApp)
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System F Example: Identity

Polymorphic Identity Function: id = Λα.λx : α.x
Typing Derivation (Γ = ∅):

1. α, x : α ` x : α (T-Var)

2. α ` λx : α.x : α→α (T-Abs)

3. ∅ ` Λα.λx : α.x : ∀α.α→α (T-TAbs)

Using the identity:

I id[Int] has type Int→Int (T-TApp)

I (id[Int]) 5 has type Int (T-App)

Reduction:

I (Λα.λx : α.x)[Int] −→ λx : Int.x (E-TAppTAbs)

I (λx : Int.x) 5 −→ [x 7→ 5](x) = 5 (E-AppAbs)
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System F Example: Function Composition

Polymorphic Function Composition:

compose = Λα.Λβ.Λγ.λf : (β→γ).λg : (α→β).λx : α.f (gx)

Type:
∀α.∀β.∀γ.(β→γ)→(α→β)→α→γ

Usage: compose[Nat][Nat][Bool] isZero succ
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Encodings in System F
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Encoding: Church Booleans (1/3)

Recall Church Booleans in untyped λ-calculus:

I True = λt.λf .t
I False = λt.λf .f
I if = λb.λt.λe.b t e (or just apply b directly)

Why not in λ→?

I We can type True and False if t and f have the same type,
e.g., T→T→T.

I But the *operators* (like and, or, not) are problematic.
I Example: and = λb1.λb2.b1 b2 False. From looking at the

application of b1: T = T→T→T, oops.

Intuition: A boolean, due to its encoding, must work with different
types: e.g., used directly b 0 1, but also sometimes it is used to
apply to another boolean, like in b1 b2 false. In general, a boolean
should take two arguments (then/else) of *any* type α and return
one of these two arguments.
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Encoding: Church Booleans (2/3)

Polymorphic Type for Booleans in System F:

BoolChurch = ∀α.α→α→α

Definitions:
True = Λα.λt : α.λf : α.t

False = Λα.λt : α.λf : α.f

Check type: ∅ ` True : BoolChurch (similar derivation to identity)
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Encoding: Church Booleans (3/3)

Now we *can* define operators:

and = λb1 : BoolChurch.λb2 : BoolChurch.b1[BoolChurch] b2 False

and : BoolChurch→BoolChurch→BoolChurch

Subtlety: The type application b1[BoolChurch] specializes the
boolean b1 to return... another boolean! This ”self-reference” at
the type level is key.
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Encoding: Church Numerals (1/2)

Recall Church Numerals:
I 0̄ = λs.λz .z
I 1̄ = λs.λz .sz
I n̄ = λs.λz .snz

Intuition: A numeral n̄ takes a successor function s and a zero
value z , and applies s n times to z . The types of s and z should
be flexible.
Polymorphic Type in System F:

NatChurch = ∀α.(α→α)→α→α

Definitions:
0̄ = Λα.λs : (α→α).λz : α.z

succ = λn : NatChurch.Λα.λs : (α→α).λz : α.s(n[α] s z)
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Encoding: Church Numerals (2/2)

Definitions:
0̄ = Λα.λs : (α→α).λz : α.z

succ = λn : NatChurch.Λα.λs : (α→α).λz : α.s(n[α] s z)

Example: Plus

plus = λm : NatChurch.λn : NatChurch.

Λα.λs : (α→α).λz : α.

m[α] s (n[α] s z)
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Encoding: Pairs

Can we encode pairs without built-in product types (τ1 × τ2)?

Yes!

Intuition: A pair (a, b) is something that, when given a function f ,
applies f to a and b. The result type depends on f . Polymorphic
Type:

Pair(τ1, τ2) = ∀β.(τ1→τ2→β)→β
Constructor:

mkpair = Λτ1.Λτ2.λx : τ1.λy : τ2.Λβ.λf : (τ1→τ2→β).f x y

mkpair : ∀τ1.∀τ2.τ1→τ2→Pair(τ1, τ2)

Projections:

fst = Λτ1.Λτ2.λp : Pair(τ1, τ2).p[τ1] (λx : τ1.λy : τ2.x)

fst : ∀τ1.∀τ2.Pair(τ1, τ2)→τ1
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Abstract Data Types via Existentials

Goal: Bundle a hidden representation type (ρ) with operations
acting on it.
Informal Idea (Stack): We want a type that means: ”There exists
some type ρ (the stack representation), such that we have:

I An empty element of type ρ.

I A push operation: ρ→ Int→ ρ.

I A pop operation: ρ→ Option(Int× ρ).”

This is written conceptually as:
∃ρ.{empty : ρ, push : ρ→ Int→ ρ, pop : ρ→ Option(Int× ρ)}

We need to encode this ∃ using ∀ in System F.
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Stack ADT - Encoding the Type

Let’s define the interface signature type (dependent on ρ):

StackInterface(ρ) = {empty : ρ, push : ρ→ Int→ ρ, pop : ...}

(Assuming a record type ‘...‘ exists or is encoded in System F)

Now, encode the existential ∃ρ.StackInterface(ρ) using the
universal quantifier:

StackADT = ∀α.(∀ρ.(StackInterface(ρ)→ α))→ α

Let’s explain with an example this weird type:

I how to produce a StackADT.

I how to use a StackADT.

24
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Stack ADT - Implementation

Let’s choose a concrete representation: ρ = List(Int) (assume Lists
are encoded).
First, implement the interface for List(Int):

concreteEmpty : List(Int) = Nil

concretePush : List(Int) -> Int -> List(Int) =

fun s i -> Cons i s

concretePop : List(Int) -> Option(Int * List(Int)) =

fun s -> case s of

Nil -> None

| Cons h t -> or Some (mkpair h t)

concreteIFace : StackInterface(List(Int)) =

{ empty = concreteEmpty,

push = concretePush,

pop = concretePop }
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Stack ADT - Implementation Packing

Now, pack this implementation into the ‘StackADT‘ type:

mkListStack : StackADT =

λα.λk : (∀ρ.(StackInterface(ρ)→ α)).

k[List(Int)] concreteIFace

The value ‘mkListStack‘ has type ‘StackADT‘. Its user doesn’t
know ρ = List(Int).
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Stack ADT - Usage (Unpacking)

A client has a value, say ‘myStack : StackADT‘.

Example: Compute a simple value, e.g., returns the value popped
after push 1.

useStack(s : StackADT) =

s[Option(Int)]

(Λρ.λiface : StackInterface(ρ).

let s0 = iface.empty in

let s1 = iface.push s0 1 in

match (iface.pop s1) with

None→ None

|Some p → Some (p.1) end)

27



Stack ADT - Usage (Unpacking)

A client has a value, say ‘myStack : StackADT‘.

Example: Compute a simple value, e.g., returns the value popped
after push 1.

useStack(s : StackADT) =

s[Option(Int)]

(Λρ.λiface : StackInterface(ρ).

let s0 = iface.empty in

let s1 = iface.push s0 1 in

match (iface.pop s1) with

None→ None

|Some p → Some (p.1) end)

27



Stack ADT - Interpretation

StackADT = ∀α.(∀ρ.(StackInterface(ρ)→ α))→ α

Interpretation:

I A value of type ‘StackADT‘ is a ”package”.

I To use the package (to get a result of type α), you must
provide a function (the continuation k).

I This function k must be polymorphic in the hidden
representation ρ (∀ρ). It takes the interface for that ρ and
produces an α.

I The package, when opened, applies the user’s universal
function k to its specific hidden representation type and its
concrete interface implementation.

I Limitations?
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Metatheory of System F
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Metatheory: Soundness

Like λ→, System F enjoys safety properties:

I Progress: A well-typed term t (where t is not a value) can
take a step: t −→ t ′.

I Preservation: If Γ ` t : τ and t −→ t ′, then Γ ` t ′ : τ .

Proof differences from λ→:

I Need to handle the new syntax: type abstractions (Λα.t) and
type applications (t[τ ]).

I Need corresponding cases in the proofs (e.g., for T-TAbs,
T-TApp rules in Preservation).

I Requires lemmas about substitution involving types (e.g., type
substitution preserves typing).

I Handling of environment can become quite technical,
depending on the encoding. Maybe having two environment is
easier.

Result: Well-typed System F programs do not get stuck.
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Metatheory: Strong Normalization

Recall Strong Normalization (SN) for λ→: All well-typed terms
terminate (evaluation reaches a value). Does System F have

Strong Normalization?

Yes! (Girard 1972)

Attempting to extend the λ→ proof method naively fails.

I The logical relation in λ→ is defined inductively on the
structure of types.

I How to define the relation for ∀α.τ?

I R∀α.F = {u|∀T , uT ∈ RF [α→T ]}? Fishy. It is a circular
definition : R∀α.α is defined from itself (take T = ∀α.α)!

I Girard’s proof requires a trick/proof technique (reducibility
candidates).

System F is significantly more powerful than λ→, but still
guarantees termination.
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Metatheory: Evaluation of System F

Naive evaluation:

I Follows the reduction rules directly (E-AppAbs, E-TAppTAbs).

I Carry types around at runtime.

I Perform substitutions in types and terms.

Observation: Type information (Λα, t[τ ]) guides reduction but
doesn’t change ”computational content”.

I There is no reduction *within* types themselves in System F.

I Is carrying all this type information strictly necessary for
computation?
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Metatheory: Evaluation of System F with erasure

Introduce Erasure: A function erase(t) that removes all type
annotations and operations.

I erase(λx : τ.t) = λx .erase(t)

I erase(t1 t2) = erase(t1) erase(t2)

I erase(Λα.t) = erase(t)

I erase(t[τ ]) = erase(t)

Result: erase(t) is an untyped lambda calculus term. Evaluation in
System F simulates evaluation in untyped λ-calculus after erasure.
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Metatheory: Type Inference / Reconstruction

Erasure maps a System F term to an untyped term.
Question: Is erasure always invertible? Given an untyped term u,
can we find a System F term t such that erase(t) = u and
∅ ` t : τ for some τ? (Type Reconstruction/Inference)

Answer: Clearly not! Consider the term Ω. More interestingly, for a
given term, deciding if there exists a preimage in System F is
Undecidable.

Why is it hard?
I Where to put Λα and t[τ ]? Many possibilities.
I Determining the polymorphic types (∀) is complex.
I Requires higher-order unification in general.

This is why languages like Haskell and ML use restricted forms of
polymorphism (like Hindley-Milner / Rank-1 polymorphism) where
type inference is decidable. System F is too expressive for full
inference.
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Parametricity and Theorems for Free (1/2)

Consider the type ∀α.α→α. What terms have this type?

Only the identity function (Λα.λx : α.x), module reduction. Why?
Because the function must work uniformly for *all* types α. It
cannot inspect the type α or behave differently based on it. It can
only pass the value x through.

Similarly, consider ∀α.α→α→α. What are the possible terms?
Λα.λx : α.λy : α.x and Λα.λx : α.λy : α.y .
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Parametricity and Theorems for Free (2/2)

Consider map : ∀α.∀β.(α→β)→List(α)→List(β). Parametricity
tells us properties this function *must* have, e.g.,

map(f ◦ g) = map(f ) ◦ map(g)

These properties arise ”for free” just from the polymorphic type,
without looking at the implementation.

Intuition: Universal quantification (∀α) provides strong guarantees.
A function polymorphic in α must treat values of type α abstractly,
leading to uniform behavior across all types. This gives semantic
guarantees beyond just type safety.
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Curry-Howard for System F

Recall Curry-Howard for λ→:
I Types ↔ Propositions
I Terms ↔ Proofs
I τ1→τ2 ↔ P1 ⇒ P2 (Implication)
I τ1 × τ2 ↔ P1 ∧ P2 (Conjunction)
I τ1 + τ2 ↔ P1 ∨ P2 (Disjunction)

Well-typed terms correspond to constructive proofs in intuitionistic
propositional logic.
What about the new rules in System F?
I Type variable α↔ Propositional variable A
I Type abstraction Λα.t ↔ Universal quantification

introduction (∀)
I Type application t[τ ]↔ Universal quantification elimination

(∀-elim)

So, ∀α.τ ↔ ∀A.P
System F corresponds to **Second-Order Intuitionistic
Propositional Logic**.
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Beyond System F

System F (parametric polymorphism) is powerful, but other forms
exist:

I Overloading: Functions with the same name behave
differently based on static argument types (e.g., ‘+‘ for Ints
and Floats). Often handled via mechanisms like type classes
(Haskell) or implicit parameters (Scala).

I Subtype Polymorphism: If τ1 is a subtype of τ2 (τ1 <: τ2),
then a value of type τ1 can be used where a value of type τ2 is
expected. Common in object-oriented languages.

These can be combined, leading to systems like System F<:

(System F with subtyping).
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