

Foundations of Software

Spring 2025

Week 09

Plan

PREVIOUSLY: Extensions to STLC (Pairs, Sums, Records, Recursion, State, etc.)

Plan

PREVIOUSLY: Extensions to STLC (Pairs, Sums, Records, Recursion, State, etc.)

TODAY: Polymorphism ([System F](#))

1. Motivation: Code Reuse and Encapsulation
2. Intuitive Construction of [System F](#)
3. Formal Definition: Syntax, Typing, Reduction
4. Encodings in [System F](#): Booleans, Naturals, Pairs, Encapsulation
5. Metatheory: Soundness, Normalization, Evaluation
6. Parametricity and Theorems for Free
7. Curry-Howard for [System F](#)
8. Other Kinds of Polymorphism

Motivation (1/2): Code Repetition

Consider writing common functions in $\lambda\rightarrow$:

- ▶ `map : (Int→Int)→List Int→List Int`
- ▶ `map : (Bool→Bool)→List Bool→List Bool`
- ▶ `sort : (Int→Int→Bool)→List Int→List Int`

Problem: The core logic is identical, but $\lambda\rightarrow$ forces us to write separate versions for each type. We cannot write a single generic `map` or `sort`.

Motivation (1/2): Code Repetition

Consider writing common functions in $\lambda\rightarrow$:

- ▶ `map : (Int→Int)→List Int→List Int`
- ▶ `map : (Bool→Bool)→List Bool→List Bool`
- ▶ `sort : (Int→Int→Bool)→List Int→List Int`

Problem: The core logic is identical, but $\lambda\rightarrow$ forces us to write separate versions for each type. We cannot write a single generic `map` or `sort`.

We want a way to parameterize functions by types.

Motivation (2/2): Encapsulation

Imagine providing a Stack data structure:

- ▶ We want to offer an interface:
 - ▶ `empty : StackInt`
 - ▶ `push : Int → StackInt → StackInt`
 - ▶ `pop : StackInt → (Int × StackInt)`
 - ▶ `isEmpty : StackInt → Bool`
- ▶ We want to **hide** the concrete implementation (e.g., using lists, arrays). Users should **only** interact through the interface types.

Motivation (2/2): Encapsulation

Imagine providing a Stack data structure:

- ▶ We want to offer an interface:
 - ▶ `empty : StackInt`
 - ▶ `push : Int → StackInt → StackInt`
 - ▶ `pop : StackInt → (Int × StackInt)`
 - ▶ `isEmpty : StackInt → Bool`
- ▶ We want to **hide** the concrete implementation (e.g., using lists, arrays). Users should **only** interact through the interface types.

Problem: $\lambda\rightarrow$ doesn't directly support hiding implementation details behind an abstract type interface. We want machinery for abstract data types. Polymorphism ([System F](#)) will provide (partial) solutions for both code reuse and encapsulation.

Motivation (2/2): Encapsulation

Imagine providing a Stack data structure:

- ▶ We want to offer an interface:
 - ▶ `empty : StackInt`
 - ▶ `push : Int → StackInt → StackInt`
 - ▶ `pop : StackInt → (Int × StackInt)`
 - ▶ `isEmpty : StackInt → Bool`
- ▶ We want to **hide** the concrete implementation (e.g., using lists, arrays). Users should **only** interact through the interface types.

Problem: $\lambda \rightarrow$ doesn't directly support hiding implementation details behind an abstract type interface. We want machinery for abstract data types. Polymorphism ([System F](#)) will provide (partial) solutions for both code reuse and encapsulation.

Bonus: Church encodings will be legal again!

Intuitive Construction of System F

Idea: Allow *types* themselves to be parameters.

Intuitive Construction of System F

Idea: Allow *types* themselves to be parameters.

Example: A generic 'const' function: `const 42`, or `const true`

- ▶ We want to abstract over the return type of the domain, say β . Sometimes it will be `int`, or `bool`.
- ▶ Return a function that should itself accept different types!
`const 42 0 = 42, const 42 false = 42`

Intuitive Construction of System F

We introduce:

- ▶ Type variables (e.g., α, β) as placeholders for types.
- ▶ Type abstraction ($\Lambda \alpha. t$) to create functions that take a type as an argument.
- ▶ Type application ($t[\tau]$) to provide a concrete type to a polymorphic function, specializing it.

Intuitive Construction of System F

We introduce:

- ▶ Type variables (e.g., α, β) as placeholders for types.
- ▶ Type abstraction ($\Lambda \alpha. t$) to create functions that take a type as an argument.
- ▶ Type application ($t[\tau]$) to provide a concrete type to a polymorphic function, specializing it.

Example: Polymorphic constant function ('const')

$$\text{const} = \Lambda \beta. \lambda x : \beta. \Lambda \alpha. \lambda y : \alpha. x$$

This function takes one type argument β and one term argument (x of type β), and returns a function that takes one type argument α and a term argument of type α and returns x .

Intuitive Construction of System F

We introduce:

- ▶ Type variables (e.g., α, β) as placeholders for types.
- ▶ Type abstraction ($\Lambda \alpha. t$) to create functions that take a type as an argument.
- ▶ Type application ($t[\tau]$) to provide a concrete type to a polymorphic function, specializing it.

Example: Polymorphic constant function ('const')

$$\text{const} = \Lambda \beta. \lambda x : \beta. \Lambda \alpha. \lambda y : \alpha. x$$

This function takes one type argument β and one term argument (x of type β), and returns a function that takes one type argument α and a term argument of type α and returns x .

The type of `const` is: $\forall \beta. \beta \rightarrow (\forall \alpha. \alpha \rightarrow \beta)$

Example in intuitive System F

const = $\Lambda\beta.\lambda x : \beta.\Lambda\alpha.\lambda y : \alpha.x$

Example in intuitive System F

$\text{const} = \Lambda\beta.\lambda x : \beta.\Lambda\alpha.\lambda y : \alpha.x$

Applying the function: We can specialize 'const' by providing a first concrete type:

const[Int]

This specialized function has type: $\text{Int} \rightarrow \forall\beta, \beta \rightarrow \text{Int}$

Then apply it to the value, then the other type and the value :

$(\text{const[Int]} 42)[\text{Bool}] \text{ true}$

This evaluates to 42.

$(\text{const[Int]} 42)[\text{Int}] 13$

This evaluates to 42.

System F: Formal Syntax

$\tau ::=$

α
 $\tau_1 \rightarrow \tau_2$
 $\forall \alpha. \tau$

Types

Type variable
Function type
Universal type

$t ::=$

x
 $\lambda x : \tau. t$
 $t_1 \ t_2$
 $\Lambda \alpha. t$
 $t[\tau]$

Terms

Variable
Lambda abstraction
Application
Type abstraction
Type application

$\Gamma ::=$

\emptyset
 $\Gamma, x : \tau$
 Γ, α

Contexts

Empty context
Term variable binding
Type variable binding

System F: Values

Values represent the results of computation. In System F, these are functions (waiting for a term argument) and polymorphic functions (waiting for a type argument).

$v ::=$

$\lambda x : \tau. t$

$\lambda \alpha. t$

Values

Lambda abstraction value

Type abstraction value

Note: Variables (x), applications ($t_1 t_2$), and type applications ($t[\tau]$) are **not** values. Evaluation will proceed until one of the value forms above is reached.

System F: Typing Rules (1/2)

Variables and Abstraction/Application (like STLC, but context can have type variables):

$$\frac{x : \tau \in \Gamma}{\Gamma \vdash x : \tau} \quad (\text{T-VAR})$$

$$\frac{\Gamma, x : \tau_1 \vdash t_2 : \tau_2}{\Gamma \vdash \lambda x : \tau_1. t_2 : \tau_1 \rightarrow \tau_2} \quad (\text{T-ABS})$$

$$\frac{\Gamma \vdash t_1 : \tau_{11} \rightarrow \tau_{12} \quad \Gamma \vdash t_2 : \tau_{11}}{\Gamma \vdash t_1 \ t_2 : \tau_{12}} \quad (\text{T-APP})$$

System F: Typing Rules (2/2)

New rules for Polymorphism:

$$\frac{\Gamma, \alpha \vdash t : \tau \quad (\alpha \text{ not free in } \Gamma)}{\Gamma \vdash \Lambda\alpha.t : \forall\alpha.\tau} \quad (\text{T-TABS})$$

(Introduces a polymorphic type)

System F: Typing Rules (2/2)

New rules for Polymorphism:

$$\frac{\Gamma, \alpha \vdash t : \tau \quad (\alpha \text{ not free in } \Gamma)}{\Gamma \vdash \Lambda \alpha. t : \forall \alpha. \tau} \quad (\text{T-TABS})$$

(Introduces a polymorphic type)

$$\frac{\Gamma \vdash t_1 : \forall \alpha. \tau_{11} \quad \Gamma \vdash \tau_{12} \text{ type}}{\Gamma \vdash t_1[\tau_{12}] : [\alpha \mapsto \tau_{12}] \tau_{11}} \quad (\text{T-TAPP})$$

(Eliminates a polymorphic type by substitution)

System F: Reduction Rules 1/2

Standard Beta-reduction:

$$(\lambda x : \tau_1. t_{12}) \ v_2 \longrightarrow [x \mapsto v_2]t_{12} \quad (\text{E-APPABS})$$

System F: Reduction Rules 1/2

Standard Beta-reduction:

$$(\lambda x : \tau_1. t_{12}) v_2 \longrightarrow [x \mapsto v_2] t_{12} \quad (\text{E-APPABS})$$

New reduction for Type Application:

$$(\Lambda \alpha. t_{11})[\tau_2] \longrightarrow [\alpha \mapsto \tau_2] t_{11} \quad (\text{E-TAPPTABS})$$

(Substitution happens in the term, not just the type)

System F: Reduction Rules (Congruence)

Congruence rules (standard for App1, App2, plus new one):

$$\frac{t_1 \longrightarrow t'_1}{t_1 \ t_2 \longrightarrow t'_1 \ t_2} \quad (\text{E-APP1})$$

$$\frac{t_2 \longrightarrow t'_2}{v_1 \ t_2 \longrightarrow v_1 \ t'_2} \quad (\text{E-APP2})$$

$$\frac{t \longrightarrow t'}{t[\tau] \longrightarrow t'[\tau]} \quad (\text{E-TAPP})$$

System F Example: Identity

Polymorphic Identity Function: $\text{id} = \Lambda\alpha.\lambda x : \alpha.x$

Typing Derivation ($\Gamma = \emptyset$):

1. $\alpha, x : \alpha \vdash x : \alpha$ (T-Var)
2. $\alpha \vdash \lambda x : \alpha.x : \alpha \rightarrow \alpha$ (T-Abs)
3. $\emptyset \vdash \Lambda\alpha.\lambda x : \alpha.x : \forall\alpha.\alpha \rightarrow \alpha$ (T-TAbs)

Using the identity:

- ▶ $\text{id}[\text{Int}]$ has type $\text{Int} \rightarrow \text{Int}$ (T-TApp)
- ▶ $(\text{id}[\text{Int}]) 5$ has type Int (T-App)

Reduction:

- ▶ $(\Lambda\alpha.\lambda x : \alpha.x)[\text{Int}] \longrightarrow \lambda x : \text{Int}.x$ (E-TAppTAbs)
- ▶ $(\lambda x : \text{Int}.x) 5 \longrightarrow [x \mapsto 5](x) = 5$ (E-AppAbs)

System F Example: Function Composition

Polymorphic Function Composition:

$$\text{compose} = \Lambda\alpha.\Lambda\beta.\Lambda\gamma.\lambda f : (\beta \rightarrow \gamma).\lambda g : (\alpha \rightarrow \beta).\lambda x : \alpha.f(gx)$$

Type:

$$\forall\alpha.\forall\beta.\forall\gamma.(\beta \rightarrow \gamma) \rightarrow (\alpha \rightarrow \beta) \rightarrow \alpha \rightarrow \gamma$$

Usage: `compose[Nat][Nat][Bool] isZero succ`

Encodings in System F

Encoding: Church Booleans (1/3)

Recall Church Booleans in untyped λ -calculus:

- ▶ $\text{True} = \lambda t. \lambda f. t$
- ▶ $\text{False} = \lambda t. \lambda f. f$
- ▶ $\text{if} = \lambda b. \lambda t. \lambda e. b \ t \ e$ (or just apply b directly)

Why not in λ_{\rightarrow} ?

- ▶ We can type True and False if t and f have the same type, e.g., $T \rightarrow T \rightarrow T$.
- ▶ But the *operators* (like and , or , not) are problematic.
- ▶ Example: $\text{and} = \lambda b_1. \lambda b_2. b_1 \ b_2 \ \text{False}$. From looking at the application of b_1 : $T = T \rightarrow T \rightarrow T$, oops.

Encoding: Church Booleans (1/3)

Recall Church Booleans in untyped λ -calculus:

- ▶ $\text{True} = \lambda t. \lambda f. t$
- ▶ $\text{False} = \lambda t. \lambda f. f$
- ▶ $\text{if} = \lambda b. \lambda t. \lambda e. b \ t \ e$ (or just apply b directly)

Why not in λ_{\rightarrow} ?

- ▶ We can type True and False if t and f have the same type, e.g., $T \rightarrow T \rightarrow T$.
- ▶ But the *operators* (like and , or , not) are problematic.
- ▶ Example: $\text{and} = \lambda b_1. \lambda b_2. b_1 \ b_2 \ \text{False}$. From looking at the application of b_1 : $T = T \rightarrow T \rightarrow T$, oops.

Intuition: A boolean, due to its encoding, must work with different types: e.g., used directly $b \ 0 \ 1$, but also sometimes it is used to apply to another boolean, like in $b_1 \ b_2 \ \text{false}$. In general, a boolean should take two arguments (then/else) of *any* type α and return one of these two arguments.

Encoding: Church Booleans (2/3)

Polymorphic Type for Booleans in System F:

$$\text{Bool}_{\text{Church}} = \forall \alpha. \alpha \rightarrow \alpha \rightarrow \alpha$$

Definitions:

$$\text{True} = \Lambda \alpha. \lambda t : \alpha. \lambda f : \alpha. t$$

$$\text{False} = \Lambda \alpha. \lambda t : \alpha. \lambda f : \alpha. f$$

Check type: $\emptyset \vdash \text{True} : \text{Bool}_{\text{Church}}$ (similar derivation to identity)

Encoding: Church Booleans (3/3)

Now we ***can*** define operators:

$\text{and} = \lambda b_1 : \text{Bool}_{\text{Church}}. \lambda b_2 : \text{Bool}_{\text{Church}}. b_1[\text{Bool}_{\text{Church}}] b_2$ False

$\text{and} : \text{Bool}_{\text{Church}} \rightarrow \text{Bool}_{\text{Church}} \rightarrow \text{Bool}_{\text{Church}}$

Encoding: Church Booleans (3/3)

Now we ***can*** define operators:

$\text{and} = \lambda b_1 : \text{Bool}_{\text{Church}}. \lambda b_2 : \text{Bool}_{\text{Church}}. b_1[\text{Bool}_{\text{Church}}] b_2$ False

$\text{and} : \text{Bool}_{\text{Church}} \rightarrow \text{Bool}_{\text{Church}} \rightarrow \text{Bool}_{\text{Church}}$

Subtlety: The type application $b_1[\text{Bool}_{\text{Church}}]$ specializes the boolean b_1 to return... another boolean! This "self-reference" at the type level is key.

Encoding: Church Numerals (1/2)

Recall Church Numerals:

- ▶ $\bar{0} = \lambda s. \lambda z. z$
- ▶ $\bar{1} = \lambda s. \lambda z. sz$
- ▶ $\bar{n} = \lambda s. \lambda z. s^n z$

Intuition: A numeral \bar{n} takes a successor function s and a zero value z , and applies s n times to z . The types of s and z should be flexible.

Polymorphic Type in System F:

$$\text{Nat}_{\text{Church}} = \forall \alpha. (\alpha \rightarrow \alpha) \rightarrow \alpha \rightarrow \alpha$$

Encoding: Church Numerals (1/2)

Recall Church Numerals:

- ▶ $\bar{0} = \lambda s. \lambda z. z$
- ▶ $\bar{1} = \lambda s. \lambda z. sz$
- ▶ $\bar{n} = \lambda s. \lambda z. s^n z$

Intuition: A numeral \bar{n} takes a successor function s and a zero value z , and applies s n times to z . The types of s and z should be flexible.

Polymorphic Type in System F:

$$\text{Nat}_{\text{Church}} = \forall \alpha. (\alpha \rightarrow \alpha) \rightarrow \alpha \rightarrow \alpha$$

Definitions:

$$\bar{0} = \Lambda \alpha. \lambda s : (\alpha \rightarrow \alpha). \lambda z : \alpha. z$$

$$\text{succ} = \lambda n : \text{Nat}_{\text{Church}}. \Lambda \alpha. \lambda s : (\alpha \rightarrow \alpha). \lambda z : \alpha. s(n[\alpha] s z)$$

Encoding: Church Numerals (2/2)

Definitions:

$$\bar{0} = \Lambda\alpha.\lambda s : (\alpha \rightarrow \alpha).\lambda z : \alpha.z$$

$$\text{succ} = \lambda n : \text{Nat}_{\text{Church}}.\Lambda\alpha.\lambda s : (\alpha \rightarrow \alpha).\lambda z : \alpha.s(n[\alpha] s z)$$

Example: Plus

$$\begin{aligned} \text{plus} = \lambda m : \text{Nat}_{\text{Church}}. & \lambda n : \text{Nat}_{\text{Church}}. \\ & \Lambda\alpha.\lambda s : (\alpha \rightarrow \alpha).\lambda z : \alpha. \\ & m[\alpha] s (n[\alpha] s z) \end{aligned}$$

Encoding: Pairs

Can we encode pairs without built-in product types ($\tau_1 \times \tau_2$)?

Encoding: Pairs

Can we encode pairs without built-in product types ($\tau_1 \times \tau_2$)?

Yes!

Encoding: Pairs

Can we encode pairs without built-in product types ($\tau_1 \times \tau_2$)?

Yes!

Intuition: A pair (a, b) is something that, when given a function f , applies f to a and b . The result type depends on f .

Encoding: Pairs

Can we encode pairs without built-in product types ($\tau_1 \times \tau_2$)?

Yes!

Intuition: A pair (a, b) is something that, when given a function f , applies f to a and b . The result type depends on f . Polymorphic Type:

$$\text{Pair}(\tau_1, \tau_2) = \forall \beta. (\tau_1 \rightarrow \tau_2 \rightarrow \beta) \rightarrow \beta$$

Encoding: Pairs

Can we encode pairs without built-in product types ($\tau_1 \times \tau_2$)?

Yes!

Intuition: A pair (a, b) is something that, when given a function f , applies f to a and b . The result type depends on f . Polymorphic Type:

$$\text{Pair}(\tau_1, \tau_2) = \forall \beta. (\tau_1 \rightarrow \tau_2 \rightarrow \beta) \rightarrow \beta$$

Constructor:

$$\text{mkpair} = \Lambda \tau_1. \Lambda \tau_2. \lambda x : \tau_1. \lambda y : \tau_2. \Lambda \beta. \lambda f : (\tau_1 \rightarrow \tau_2 \rightarrow \beta). f \ x \ y$$

$$\text{mkpair} : \forall \tau_1. \forall \tau_2. \tau_1 \rightarrow \tau_2 \rightarrow \text{Pair}(\tau_1, \tau_2)$$

Encoding: Pairs

Can we encode pairs without built-in product types ($\tau_1 \times \tau_2$)?

Yes!

Intuition: A pair (a, b) is something that, when given a function f , applies f to a and b . The result type depends on f . Polymorphic Type:

$$\text{Pair}(\tau_1, \tau_2) = \forall \beta. (\tau_1 \rightarrow \tau_2 \rightarrow \beta) \rightarrow \beta$$

Constructor:

$$\text{mkpair} = \Lambda \tau_1. \Lambda \tau_2. \lambda x : \tau_1. \lambda y : \tau_2. \Lambda \beta. \lambda f : (\tau_1 \rightarrow \tau_2 \rightarrow \beta). f \ x \ y$$

$$\text{mkpair} : \forall \tau_1. \forall \tau_2. \tau_1 \rightarrow \tau_2 \rightarrow \text{Pair}(\tau_1, \tau_2)$$

Projections:

$$\text{fst} = \Lambda \tau_1. \Lambda \tau_2. \lambda p : \text{Pair}(\tau_1, \tau_2). p[\tau_1] (\lambda x : \tau_1. \lambda y : \tau_2. x)$$

$$\text{fst} : \forall \tau_1. \forall \tau_2. \text{Pair}(\tau_1, \tau_2) \rightarrow \tau_1$$

Abstract Data Types via Existentials

Goal: Bundle a hidden representation type (ρ) with operations acting on it.

Informal Idea (Stack): We want a type that means: "There exists some type ρ (the stack representation), such that we have:

- ▶ An empty element of type ρ .
- ▶ A push operation: $\rho \rightarrow \text{Int} \rightarrow \rho$.
- ▶ A pop operation: $\rho \rightarrow \text{Option}(\text{Int} \times \rho)$.

This is written conceptually as:

$$\exists \rho. \{\text{empty} : \rho, \text{push} : \rho \rightarrow \text{Int} \rightarrow \rho, \text{pop} : \rho \rightarrow \text{Option}(\text{Int} \times \rho)\}$$

Abstract Data Types via Existentials

Goal: Bundle a hidden representation type (ρ) with operations acting on it.

Informal Idea (Stack): We want a type that means: "There exists some type ρ (the stack representation), such that we have:

- ▶ An empty element of type ρ .
- ▶ A push operation: $\rho \rightarrow \text{Int} \rightarrow \rho$.
- ▶ A pop operation: $\rho \rightarrow \text{Option}(\text{Int} \times \rho)$.

This is written conceptually as:

$$\exists \rho. \{\text{empty} : \rho, \text{push} : \rho \rightarrow \text{Int} \rightarrow \rho, \text{pop} : \rho \rightarrow \text{Option}(\text{Int} \times \rho)\}$$

We need to encode this \exists using \forall in System F.

Stack ADT - Encoding the Type

Let's define the interface signature type (dependent on ρ):

$$\text{StackInterface}(\rho) = \{\text{empty} : \rho, \text{push} : \rho \rightarrow \text{Int} \rightarrow \rho, \text{pop} : \dots\}$$

(Assuming a record type '...' exists or is encoded in System F)

Stack ADT - Encoding the Type

Let's define the interface signature type (dependent on ρ):

$$\text{StackInterface}(\rho) = \{\text{empty} : \rho, \text{push} : \rho \rightarrow \text{Int} \rightarrow \rho, \text{pop} : \dots\}$$

(Assuming a record type '...' exists or is encoded in System F)

Now, encode the existential $\exists \rho. \text{StackInterface}(\rho)$ using the universal quantifier:

$$\text{StackADT} = \forall \alpha. (\forall \rho. (\text{StackInterface}(\rho) \rightarrow \alpha)) \rightarrow \alpha$$

Stack ADT - Encoding the Type

Let's define the interface signature type (dependent on ρ):

$$\text{StackInterface}(\rho) = \{\text{empty} : \rho, \text{push} : \rho \rightarrow \text{Int} \rightarrow \rho, \text{pop} : \dots\}$$

(Assuming a record type '...' exists or is encoded in System F)

Now, encode the existential $\exists \rho. \text{StackInterface}(\rho)$ using the universal quantifier:

$$\text{StackADT} = \forall \alpha. (\forall \rho. (\text{StackInterface}(\rho) \rightarrow \alpha)) \rightarrow \alpha$$

Let's explain with an example this weird type:

- ▶ how to produce a StackADT.
- ▶ how to use a StackADT.

Stack ADT - Implementation

Let's choose a concrete representation: $\rho = \text{List}(\text{Int})$ (assume Lists are encoded).

First, implement the interface for $\text{List}(\text{Int})$:

Stack ADT - Implementation

Let's choose a concrete representation: $\rho = \text{List}(\text{Int})$ (assume Lists are encoded).

First, implement the interface for `List(Int)`:

```
concreteEmpty : List(Int) = Nil
concretePush : List(Int) -> Int -> List(Int) =
  fun s i -> Cons i s
concretePop : List(Int) -> Option(Int * List(Int)) =
  fun s -> case s of
    Nil          -> None
    | Cons h t ->  or Some (mkpair h t)

concreteIFace : StackInterface(List(Int)) =
{ empty = concreteEmpty,
  push = concretePush,
  pop = concretePop }
```

Stack ADT - Implementation Packing

Now, pack this implementation into the 'StackADT' type:

mkListStack : StackADT =

$\lambda\alpha.\lambda k : (\forall\rho.(\text{StackInterface}(\rho) \rightarrow \alpha)).$

$k[\text{List}(\text{Int})]$ concreteFace

Stack ADT - Implementation Packing

Now, pack this implementation into the 'StackADT' type:

mkListStack : StackADT =

$\lambda\alpha.\lambda k : (\forall\rho.(\text{StackInterface}(\rho) \rightarrow \alpha))$.

$k[\text{List}(\text{Int})]$ concreteFace

The value 'mkListStack' has type 'StackADT'. Its user doesn't know $\rho = \text{List}(\text{Int})$.

Stack ADT - Usage (Unpacking)

A client has a value, say 'myStack : StackADT'.

Stack ADT - Usage (Unpacking)

A client has a value, say ‘myStack : StackADT’.

Example: Compute a simple value, e.g., returns the value popped after push 1.

```
useStack(s : StackADT) =  
  s[Option(Int)]  
  (Λρ.λiface : StackInterface(ρ).  
    let s0 = iface.empty in  
    let s1 = iface.push s0 1 in  
    match (iface.pop s1) with  
      None → None  
      |Some p → Some (p.1) end)
```

Stack ADT - Interpretation

$$\text{StackADT} = \forall \alpha. (\forall \rho. (\text{StackInterface}(\rho) \rightarrow \alpha)) \rightarrow \alpha$$

Interpretation:

- ▶ A value of type 'StackADT' is a "package".
- ▶ To use the package (to get a result of type α), you must provide a function (the continuation k).
- ▶ This function k must be polymorphic in the hidden representation ρ ($\forall \rho$). It takes the interface for that ρ and produces an α .
- ▶ The package, when opened, applies the user's universal function k to its specific hidden representation type and its concrete interface implementation.

Stack ADT - Interpretation

$$\text{StackADT} = \forall \alpha. (\forall \rho. (\text{StackInterface}(\rho) \rightarrow \alpha)) \rightarrow \alpha$$

Interpretation:

- ▶ A value of type 'StackADT' is a "package".
- ▶ To use the package (to get a result of type α), you must provide a function (the continuation k).
- ▶ This function k must be polymorphic in the hidden representation ρ ($\forall \rho$). It takes the interface for that ρ and produces an α .
- ▶ The package, when opened, applies the user's universal function k to its specific hidden representation type and its concrete interface implementation.
- ▶ Limitations?

Metatheory of System F

Metatheory: Soundness

Like $\lambda\rightarrow$, System F enjoys safety properties:

- ▶ **Progress:** A well-typed term t (where t is not a value) can take a step: $t \rightarrow t'$.
- ▶ **Preservation:** If $\Gamma \vdash t : \tau$ and $t \rightarrow t'$, then $\Gamma \vdash t' : \tau$.

Proof differences from $\lambda\rightarrow$:

Metatheory: Soundness

Like $\lambda\rightarrow$, System F enjoys safety properties:

- ▶ **Progress:** A well-typed term t (where t is not a value) can take a step: $t \rightarrow t'$.
- ▶ **Preservation:** If $\Gamma \vdash t : \tau$ and $t \rightarrow t'$, then $\Gamma \vdash t' : \tau$.

Proof differences from $\lambda\rightarrow$:

- ▶ Need to handle the new syntax: type abstractions ($\Lambda\alpha.t$) and type applications ($t[\tau]$).
- ▶ Need corresponding cases in the proofs (e.g., for T-TAbs, T-TApp rules in Preservation).

Metatheory: Soundness

Like $\lambda\rightarrow$, System F enjoys safety properties:

- ▶ **Progress:** A well-typed term t (where t is not a value) can take a step: $t \rightarrow t'$.
- ▶ **Preservation:** If $\Gamma \vdash t : \tau$ and $t \rightarrow t'$, then $\Gamma \vdash t' : \tau$.

Proof differences from $\lambda\rightarrow$:

- ▶ Need to handle the new syntax: type abstractions ($\Lambda\alpha.t$) and type applications ($t[\tau]$).
- ▶ Need corresponding cases in the proofs (e.g., for T-TAbs, T-TApp rules in Preservation).
- ▶ Requires lemmas about substitution involving types (e.g., type substitution preserves typing).

Metatheory: Soundness

Like $\lambda\rightarrow$, System F enjoys safety properties:

- ▶ **Progress:** A well-typed term t (where t is not a value) can take a step: $t \rightarrow t'$.
- ▶ **Preservation:** If $\Gamma \vdash t : \tau$ and $t \rightarrow t'$, then $\Gamma \vdash t' : \tau$.

Proof differences from $\lambda\rightarrow$:

- ▶ Need to handle the new syntax: type abstractions ($\Lambda\alpha.t$) and type applications ($t[\tau]$).
- ▶ Need corresponding cases in the proofs (e.g., for T-TAbs, T-TApp rules in Preservation).
- ▶ Requires lemmas about substitution involving types (e.g., type substitution preserves typing).
- ▶ Handling of environment can become quite technical, depending on the encoding. Maybe having two environment is easier.

Metatheory: Soundness

Like λ_{\rightarrow} , System F enjoys safety properties:

- ▶ **Progress:** A well-typed term t (where t is not a value) can take a step: $t \rightarrow t'$.
- ▶ **Preservation:** If $\Gamma \vdash t : \tau$ and $t \rightarrow t'$, then $\Gamma \vdash t' : \tau$.

Proof differences from λ_{\rightarrow} :

- ▶ Need to handle the new syntax: type abstractions ($\Lambda\alpha.t$) and type applications ($t[\tau]$).
- ▶ Need corresponding cases in the proofs (e.g., for T-TAbs, T-TApp rules in Preservation).
- ▶ Requires lemmas about substitution involving types (e.g., type substitution preserves typing).
- ▶ Handling of environment can become quite technical, depending on the encoding. Maybe having two environment is easier.

Result: Well-typed System F programs do not get stuck.

Metatheory: Strong Normalization

Recall Strong Normalization (SN) for $\lambda\rightarrow$: All well-typed terms terminate (evaluation reaches a value). Does System F have

Strong Normalization?

Metatheory: Strong Normalization

Recall Strong Normalization (SN) for $\lambda\rightarrow$: All well-typed terms terminate (evaluation reaches a value). Does System F have

Strong Normalization? **Yes!** (Girard 1972)

Metatheory: Strong Normalization

Recall Strong Normalization (SN) for $\lambda\rightarrow$: All well-typed terms terminate (evaluation reaches a value). Does System F have

Strong Normalization? **Yes!** (Girard 1972)

Attempting to extend the $\lambda\rightarrow$ proof method naively fails.

- ▶ The logical relation in $\lambda\rightarrow$ is defined inductively on the structure of types.
- ▶ How to define the relation for $\forall\alpha.\tau$?

Metatheory: Strong Normalization

Recall Strong Normalization (SN) for $\lambda\rightarrow$: All well-typed terms terminate (evaluation reaches a value). Does System F have

Strong Normalization? **Yes!** (Girard 1972)

Attempting to extend the $\lambda\rightarrow$ proof method naively fails.

- ▶ The logical relation in $\lambda\rightarrow$ is defined inductively on the structure of types.
- ▶ How to define the relation for $\forall\alpha.\tau$?
- ▶ $R_{\forall\alpha.F} = \{u \mid \forall T, uT \in R_{F[\alpha \rightarrow T]}\}$?

Metatheory: Strong Normalization

Recall Strong Normalization (SN) for $\lambda\rightarrow$: All well-typed terms terminate (evaluation reaches a value). Does System F have

Strong Normalization? **Yes!** (Girard 1972)

Attempting to extend the $\lambda\rightarrow$ proof method naively fails.

- ▶ The logical relation in $\lambda\rightarrow$ is defined inductively on the structure of types.
- ▶ How to define the relation for $\forall\alpha.\tau$?
- ▶ $R_{\forall\alpha.F} = \{u \mid \forall T, uT \in R_{F[\alpha \rightarrow T]}\}$? Fishy. It is a circular definition : $R_{\forall\alpha.\alpha}$ is defined from itself (take $T = \forall\alpha.\alpha$)!

Metatheory: Strong Normalization

Recall Strong Normalization (SN) for $\lambda\rightarrow$: All well-typed terms terminate (evaluation reaches a value). Does System F have

Strong Normalization? **Yes!** (Girard 1972)

Attempting to extend the $\lambda\rightarrow$ proof method naively fails.

- ▶ The logical relation in $\lambda\rightarrow$ is defined inductively on the structure of types.
- ▶ How to define the relation for $\forall\alpha.\tau$?
- ▶ $R_{\forall\alpha.F} = \{u \mid \forall T, uT \in R_{F[\alpha \rightarrow T]}\}$? Fishy. It is a circular definition : $R_{\forall\alpha.\alpha}$ is defined from itself (take $T = \forall\alpha.\alpha$)!
- ▶ Girard's proof requires a trick/proof technique (reducibility candidates).

System F is significantly more powerful than $\lambda\rightarrow$, but still guarantees termination.

Metatheory: Evaluation of System F

Naive evaluation:

- ▶ Follows the reduction rules directly (E-AppAbs, E-TAppTAbs).
- ▶ Carry types around at runtime.
- ▶ Perform substitutions in types and terms.

Metatheory: Evaluation of System F

Naive evaluation:

- ▶ Follows the reduction rules directly (E-AppAbs, E-TAppTAbs).
- ▶ Carry types around at runtime.
- ▶ Perform substitutions in types and terms.

Observation: Type information ($\Lambda\alpha, t[\tau]$) guides reduction but doesn't change "computational content".

- ▶ There is no reduction *within* types themselves in System F.
- ▶ Is carrying all this type information strictly necessary for computation?

Metatheory: Evaluation of System F with erasure

Introduce **Erasure**: A function $\text{erase}(t)$ that removes all type annotations and operations.

- ▶ $\text{erase}(\lambda x : \tau. t) = \lambda x. \text{erase}(t)$
- ▶ $\text{erase}(t_1 \ t_2) = \text{erase}(t_1) \ \text{erase}(t_2)$
- ▶ $\text{erase}(\Lambda \alpha. t) = \text{erase}(t)$
- ▶ $\text{erase}(t[\tau]) = \text{erase}(t)$

Result: $\text{erase}(t)$ is an untyped lambda calculus term. Evaluation in System F simulates evaluation in untyped λ -calculus after erasure.

Metatheory: Type Inference / Reconstruction

Erasure maps a **System F** term to an untyped term.

Question: Is erasure always invertible? Given an untyped term u , can we find a **System F** term t such that $\text{erase}(t) = u$ and $\emptyset \vdash t : \tau$ for some τ ? (Type Reconstruction/Inference)

Metatheory: Type Inference / Reconstruction

Erasure maps a *System F* term to an untyped term.

Question: Is erasure always invertible? Given an untyped term u , can we find a *System F* term t such that $\text{erase}(t) = u$ and $\emptyset \vdash t : \tau$ for some τ ? (Type Reconstruction/Inference)

Answer: Clearly not! Consider the term Ω .

Metatheory: Type Inference / Reconstruction

Erasure maps a *System F* term to an untyped term.

Question: Is erasure always invertible? Given an untyped term u , can we find a *System F* term t such that $\text{erase}(t) = u$ and $\emptyset \vdash t : \tau$ for some τ ? (Type Reconstruction/Inference)

Answer: Clearly not! Consider the term Ω . More interestingly, for a given term, deciding if there exists a preimage in *System F* is **Undecidable**.

Metatheory: Type Inference / Reconstruction

Erasure maps a *System F* term to an untyped term.

Question: Is erasure always invertible? Given an untyped term u , can we find a *System F* term t such that $\text{erase}(t) = u$ and $\emptyset \vdash t : \tau$ for some τ ? (Type Reconstruction/Inference)

Answer: Clearly not! Consider the term Ω . More interestingly, for a given term, deciding if there exists a preimage in *System F* is **Undecidable**.

Why is it hard?

- ▶ Where to put $\Lambda\alpha$ and $t[\tau]$? Many possibilities.
- ▶ Determining the polymorphic types (\forall) is complex.
- ▶ Requires higher-order unification in general.

Metatheory: Type Inference / Reconstruction

Erasure maps a **System F** term to an untyped term.

Question: Is erasure always invertible? Given an untyped term u , can we find a **System F** term t such that $\text{erase}(t) = u$ and $\emptyset \vdash t : \tau$ for some τ ? (Type Reconstruction/Inference)

Answer: Clearly not! Consider the term Ω . More interestingly, for a given term, deciding if there exists a preimage in **System F** is **Undecidable**.

Why is it hard?

- ▶ Where to put $\Lambda\alpha$ and $t[\tau]$? Many possibilities.
- ▶ Determining the polymorphic types (\forall) is complex.
- ▶ Requires higher-order unification in general.

This is why languages like Haskell and ML use restricted forms of polymorphism (like Hindley-Milner / Rank-1 polymorphism) where type inference is decidable. **System F** is too expressive for full inference.

Parametricity and Theorems for Free (1/2)

Consider the type $\forall \alpha. \alpha \rightarrow \alpha$. What terms have this type?

Parametricity and Theorems for Free (1/2)

Consider the type $\forall \alpha. \alpha \rightarrow \alpha$. What terms have this type?

Only the identity function ($\Lambda \alpha. \lambda x : \alpha. x$), modulo reduction. Why?
Because the function must work uniformly for *all* types α . It cannot inspect the type α or behave differently based on it. It can only pass the value x through.

Parametricity and Theorems for Free (1/2)

Consider the type $\forall \alpha. \alpha \rightarrow \alpha$. What terms have this type?

Only the identity function ($\Lambda \alpha. \lambda x : \alpha. x$), modulo reduction. Why?
Because the function must work uniformly for *all* types α . It cannot inspect the type α or behave differently based on it. It can only pass the value x through.

Similarly, consider $\forall \alpha. \alpha \rightarrow \alpha \rightarrow \alpha$. What are the possible terms?

Parametricity and Theorems for Free (1/2)

Consider the type $\forall\alpha.\alpha\rightarrow\alpha$. What terms have this type?

Only the identity function ($\Lambda\alpha.\lambda x : \alpha.x$), modulo reduction. Why?
Because the function must work uniformly for **all** types α . It cannot inspect the type α or behave differently based on it. It can only pass the value x through.

Similarly, consider $\forall\alpha.\alpha\rightarrow\alpha\rightarrow\alpha$. What are the possible terms?

$\Lambda\alpha.\lambda x : \alpha.\lambda y : \alpha.x$ and $\Lambda\alpha.\lambda x : \alpha.\lambda y : \alpha.y$.

Parametricity and Theorems for Free (2/2)

Consider $\text{map} : \forall \alpha. \forall \beta. (\alpha \rightarrow \beta) \rightarrow \text{List}(\alpha) \rightarrow \text{List}(\beta)$. Parametricity tells us properties this function ***must*** have, e.g.,

$$\text{map}(f \circ g) = \text{map}(f) \circ \text{map}(g)$$

Parametricity and Theorems for Free (2/2)

Consider $\text{map} : \forall \alpha. \forall \beta. (\alpha \rightarrow \beta) \rightarrow \text{List}(\alpha) \rightarrow \text{List}(\beta)$. Parametricity tells us properties this function **must** have, e.g.,

$$\text{map}(f \circ g) = \text{map}(f) \circ \text{map}(g)$$

These properties arise "for free" just from the polymorphic type, without looking at the implementation.

Parametricity and Theorems for Free (2/2)

Consider $\text{map} : \forall \alpha. \forall \beta. (\alpha \rightarrow \beta) \rightarrow \text{List}(\alpha) \rightarrow \text{List}(\beta)$. Parametricity tells us properties this function **must** have, e.g.,

$$\text{map}(f \circ g) = \text{map}(f) \circ \text{map}(g)$$

These properties arise "for free" just from the polymorphic type, without looking at the implementation.

Intuition: Universal quantification ($\forall \alpha$) provides strong guarantees. A function polymorphic in α must treat values of type α abstractly, leading to uniform behavior across all types. *This gives semantic guarantees beyond just type safety.*

Curry-Howard for System F

Recall Curry-Howard for λ_{\rightarrow} :

- ▶ Types \leftrightarrow Propositions
- ▶ Terms \leftrightarrow Proofs
- ▶ $\tau_1 \rightarrow \tau_2 \leftrightarrow P_1 \Rightarrow P_2$ (Implication)
- ▶ $\tau_1 \times \tau_2 \leftrightarrow P_1 \wedge P_2$ (Conjunction)
- ▶ $\tau_1 + \tau_2 \leftrightarrow P_1 \vee P_2$ (Disjunction)

Well-typed terms correspond to constructive proofs in intuitionistic propositional logic.

What about the new rules in System F?

- ▶ Type variable $\alpha \leftrightarrow$ Propositional variable A
- ▶ Type abstraction $\Lambda \alpha. t \leftrightarrow$ Universal quantification introduction (\forall)
- ▶ Type application $t[\tau] \leftrightarrow$ Universal quantification elimination (\forall -elim)

So, $\forall \alpha. \tau \leftrightarrow \forall A. P$

System F corresponds to **Second-Order Intuitionistic Propositional Logic**.

Beyond System F

System F (parametric polymorphism) is powerful, but other forms exist:

- ▶ **Overloading:** Functions with the same name behave differently based on static argument types (e.g., '+' for Ints and Floats). Often handled via mechanisms like type classes (Haskell) or implicit parameters (Scala).
- ▶ **Subtype Polymorphism:** If τ_1 is a subtype of τ_2 ($\tau_1 <: \tau_2$), then a value of type τ_1 can be used where a value of type τ_2 is expected. Common in object-oriented languages.

These can be combined, leading to systems like $\text{System F}_{<:}$ (System F with subtyping).