Foundations of Software
Spring 2025

Week 09

Plan

PREVIOUSLY: Extensions to STLC (Pairs, Sums, Records,
Recursion, State, etc.)

Plan

PREVIOUSLY: Extensions to STLC (Pairs, Sums, Records,
Recursion, State, etc.)

TODAY: Polymorphism (System F)

1. Motivation: Code Reuse and Encapsulation

2. Intuitive Construction of System F

3. Formal Definition: Syntax, Typing, Reduction

4. Encodings in System F: Booleans, Naturals, Pairs,
Encapsulation

5. Metatheory: Soundness, Normalization, Evaluation

6. Parametricity and Theorems for Free

7. Curry-Howard for System F

8. Other Kinds of Polymorphism

Motivation (1/2): Code Repetition

Consider writing common functions in _,:
» map : (Int—Int)—List Int—List Int
» map : (Bool—Bool)—List Bool—List Bool
» sort : (Int—Int—Bool)—List Int—List Int

Problem: The core logic is identical, but A, forces us to write
separate versions for each type. We cannot write a single generic
map or sort.

Motivation (1/2): Code Repetition
Consider writing common functions in A\ _.:
» map : (Int—Int)—List Int—List Int
» map : (Bool—Bool)—List Bool—List Bool
» sort : (Int—Int—Bool)—List Int—List Int

Problem: The core logic is identical, but A, forces us to write
separate versions for each type. We cannot write a single generic

map or sort.

We want a way to parameterize functions by types.

Motivation (2/2): Encapsulation

Imagine providing a Stack data structure:
> We want to offer an interface:
» empty : Stackint
» push : Int—Stacklnt—Stacklint
» pop : Stacklnt—(Int x Stackint)
» isEmpty : Stackint—Bool

» We want to *hide* the concrete implementation (e.g., using

lists, arrays). Users should *only* interact through the
interface types.

Motivation (2/2): Encapsulation

Imagine providing a Stack data structure:
> We want to offer an interface:
» empty : Stackint
» push : Int—Stacklnt—Stackint

» pop : Stacklnt—(Int x Stackint)
» isEmpty : Stackint—Bool

» We want to *hide* the concrete implementation (e.g., using
lists, arrays). Users should *only* interact through the
interface types.

Problem: A_. doesn't directly support hiding implementation
details behind an abstract type interface. We want machinery for
abstract data types. Polymorphism (System F) will provide
(partial) solutions for both code reuse and encapsulation.

Motivation (2/2): Encapsulation

Imagine providing a Stack data structure:
> We want to offer an interface:
» empty : Stackint
» push : Int—Stacklnt—Stacklint
» pop : Stacklnt—(Int x Stackint)
» isEmpty : Stackint—Bool
» We want to *hide* the concrete implementation (e.g., using

lists, arrays). Users should *only* interact through the
interface types.

Problem: A_. doesn't directly support hiding implementation
details behind an abstract type interface. We want machinery for
abstract data types. Polymorphism (System F) will provide
(partial) solutions for both code reuse and encapsulation.

Bonus: Church encodings will be legal again!

Intuitive Construction of System F

Idea: Allow types themselves to be parameters.

Intuitive Construction of System F

Idea: Allow types themselves to be parameters.

Example: A generic ‘const’ function: const 42, or const true

> We want to abstract over the return type of the domain, say
. Sometimes it will be int, or bool.

» Return a function that should itself accept different types!
const 42 0 = 42, const 42 false = 42

Intuitive Construction of System F

We introduce:
» Type variables (e.g., o,) as placeholders for types.

» Type abstraction (A«.t) to create functions that take a type
as an argument.

> Type application (z[7]) to provide a concrete type to a
polymorphic function, specializing it.

Intuitive Construction of System F

We introduce:
» Type variables (e.g., o,) as placeholders for types.

» Type abstraction (A«.t) to create functions that take a type
as an argument.

> Type application (z[7]) to provide a concrete type to a
polymorphic function, specializing it.

Example: Polymorphic constant function (‘const’)
const = ABAx: B.Aa Ny a.x

This function takes one type argument 3 and one term argument
(x of type [3), and returns a function that takes one type argument
« and a term argument of type « and returns x.

Intuitive Construction of System F

We introduce:
» Type variables (e.g., o,) as placeholders for types.

» Type abstraction (A«.t) to create functions that take a type
as an argument.

> Type application (z[7]) to provide a concrete type to a
polymorphic function, specializing it.

Example: Polymorphic constant function (‘const’)
const = ABAx: B.Aa Ny a.x

This function takes one type argument 3 and one term argument
(x of type [3), and returns a function that takes one type argument
« and a term argument of type « and returns x.

The type of const is: V3.0 (Va.a—[3)

Example in intuitive System F

const = AB.Ax : B.Aa Ny a.x

Example in intuitive System F

const = ABAx: B.Aa Nyt a.x

Applying the function: We can specialize ‘const’ by providing a
first concrete type:
const|Int]

This specialized function has type: Int—V/j3, f—Int
Then apply it to the value, then the other type and the value :

(const[Int] 42)[Bool] true
This evaluates to 42.
(const[Int] 42)[Int] 13

This evaluates to 42.

System F: Formal Syntax

T = Types
« Type variable
TL—T) Function type
Ya.1 Universal type
t = Terms
X Variable
Ax Tt Lambda abstraction
t to Application
Aa.t Type abstraction
t[7] Type application
ES Contexts
0 Empty context
Mx:r Term variable binding
" Type variable binding

System F: Values

Values represent the results of computation. In System F, these
are functions (waiting for a term argument) and polymorphic
functions (waiting for a type argument).

v o= Values
AX 1 T.t Lambda abstraction value
Aa.t Type abstraction value

Note: Variables (x), applications (t; t»), and type applications
(t[]) are *not* values. Evaluation will proceed until one of the
value forms above is reached.

System F: Typing Rules (1/2)

Variables and Abstraction/Application (like STLC, but context can
have type variables):

x:Ttel
_— (T-VAR)
Me=x:7
[x:mFt:
X 1T B 1T (T-Aps)
= Ax:m.t:i—m
Mt — M-t
1:-T11—7T12 2. T11 (T—APP)
M=t & 7m0

10

System F: Typing Rules (2/2)
New rules for Polymorphism:

NakFt:T (cv not free in T)
I Aa.t: Vo

(T-TABs)

(Introduces a polymorphic type)

11

System F: Typing Rules (2/2)
New rules for Polymorphism:

NakFt:T (cv not free in T)

(T-TABs)
M= Aot : Va.r
(Introduces a polymorphic type)
M+t Vo.r [7o type
1 11 12 yp (T—TAPP)

(e t1[7'12] : [()4 — 7‘12]7’11

(Eliminates a polymorphic type by substitution)

11

System F: Reduction Rules 1/2

Standard Beta-reduction:

()\X : 7‘1.t12) Vo —> [X — V2]t12

(E-APPABS)

12

System F: Reduction Rules 1/2

Standard Beta-reduction:
(Ax :711.t12) vo — [x = woti2 (E-APPABS)
New reduction for Type Application:
(Aav.tin)[m] — [= m]ti1 (E-TApPPTABS)

(Substitution happens in the term, not just the type)

12

System F: Reduction Rules (Congruence)

Congruence rules (standard for Appl, App2, plus new one):

t1 — t]

— (E-APppP1)
t1tp — t] b
th — t)
2—2, (E-ApP2)
vito —vi by
t— t/
(E-TAPppP)

tlr] — t'[7]

13

System F Example: Identity
Polymorphic Identity Function: id = Aa.\x : a.x
Typing Derivation (I = 0)):
1. a,x:ab x:a (T-Var)
2. ab Ax:ax:a—a (T-Abs)
3. 0B Ao dx aex - Voo— o (T-TAbs)
Using the identity:
» id[Int] has type Int—Int (T-TApp)
» (id[Int]) 5 has type Int (T-App)
Reduction:
» (A Ax @ a.x)[Int] — Ax : Int.x (E-TAppTAbs)
> (Ax :Int.x) 5 — [x > 5](x) =5 (E-AppAbs)

14

System F Example: Function Composition

Polymorphic Function Composition:

compose = Aa.ABNy A 2 (B—7).0g : (a—F).Ax 1 a.f(gx)

Type:
Va.VB.Nvy.(B—7)—(a—p)—a—y

Usage: compose[Nat]|[Nat][Bool] isZero succ

15

Encodings in System F

16

Encoding: Church Booleans (1/3)

Recall Church Booleans in untyped A-calculus:
> True = At.\f.t
> False = At Af.f
> if = Ab.At.\e.b t e (or just apply b directly)
Why not in A7
> We can type True and False if t and f have the same type,
eg., T—-T—=T.
» But the *operators* (like and, or, not) are problematic.
» Example: and = \b;.\by.by by False. From looking at the
application of by: T =T—T—T, oops.

17

Encoding: Church Booleans (1/3)

Recall Church Booleans in untyped A-calculus:
> True = At.Af.t
> False = At Af.f
> if = Ab.At.\e.b t e (or just apply b directly)
Why not in A7
> We can type True and False if t and f have the same type,
eg., T—-T—=T.
» But the *operators* (like and, or, not) are problematic.

» Example: and = \b;.\by.by by False. From looking at the
application of by: T =T—T—T, oops.

Intuition: A boolean, due to its encoding, must work with different
types: e.g., used directly b 0 1, but also sometimes it is used to
apply to another boolean, like in by by false. In general, a boolean
should take two arguments (then/else) of *any* type a and return
one of these two arguments.

17

Encoding: Church Booleans (2/3)

Polymorphic Type for Booleans in System F:

Boolchureh = Va.a—a—a

Definitions:
True = Aa. At : a M f : at

False = Aa A\t : a A\f @ a.f

Check type: () = True : Boolchyureh (similar derivation to identity)

18

Encoding: Church Booleans (3/3)

Now we *can* define operators:

and = \b; : Boolchurch-Abo : BOO'Church-bl[BOO|Church] b False

and : Boolchurch—Boolchurch—Boolchurch

19

Encoding: Church Booleans (3/3)

Now we *can* define operators:

and =)\bl . BOOlChurch~)\b2 . BOO'Church~b1[BOOlChurch] b2 False

and : Boolchurch—Boolchurch—Boolchurch

Subtlety: The type application bi[Boolchyrcn| specializes the
boolean by to return... another boolean! This "self-reference” at
the type level is key.

19

Encoding: Church Numerals (1/2)

Recall Church Numerals:

» 0= As.\z.z

» 1=)\s.\z.sz

> 7= MAs.\z.s"z
Intuition: A numeral 7 takes a successor function s and a zero
value z, and applies s n times to z. The types of s and z should
be flexible.
Polymorphic Type in System F:

Natchurch = Va.(a—a)—a—a

20

Encoding: Church Numerals (1/2)

Recall Church Numerals:

» 0= As.\z.z

» 1=)\s.\z.sz

> 7= MAs.\z.s"z
Intuition: A numeral 7 takes a successor function s and a zero
value z, and applies s n times to z. The types of s and z should
be flexible.
Polymorphic Type in System F:

Natchureh = Va.(a—a)—a—a

Definitions:
0=Aa)s: (a—a)) z:a.z

succ = An : Natchyreh-Av.As @ (a—a). Az : a.s(n[a] s z)

20

Encoding: Church Numerals (2/2)

Definitions:
0=AaXs: (a—a))z a.z

succ = An : Natchureh-AaAs : (a—a). Az @ aes(nfa] s z)

Example: Plus

plus = Am : Natchurch-An : Natchureh-
Aads @ (a—a).\z @ a.

mla] s (n[a] s z)

21

Encoding: Pairs

Can we encode pairs without built-in product types (71 x 72)7

22

Encoding: Pairs

Can we encode pairs without built-in product types (71 x 72)7
Yes!

22

Encoding: Pairs

Can we encode pairs without built-in product types (71 x 72)7
Yes!

Intuition: A pair (a, b) is something that, when given a function f,
applies f to a and b. The result type depends on f.

22

Encoding: Pairs

Can we encode pairs without built-in product types (71 x 72)7
Yes!

Intuition: A pair (a, b) is something that, when given a function f,
applies f to a and b. The result type depends on f. Polymorphic
Type:

Pair(my,) = VB.(mn—mn—0)—p

22

Encoding: Pairs

Can we encode pairs without built-in product types (71 x 72)7
Yes!

Intuition: A pair (a, b) is something that, when given a function f,
applies f to a and b. The result type depends on f. Polymorphic
Type:

Pair(ﬁ, 7‘2) = \V///)).(Tl—>7'2—>@)—>ﬁ

Constructor:

mkpair = AT . AT A X T AY o ABAF L (== 6).f xy

mkpair : V71.V72.11—m—Pair(11, 72)

22

Encoding: Pairs

Can we encode pairs without built-in product types (71 x 7)7
Yes!

Intuition: A pair (a, b) is something that, when given a function f,
applies f to a and b. The result type depends on f. Polymorphic
Type:

Pair(11,) = VB.(m—mn—p)—=pH

Constructor:

mkpair = AT . AT A X T AY o ABAF L (== 6).f xy
mkpair : V71.V72.11—m—Pair(11, 72)

Projections:

fst = A1 A Ap @ Pair(71,m2).p[m1] (Ax : T1.Ay @ T2.x)

fst : V71.Vm.Pair(m, m2)—71 22

Abstract Data Types via Existentials

Goal: Bundle a hidden representation type (p) with operations
acting on it.

Informal Idea (Stack): We want a type that means: " There exists
some type p (the stack representation), such that we have:

> An empty element of type p.

» A push operation: p — Int — p.

» A pop operation: p — Option(Int x p).”

This is written conceptually as:

dp.{empty : p, push : p — Int — p, pop : p — Option(Int x p)}

23

Abstract Data Types via Existentials

Goal: Bundle a hidden representation type (p) with operations
acting on it.

Informal Idea (Stack): We want a type that means: " There exists
some type p (the stack representation), such that we have:

> An empty element of type p.

» A push operation: p — Int — p.

» A pop operation: p — Option(Int x p).”

This is written conceptually as:

dp.{empty : p, push : p — Int — p, pop : p — Option(Int x p)}
We need to encode this 3 using V in System F.

23

Stack ADT - Encoding the Type

Let's define the interface signature type (dependent on p):
Stacklnterface(p) = {empty : p,push : p — Int — p,pop : ...}

(Assuming a record type ‘..." exists or is encoded in System F)

24

Stack ADT - Encoding the Type

Let's define the interface signature type (dependent on p):
Stacklnterface(p) = {empty : p,push : p — Int — p,pop : ...}
(Assuming a record type ‘..." exists or is encoded in System F)

Now, encode the existential Jp.Stackinterface(p) using the
universal quantifier:

StackADT = Va.(Vp.(StackInterface(p) — a)) — «

24

Stack ADT - Encoding the Type

Let's define the interface signature type (dependent on p):
Stacklnterface(p) = {empty : p,push : p — Int — p,pop : ...}
(Assuming a record type ‘..." exists or is encoded in System F)

Now, encode the existential Jp.Stackinterface(p) using the
universal quantifier:

StackADT = Va.(Vp.(StackInterface(p) — a)) — «

Let's explain with an example this weird type:
» how to produce a StackADT.
> how to use a StackADT.

24

Stack ADT - Implementation

Let's choose a concrete representation: p = List(Int) (assume Lists
are encoded).
First, implement the interface for List(Int):

25

Stack ADT - Implementation

Let's choose a concrete representation: p = List(Int) (assume Lists
are encoded).
First, implement the interface for List(Int):

concreteEmpty : List(Int) = Nil
concretePush : List(Int) -> Int -> List(Int) =
fun s i -> Cons i s
concretePop : List(Int) -> Option(Int * List(Int)) =
fun s -> case s of
Nil -> None
| Cons h t -> or Some (mkpair h t)

concretelFace : StackInterface(List(Int)) =
{ empty = concreteEmpty,
push = concretePush,
pop = concretePop }

25

Stack ADT - Implementation Packing
Now, pack this implementation into the ‘StackADT"* type:
mkListStack : StackADT =

Aa. Ak : (Vp.(StackInterface(p) — «)).
k[List(Int)] concretelFace

26

Stack ADT - Implementation Packing
Now, pack this implementation into the ‘StackADT"* type:
mkListStack : StackADT =

Aa. Mk @ (Vp.(Stackinterface(p) — «)).
k[List(Int)] concretelFace

The value ‘mkListStack’ has type ‘StackADT". Its user doesn't
know p = List(Int).

26

Stack ADT - Usage (Unpacking)

A client has a value, say ‘myStack : StackADT".

27

Stack ADT - Usage (Unpacking)
A client has a value, say ‘myStack : StackADT".

Example: Compute a simple value, e.g., returns the value popped
after push 1.

useStack(s : StackADT) =
s[Option(Int)]
(Ap.Aiface : StackInterface(p).

let so = iface.empty in

let s; = iface.push sy 1 in

match (iface.pop s1) with
None — None
|Some p — Some (p.1) end)

27

Stack ADT - Interpretation
StackADT = Va.(Vp.(StackInterface(p) — a)) — «

Interpretation:
» A value of type 'StackADT" is a " package”.

» To use the package (to get a result of type), you must
provide a function (the continuation k).

» This function k must be polymorphic in the hidden
representation p (Vp). It takes the interface for that p and
produces an «.

» The package, when opened, applies the user’s universal
function k to its specific hidden representation type and its
concrete interface implementation.

28

Stack ADT - Interpretation

StackADT = Va.(Vp.(StackInterface(p) — a)) — «

Interpretation:
» A value of type 'StackADT" is a " package”.

» To use the package (to get a result of type), you must
provide a function (the continuation k).

» This function k must be polymorphic in the hidden
representation p (Vp). It takes the interface for that p and
produces an «.

» The package, when opened, applies the user’s universal
function k to its specific hidden representation type and its
concrete interface implementation.

» Limitations?

28

Metatheory of System F

29

Metatheory: Soundness

Like _., System F enjoys safety properties:

> Progress: A well-typed term t (where t is not a value) can
take a step: t — t'.

» Preservation: If T -t:7and t — t/, then [-t/ : 7.
Proof differences from _.:

30

Metatheory: Soundness

Like _., System F enjoys safety properties:
> Progress: A well-typed term t (where t is not a value) can
take a step: t — t'.
» Preservation: If [t:7and t — t/, then -t/ : 7.
Proof differences from A_,:
> Need to handle the new syntax: type abstractions (Ac.t) and
type applications (z[7]).
» Need corresponding cases in the proofs (e.g., for T-TAbs,
T-TApp rules in Preservation).

30

Metatheory: Soundness

Like _., System F enjoys safety properties:

> Progress: A well-typed term t (where t is not a value) can
take a step: t — t'.

» Preservation: If [t:7and t — t/, then -t/ : 7.
Proof differences from A_,:
> Need to handle the new syntax: type abstractions (Ac.t) and
type applications (z[7]).
» Need corresponding cases in the proofs (e.g., for T-TAbs,
T-TApp rules in Preservation).

> Requires lemmas about substitution involving types (e.g., type
substitution preserves typing).

30

Metatheory: Soundness

Like _., System F enjoys safety properties:
> Progress: A well-typed term t (where t is not a value) can
take a step: t — t'.
» Preservation: If [t:7and t — t/, then -t/ : 7.
Proof differences from A_,:
> Need to handle the new syntax: type abstractions (Ac.t) and
type applications (z[7]).
» Need corresponding cases in the proofs (e.g., for T-TAbs,
T-TApp rules in Preservation).
> Requires lemmas about substitution involving types (e.g., type
substitution preserves typing).

» Handling of environment can become quite technical,
depending on the encoding. Maybe having two environment is
easier.

30

Metatheory: Soundness

Like _., System F enjoys safety properties:

> Progress: A well-typed term t (where t is not a value) can
take a step: t — t'.

» Preservation: If [t:7and t — t/, then -t/ : 7.

Proof differences from A_,:

> Need to handle the new syntax: type abstractions (Ac.t) and
type applications (z[7]).

» Need corresponding cases in the proofs (e.g., for T-TAbs,
T-TApp rules in Preservation).

> Requires lemmas about substitution involving types (e.g., type
substitution preserves typing).

» Handling of environment can become quite technical,
depending on the encoding. Maybe having two environment is
easier.

Result: Well-typed System F programs do not get stuck.
30

Metatheory: Strong Normalization

Recall Strong Normalization (SN) for A_,: All well-typed terms
terminate (evaluation reaches a value). Does System F have

Strong Normalization?

31

Metatheory: Strong Normalization

Recall Strong Normalization (SN) for A_,: All well-typed terms
terminate (evaluation reaches a value). Does System F have

Strong Normalization? Yes! (Girard 1972)

31

Metatheory: Strong Normalization

Recall Strong Normalization (SN) for A_,: All well-typed terms
terminate (evaluation reaches a value). Does System F have

Strong Normalization? Yes! (Girard 1972)

Attempting to extend the)\, proof method naively fails.

» The logical relation in A_, is defined inductively on the
structure of types.

» How to define the relation for Va.77?

31

Metatheory: Strong Normalization

Recall Strong Normalization (SN) for A_,: All well-typed terms
terminate (evaluation reaches a value). Does System F have

Strong Normalization? Yes! (Girard 1972)

Attempting to extend the)\, proof method naively fails.

» The logical relation in A_, is defined inductively on the
structure of types.

» How to define the relation for V.77
» RyaF = {U|VT ul € RF[(),A)T]}?

31

Metatheory: Strong Normalization

Recall Strong Normalization (SN) for A_,: All well-typed terms
terminate (evaluation reaches a value). Does System F have

Strong Normalization? Yes! (Girard 1972)

Attempting to extend the)\, proof method naively fails.

» The logical relation in A_, is defined inductively on the
structure of types.

» How to define the relation for Va.77?

» Ryo.r ={ulVT,uT € Rej71}7 Fishy. It is a circular
definition : Ry, ., is defined from itself (take 7 = Va.a)!

31

Metatheory: Strong Normalization

Recall Strong Normalization (SN) for A_,: All well-typed terms
terminate (evaluation reaches a value). Does System F have

Strong Normalization? Yes! (Girard 1972)

Attempting to extend the)\, proof method naively fails.

» The logical relation in A_, is defined inductively on the
structure of types.

» How to define the relation for Vo.77?
» Ryo.r ={ulVT,uT € Rej71}7 Fishy. It is a circular
definition : Ry, ., is defined from itself (take 7 = Va.a)!

» Girard's proof requires a trick/proof technique (reducibility
candidates).

System F is significantly more powerful than A_,, but still
guarantees termination.

31

Metatheory: Evaluation of System F

Naive evaluation:
> Follows the reduction rules directly (E-AppAbs, E-TAppTAbs).
» Carry types around at runtime.

» Perform substitutions in types and terms.

32

Metatheory: Evaluation of System F

Naive evaluation:
> Follows the reduction rules directly (E-AppAbs, E-TAppTAbs).
» Carry types around at runtime.

» Perform substitutions in types and terms.

Observation: Type information (A« t[7]) guides reduction but
doesn’t change " computational content”.

» There is no reduction *within* types themselves in System F.

> Is carrying all this type information strictly necessary for
computation?

32

Metatheory: Evaluation of System F with erasure

Introduce Erasure: A function erase(t) that removes all type
annotations and operations.

» erase(\x : 7.t) = Ax.erase(t)

» erase(t; tp) = erase(t1) erase(ts)

» erase(Aa.t) = erase(t)

» erase(t[r]) = erase(t)
Result: erase(t) is an untyped lambda calculus term. Evaluation in
System F simulates evaluation in untyped A-calculus after erasure.

33

Metatheory: Type Inference / Reconstruction

Erasure maps a System F term to an untyped term.

Question: Is erasure always invertible? Given an untyped term v,
can we find a System F term ¢ such that erase(t) = v and

()t 7 for some 77 (Type Reconstruction/Inference)

34

Metatheory: Type Inference / Reconstruction

Erasure maps a System F term to an untyped term.

Question: Is erasure always invertible? Given an untyped term v,
can we find a System F term ¢ such that erase(t) = v and

()t 7 for some 77 (Type Reconstruction/Inference)

Answer: Clearly not! Consider the term €.

34

Metatheory: Type Inference / Reconstruction

Erasure maps a System F term to an untyped term.

Question: Is erasure always invertible? Given an untyped term v,
can we find a System F term ¢ such that erase(t) = v and

()t 7 for some 77 (Type Reconstruction/Inference)

Answer: Clearly not! Consider the term (2. More interestingly, for a
given term, deciding if there exists a preimage in System F is
Undecidable.

34

Metatheory: Type Inference / Reconstruction

Erasure maps a System F term to an untyped term.

Question: Is erasure always invertible? Given an untyped term v,
can we find a System F term ¢ such that erase(t) = v and

()t 7 for some 77 (Type Reconstruction/Inference)

Answer: Clearly not! Consider the term (2. More interestingly, for a
given term, deciding if there exists a preimage in System F is
Undecidable.

Why is it hard?
» Where to put Ac and [7]|? Many possibilities.
» Determining the polymorphic types (V) is complex.
» Requires higher-order unification in general.

34

Metatheory: Type Inference / Reconstruction

Erasure maps a System F term to an untyped term.

Question: Is erasure always invertible? Given an untyped term v,
can we find a System F term ¢ such that erase(t) = v and

()t 7 for some 77 (Type Reconstruction/Inference)

Answer: Clearly not! Consider the term (2. More interestingly, for a
given term, deciding if there exists a preimage in System F is
Undecidable.

Why is it hard?
» Where to put Ac and [7]|? Many possibilities.
» Determining the polymorphic types (V) is complex.
» Requires higher-order unification in general.

This is why languages like Haskell and ML use restricted forms of
polymorphism (like Hindley-Milner / Rank-1 polymorphism) where
type inference is decidable. System F is too expressive for full
inference.

34

Parametricity and Theorems for Free (1/2)

Consider the type Va.a—«a. What terms have this type?

35

Parametricity and Theorems for Free (1/2)

Consider the type Va.a—«a. What terms have this type?

Only the identity function (Aa.\x : «.x), module reduction. Why?
Because the function must work uniformly for *all* types . It
cannot inspect the type « or behave differently based on it. It can
only pass the value x through.

35

Parametricity and Theorems for Free (1/2)

Consider the type Va.a—«a. What terms have this type?

Only the identity function (Aa.\x : «.x), module reduction. Why?
Because the function must work uniformly for *all* types . It
cannot inspect the type « or behave differently based on it. It can
only pass the value x through.

Similarly, consider Va.a—a—«a. What are the possible terms?

35

Parametricity and Theorems for Free (1/2)

Consider the type Va.a—«a. What terms have this type?
Only the identity function (Aa.Ax : «v.x), module reduction. Why?
Because the function must work uniformly for *all* types . It

cannot inspect the type « or behave differently based on it. It can
only pass the value x through.

Similarly, consider Va.a—a—«a. What are the possible terms?
Nadx :a)y :a.x and A Ax 1.y @ a.y.

35

Parametricity and Theorems for Free (2/2)

Consider map : Vo.V3.(a—/3)—List(a)—List(3). Parametricity
tells us properties this function *must* have, e.g.,

map(f o g) = map(f) o map(g)

36

Parametricity and Theorems for Free (2/2)

Consider map : Vo.V3.(a—/3)—List(a)—List(3). Parametricity
tells us properties this function *must* have, e.g.,

map(f o g) = map(f) o map(g)

These properties arise " for free” just from the polymorphic type,
without looking at the implementation.

36

Parametricity and Theorems for Free (2/2)

Consider map : Vo.V3.(a—/3)—List(a)—List(3). Parametricity
tells us properties this function *must* have, e.g.,

map(f o g) = map(f) o map(g)

These properties arise " for free” just from the polymorphic type,
without looking at the implementation.

Intuition: Universal quantification (V«) provides strong guarantees.
A function polymorphic in o« must treat values of type « abstractly,
leading to uniform behavior across all types. This gives semantic
guarantees beyond just type safety.

36

Curry-Howard for System F

Recall Curry-Howard for _.:

>
>
>
>
| 4

Types <> Propositions

Terms < Proofs

T1—Ty < P1 = P> (Implication)
71 X 1o ¢+ Py A P> (Conjunction)
71 + 12 <> P1 V P, (Disjunction)

Well-typed terms correspond to constructive proofs in intuitionistic
propositional logic.
What about the new rules in System F?

| 4
>

| 2

Type variable a <+ Propositional variable A

Type abstraction Aa.t <» Universal quantification
introduction (V)

Type application t[7] <> Universal quantification elimination
(V-elim)

So, Va7 <+ VA.P
System F corresponds to **Second-Order Intuitionistic
Propositional Logic**.

Beyond System F

System F (parametric polymorphism) is powerful, but other forms
exist:

» Overloading: Functions with the same name behave
differently based on static argument types (e.g., ‘+" for Ints
and Floats). Often handled via mechanisms like type classes
(Haskell) or implicit parameters (Scala).

» Subtype Polymorphism: If 71 is a subtype of 7 (71 <: 1),
then a value of type 71 can be used where a value of type 7 is
expected. Common in object-oriented languages.

These can be combined, leading to systems like System F_.
(System F with subtyping).

38

