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Different Kinds of functions

What is missing?

Term → Term (λx .t)
Type → Term (ΛX .t)

Type → Type ???
Term → Type ???

Agenda today:

▶ Type operators

▶ Dependent types

2



Different Kinds of functions

What is missing?

Term → Term (λx .t)
Type → Term (ΛX .t)
Type → Type ???
Term → Type ???

Agenda today:

▶ Type operators

▶ Dependent types

2



Type Operators
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Defining Pairs: System F vs. Type-Level Functions

Pair in System F

▶ Representation: For given
types A,B : Type :
Pair(A,B) = ∀X .(A → B →
X ) → X

▶ Nature of “Pair”: For any
concrete types A,B, we can
write down the type
Pair(A,B). “Pair” itself is
not a first-class, manipulable
function within System F’s
type language.

Pair as a Type-Level Function

▶ Representation: Defined as
an explicit function
operating on types.
Pairω = λA : Type.λB :
Type.Pair(A,B)

▶ Nature of “Pairω”: It has
a type: Pairω : Type →
Type → Type.
Pairω could be bound to a
variable, passed as an
argument, etc...

Key Difference: We would like to allow type constructors (like
Pairω) to be treated as first-class citizens (functions) at the type

level, enabling abstraction over them.
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Defining Pairs: System F vs. Type-Level Functions

We can represent pairs in different ways, with different implications
for how we can manipulate “Pair-ness” itself at the type level.
In system F: It’s a schema or a definition pattern. Its
”constructor” behavior is observed externally (meta-theoretically).

Limitation: Cannot easily abstract over “Pair” itself. We can’t
pass the ”Pair-making-ability” (Pair) as an argument to another
(polymorphic) type definition within System F directly.

Advantages of first class type-level functions: Enables
higher-order type-level programming, allows defining generic type
combinators that operate on other type constructors (like ‘Pair‘,
‘List‘, ‘Option‘).
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Example 1 - Scala
type PairRep[Pair :: ∗ ⇒ ∗ ⇒ ∗] = {

pair : ∀X .∀Y .X → Y → (Pair X Y ),
fst : ∀X .∀Y .(Pair X Y ) → X ,
snd : ∀X .∀Y .(Pair X Y ) → Y

}

def swap[Pair :: ∗ ⇒ ∗ ⇒ ∗,X :: ∗,Y :: ∗]
(rep : PairRep Pair)
(pair : Pair X Y ) : Pair Y X

=
let x = rep.fst [X ] [Y ] pair in
let y = rep.snd [X ] [Y ] pair in
rep.pair [Y ] [X ] y x

The method swap works for any representation of pairs.
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Example 2 - OCaml

module type ORDERED_ELEMENT = sig

type t

val compare : t -> t -> int

end

module type WRAPPER_CONSTRUCTOR = sig

type ’a t

val lift_compare :

(’x -> ’x -> int) -> (’x t -> ’x t -> int)

end

module MakeSetOfWrappedTypes

(Wrapper : WRAPPER_CONSTRUCTOR)

(Element : ORDERED_ELEMENT)

: Set.S ...
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Lambda-calculus at the type-level

Idea: We could define a new languages to manipulate type-level
functions!

Spoiler: We can. Two subtleties to look for:

▶ Reducing type-level functions and equivalence of types

▶ ”Type checking” of type operators
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The Types (or Kinds) of type-level terms and functions
∗ proper types, e.g. Bool , Int → Int
∗ ⇒ ∗ type operators: map proper types to proper types
∗ ⇒ ∗ ⇒ ∗ two-argument operators
(∗ ⇒ ∗) ⇒ ∗ type operators: map type operators to proper types
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Equivalence of Types

Problem: all the types below are equivalent

Nat → Bool Nat → Id Bool Id Nat → Id Bool
Id Nat → Bool Id (Nat → Bool) Id(Id(Id Nat → Bool)

We need to introduce a definitional equivalence relation on types,
written S ≡ T .
And we need one new typing rule:

Γ ⊢ t : S S ≡ T

Γ ⊢ t : T
(T-Eq)

S ≡ T if and only if S and T have the same normal form.

10



The temptation is too great
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Lambda-calculus at the type-level

Idea: We could define a new languages to manipulate type-level
functions!

Little Detour: We first briefly succomb to the temptation and show
how we could define a new language to manipulate type-level
functions. And we then avoid going there, and instead try to

recycle our perfectly good existing lambda-terms.
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System Fω — Syntax

Formalizing first-class type operators leads to System Fω:

t ::= ... terms
λX :: K .t type abstraction

T ::= types
X type variable
T → T type of functions
∀X :: K .T universal type
λX :: K .T operator abstraction
T T operator application

K ::= kinds
∗ kind of proper types
K ⇒ K kind of operators
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Properties

Theorem [Preservation]: if Γ ⊢ t : T and t −→ t ′, then Γ ⊢ t ′ : T .

Theorem [Progress]: if ⊢ t : T , then either t is a value or there
exists t ′ with t −→ t ′.

14



Limitation 2: Dependent Types
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Limitation of types for programming

Example 1. Track length of vectors in types:

NVec :: Nat → ∗
first : ∀(n:Nat).NVec (n + 1) → Nat

∀(x :S).T is called dependent function type. It is impossible to
pass a vector of length 0 to the function first.

Example 2. Safe formatting for sprintf :

sprintf : ∀(f :Format).Data(f ) → String

Data([]) = Unit
Data(′%′ :: ′d ′ :: cs) = Nat ∗ Data(cs)
Data(′%′ :: ′s ′ :: cs) = String ∗ Data(cs)
Data(c :: cs) = Data(cs)
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Limitation of types for logic

No notion of equality in System F!

We can’t even prove that 0 + 1 = 1 !

How are we going to be able to prove properties about programs?
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Dependent Function Type (a.k.a. ∀ or Π Types)

A dependent function type is inhabited by a dependent function:

λx :S .t : ∀(x :S).T

If T does not depend on x , it degenerates to function types:

∀(x :S).T = S → T where x does not appear free in T

Example: Value whose type depends on a boolean condition
▶ Let Bool be the type with values true and false.
▶ Let Int be the type of integers, and String be the type of

text strings.
▶ Consider a function conditionalValue that takes a boolean

b : Bool:
▶ If b is true, it returns an Int.
▶ If b is false, it returns a String.
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Dependent Function Type - an example

Consider a function conditionalValue that takes a boolean b :

Bool:
▶ If b is true, it returns an Int.
▶ If b is false, it returns a String.

The type of such a function is a dependent function type:

conditionalValue : ∀(b : Bool).(if b then Int else String)

▶ The input type S is Bool.
▶ The input variable x is b.
▶ The return type T is (if b then Int else String),

which critically depends on the value of b.

An implementation sketch (in an ideal world) for such a function:

conditionalValue = λb : Bool. if b then 42 else ”hello”

19
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Killing two birds with one
stone: The Calculus of

Constructions

20



The Calculus of Constructions: Syntax

t ::= terms
x variable
λx:t.t abstraction
t t application
s sort
∀(x :t).t dependent type

s ::= sorts
U0 classic types
U1 types of types (kinds)
U2 types of types of types

Γ ::= contexts
∅ empty context
Γ, x :T term variable binding

The semantics is the usual β-reduction.
21



Reduction Rules

t1 −→ t ′1
λx :T1.t1 −→ λx :T1.t

′
1

(β-Abs)

t1 −→ t ′1
t1 t2 −→ t ′1 t2

(β-App1)

t2 −→ t ′2
t1 t2 −→ t1 t

′
2

(β-App2)

(λx :T1.t1)t2 −→ [x 7→ t2]t1 (β-AppAbs)
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The Calculus of Constructions: Typing

⊢ Ui : Ui+1 (T-AxiomT)
x :T ∈ Γ

Γ ⊢ x : T
(T-Var)

Γ ⊢ S : s1 Γ, x :S ⊢ t : T

Γ ⊢ λx :S .t : ∀(x :S).T
(T-Abs)

Γ ⊢ t1 : ∀(x :S).T Γ ⊢ t2 : S

Γ ⊢ t1 t2 : [x 7→ t2]T
(T-App)

Γ ⊢ S : s1 Γ, x :S ⊢ T : s2

Γ ⊢ ∀(x :S).T : s2
(T-Pi)

Γ ⊢ t : T T ≡ T ′ Γ ⊢ T ′ : s

Γ ⊢ t : T ′ (T-Conv)

The equivalence relation T ≡ T ′ is based on β-reduction.
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Hard Theorem

[Strong Normalization]: if Γ ⊢ t : T , then there is no infinite
sequence of terms ti such that t = t1 and ti −→ ti+1.

Why is it hard?
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Four Kinds of Lambdas

Example Type

λx :N.x + 1 N → N
λf :N → N.f x (N → N) → N

λX :U0.λx :X . x ∀(X :U0).X → X

λF :U0 → U0.λx :F N. x ∀(F :U0 → U0).(F N) → (F N)
λX :U0.X U0 → U0

λF :U0 → U0.F N (U0 → U0) → U0

λn:N.NVec n N → U0

λf :N → N.NVec (f 6) (N → N) → U0
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We have almost reached the
point where the object

language is the same as Lean’s
ambient language!

26



Pure Type Systems

Γ ⊢ S : si Γ, x :S ⊢ T : sj

Γ ⊢ ∀(x :S).T : sj
(T-Pi)

System (si , sj)

λ→ { (∗, ∗) }
λP { (∗, ∗), (∗,□) }
F { (∗, ∗), (□, ∗) }
Fω { (∗, ∗), (□, ∗) (□,□) }
CC { (∗, ∗), (∗,□) (□, ∗) (□,□) }

The Lambda Cube
λ→ −→ F −→ Fω −→ CC

27



What to do with dependent
types
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Leibniz’s equality
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Leibniz Equality: The Identity of Indiscernibles

▶ Fundamental Question: What does it mean for two things,
say x and y , to be equal?

▶ Leibniz’s Principle: Two objects are identical if and only if
they share all the same properties.
▶ If x has any property P, then y must also have property P.
▶ (And often vice-versa: if y has P, then x has P).

▶ In essence: x and y are the same if one can be substituted
for the other in any statement salva veritate (without
changing the truth value).

▶ � This provides a way to define equality based on what we
can observe or predicate about objects.
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Formal Definition (in Lean 4)

Leibniz Equality Definition

def LeibnizEq {alpha : Type u} (x y : alpha) : Prop :=

forall (P : alpha -> Prop), P x -> P y

This definition essentially states: y possesses every property that x
possesses.
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Core Properties

1. Reflexivity, transitivity, symmetry Let’s do it together!

2. Substitutivity (Indiscernibility of Identicals):

▶ The very definition LeibnizEq x y is the principle of
substitutivity.

▶ If LeibnizEq x y holds, then y can be substituted for x
wherever x appears in a property P such that Px is true, and
Py will also be true.

▶ This is the foundation for ”rewriting” based on equality.
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Type Universes in Lean/Coq

The rule Γ ⊢ Type : Type is unsound (Girard’s paradox).

Γ ⊢ Prop : Type1

Γ ⊢ Set : Type1

Γ ⊢ Typei : Typei+1

Γ, x :A ⊢ B : Prop Γ ⊢ A : s

Γ ⊢ ∀(x : A).B : Prop

Γ, x :A ⊢ B : Set Γ ⊢ A : s s ∈ {Prop,Set}
Γ ⊢ ∀(x : A).B : Set

Γ, x :A ⊢ B : Typei Γ ⊢ A : Typei

Γ ⊢ ∀(x : A).B : Typei

33



Math Vs Logic
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Addressing what we diligently ignored: LEM

In intuitionistic logics (System F, Calculus of Constructions, etc...),
the law of excluded middle (LEM) and the law of double negation
(DNE) are not provable.

▶ LEM: ∀P.P ∨ ¬P
▶ DNE: ∀P.¬¬P → P

By curry-howard correspondence, there are no terms that inhabit
the types above.

However, ∀P.P → ¬¬P can be proved. How?

We will also prove that LEM is equivalent to DNE.

35



Addressing what we diligently ignored: LEM

In intuitionistic logics (System F, Calculus of Constructions, etc...),
the law of excluded middle (LEM) and the law of double negation
(DNE) are not provable.

▶ LEM: ∀P.P ∨ ¬P
▶ DNE: ∀P.¬¬P → P

By curry-howard correspondence, there are no terms that inhabit
the types above.

However, ∀P.P → ¬¬P can be proved.

How?

We will also prove that LEM is equivalent to DNE.

35



Addressing what we diligently ignored: LEM

In intuitionistic logics (System F, Calculus of Constructions, etc...),
the law of excluded middle (LEM) and the law of double negation
(DNE) are not provable.

▶ LEM: ∀P.P ∨ ¬P
▶ DNE: ∀P.¬¬P → P

By curry-howard correspondence, there are no terms that inhabit
the types above.

However, ∀P.P → ¬¬P can be proved. How?

We will also prove that LEM is equivalent to DNE.

35



Addressing what we diligently ignored: LEM

In intuitionistic logics (System F, Calculus of Constructions, etc...),
the law of excluded middle (LEM) and the law of double negation
(DNE) are not provable.

▶ LEM: ∀P.P ∨ ¬P
▶ DNE: ∀P.¬¬P → P

By curry-howard correspondence, there are no terms that inhabit
the types above.

However, ∀P.P → ¬¬P can be proved. How?

We will also prove that LEM is equivalent to DNE.

35



Limitations of Calculus of Constructions for Logic: Lack of
support for induction!

We did all that work for nothing!

We still cannot prove 1 + n = n + 1 on our Church-encoded
numbers :(.

What we can do (Coquand et Huet, 1985):
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Don’t forget to admit to limitations!
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Source of all evil : problem with type Checking

Value constructors:

NVec : N → ∗
nil : NVec 0
cons : N → (n:N) → NVec n → NVec n + 1

Appending vectors:

append : ∀(m:N).∀(n:N).NVec m → NVec n → NVec (n +m)
append = λm:N. λn:N. λl :NVec m. λt:NVec n.

match l with
| nil ⇒ t
| cons x r y ⇒ cons x (r + n) (append r n y t)

Question: How does the type checker know S (r + n) = n+ (S r)?
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Dependent Types in Programming Languages

Despite the huge success in proof assistants, its adoption in
programming languages is limited.

▶ Scala supports path-dependent types and literal types.

▶ Dependent Haskell is proposed by researchers.

Challenge: the decidability of type checking. While it is decidable
in Coq/Lean, implementing full-blown calculus of construction
would not be decidable in Scala/Haskell, why?

39



Dependent Types in Programming Languages

Despite the huge success in proof assistants, its adoption in
programming languages is limited.

▶ Scala supports path-dependent types and literal types.

▶ Dependent Haskell is proposed by researchers.

Challenge: the decidability of type checking. While it is decidable
in Coq/Lean, implementing full-blown calculus of construction
would not be decidable in Scala/Haskell, why?

39


