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Agenda today:
> Type operators
» Dependent types
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Defining Pairs: System F vs. Type-Level Functions

Pair in System F Pair as a Type-Level Function

> Representation: For given > Representation: Defined as

types A, B : Type :
Pair(A,B) =VX.(A— B —
X)—= X

Nature of “Pair”: For any
concrete types A, B, we can
write down the type

Pair(A, B). “Pair" itself is
not a first-class, manipulable
function within System F's
type language.

an explicit function
operating on types.

Pair, = AA: Type.AB :
Type.Pair(A, B)

Nature of “Pair,”: It has
a type: Pair, : Type —
Type — Type.

Pair,, could be bound to a
variable, passed as an
argument, etc...

Key Difference: We would like to allow type constructors (like
Pair,,) to be treated as first-class citizens (functions) at the type
level, enabling abstraction over them.
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Defining Pairs: System F vs. Type-Level Functions

We can represent pairs in different ways, with different implications
for how we can manipulate “Pair-ness” itself at the type level.

In system F: It's a schema or a definition pattern. lts

" constructor” behavior is observed externally (meta-theoretically).

Limitation: Cannot easily abstract over “Pair” itself. We can’t
pass the " Pair-making-ability” (Pair) as an argument to another
(polymorphic) type definition within System F directly.

Advantages of first class type-level functions: Enables
higher-order type-level programming, allows defining generic type
combinators that operate on other type constructors (like ‘Pair’,
‘List’, ‘Option").



Example 1 - Scala

type PairRep|[Pair :: x = x = ] = {
pair :YXNVNY.X =Y — (Pair X'Y),
fst - VXYY .(Pair X Y) — X,
snd : VXNVY.(Pair X Y) =Y

}

def swap[Pair :: x = %« = %, X 1%, Y i %]
(rep : PairRep Pair)
(pair : Pair X Y) : Pair Y X

let x = rep.fst [X] [Y] pair in
let y = rep.snd [X] [Y] pair in
rep.pair [Y] [X] y x

The method swap works for any representation of pairs.



Example 2 - OCaml

module type ORDERED_ELEMENT = sig

type t
val compare : t -> t -> int

end

module type WRAPPER_CONSTRUCTOR = sig
type ’a t

val 1lift_compare :
Cx -> ’x -> int) -> Cx t -> ’x t -> int)
end
module MakeSetOfWrappedTypes
(Wrapper : WRAPPER_CONSTRUCTOR)
(Element : ORDERED_ELEMENT)
: Set.S
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The Types (or Kinds) of type-level terms and functions

* proper types, e.g. Bool, Int — Int

* = % type operators: map proper types to proper types

* = % = % two-argument operators

(* = %) = % type operators: map type operators to proper types

Kinds
% foy ¥ LN

\ Types

Pair Nat Bool Pair

. \

Nat
/(/\X.X—»X) Nat AX. X=X E

\‘ \Nat—»Nat \ VX X=X Pair Nat Pa'ir':Pa'ir'

AN

\ % Terms

[ \ 5
5 Ax:Nat.x =
(Ax:Nat.x) true

AXLAX:X.x
(Ax:Nat.x) 5 pair [Nat] [Bool] 5 false




Equivalence of Types

Problem: all the types below are equivalent

Nat — Bool Nat — Id Bool Id Nat — Id Bool
Id Nat — Bool Id (Nat — Bool) Id(ld(ld Nat — Bool)

We need to introduce a definitional equivalence relation on types,
written S = T.
And we need one new typing rule:

M=t:S S=T
Fr=t: T

(T-EQ)

S=T ifand only if S and T have the same normal form.

10



The temptation is too great
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Lambda-calculus at the type-level

Idea: We could define a new languages to manipulate type-level
functions!
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Lambda-calculus at the type-level

Idea: We could define a new languages to manipulate type-level
functions!

Little Detour: We first briefly succomb to the temptation and show
how we could define a new language to manipulate type-level
functions. And we then avoid going there, and instead try to

recycle our perfectly good existing lambda-terms.
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System F, — Syntax

Formalizing first-class type operators leads to System F,:

t o= . terms
AX oK.t type abstraction
T = types
X type variable
T—T type of functions
vX K. T universal type
AX oK. T operator abstraction
TT operator application
K = kinds
* kind of proper types

K=K kind of operators



Properties

Theorem [Preservation]: if [ =t : T and t — t/, then [ =1t : T.

Theorem [Progress|: if - t : T, then either t is a value or there
exists t' with t — .

14



Limitation 2: Dependent Types
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Limitation of types for programming

Example 1. Track length of vectors in types:

NVec :: Nat — x
first . V(mNat).NVec (n+ 1) — Nat

V(x:S).T is called dependent function type. It is impossible to
pass a vector of length 0 to the function first.
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Limitation of types for programming

Example 1. Track length of vectors in types:

NVec :: Nat — x
first . ¥(nm:Nat).NVec (n+ 1) — Nat

V(x:S).T is called dependent function type. It is impossible to
pass a vector of length 0 to the function first.

Example 2. Safe formatting for sprintf:

sprintf . V(f:Format).Data(f) — String
Data(][]) = Unit

Data(’%’ :: 'd’ :: cs) = Nat x Data(cs)

Data("%' :: 's’ :: ¢s) = String x Data(cs)

Data(c :: cs) = Data(cs)

16



Limitation of types for logic

No notion of equality in System F!
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Limitation of types for logic

No notion of equality in System F!
We can't even prove that 0 +1 =1 !

How are we going to be able to prove properties about programs?

17



Dependent Function Type (a.k.a. V or 1 Types)

A dependent function type is inhabited by a dependent function:

xSt o VY(x:S). T
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Dependent Function Type (a.k.a. V or 1 Types)
A dependent function type is inhabited by a dependent function:

Ax:S.t o V(x:S). T
If T does not depend on x, it degenerates to function types:
V(x:8). T=S—>T where x does not appear free in T

Example: Value whose type depends on a boolean condition
P> Let Bool be the type with values true and false.
> Let Int be the type of integers, and String be the type of
text strings.
» Consider a function conditionalValue that takes a boolean
b : Bool:
> If bis true, it returns an Int.
> If bis false, it returns a String.
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Dependent Function Type - an example

Consider a function conditionalValue that takes a boolean b :
Bool:

» If bis true, it returns an Int.
> If bis false, it returns a String.
The type of such a function is a dependent function type:

conditionalValue : V(b : Bool).(if b then Int else String)

» The input type S is Bool.

» The input variable x is b.

» The return type T is (if b then Int else String),
which critically depends on the value of b.

An implementation sketch (in an ideal world) for such a function:

conditionalValue = Ab: Bool. if b then 42 else "hello”

19



Killing two birds with one
stone: The Calculus of
Constructions

20



The Calculus of Constructions: Syntax

t =

Ax:t.t
t t

V(x:t).t

The semantics is the usual S-reduction.

terms
variable
abstraction
application
sort
dependent type

sorts
classic types
types of types (kinds)
types of types of types

contexts

empty context
term variable binding

21



Reduction Rules

i — 1]

ATyt — Ax:Tq.t]

t1 — t]
tity — t] b

th — t)
t1to — t1 t)

()\X:Tl.tl)tg — [X — t2]t1

(5-ABs)

(5-Appl)

(5-App2)

(5-APPABS)

22



The Calculus of Constructions: Typing

- U+ Uy (T-Ax10MT) Tl (Tvar)
iU -AXIOM —_— - VAR
i Mex:T
N=S:s MxSkHt: T
(T-ABS)
M= Ax:S.t:V(x:S).T
M-t :V(x:S).T M=t:S
L2 V065) ’ (T-App)
rFtthZ[X'—>t2]T
r=S: MxSET:
S1 , X So (T—PI)
MN=v(x:5).T: s
Free: T T=T r=T7T':s
(T-Conv)

Fre=t: T/

The equivalence relation 7 = T’ is based on [-reduction.

23



Hard Theorem

[Strong Normalization]: if [ t : T, then there is no infinite
sequence of terms t; such that t = t; and t; — t;.1.
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Four Kinds of Lambdas

Example Type
Ax:N.x + 1 N—N
AN — N.f x (N—-N)—>N
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Example Type

Ax:Nox +1 N—N
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AX:Up Ax: X x V(X:Up). X — X
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Example Type

Ax:Nox +1 N—N

AN — N.f x (N—-N)—>N

AX:Up Ax: X x V(X:Up). X — X

AF:Up — Up Ax:F Nox  Y(F:Uy — Up).(F N) — (FN)
AX:Up.X Uo — Uo

/\F:UO — Uo.FN
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Four Kinds of Lambdas

Example Type

Ax:Nox +1 N—-N

AN — N.f x (N—-N)—>N

AX:Up Ax: X x V(X:Up). X — X

AF:Up — Up.Ax:F N.x  V(F:Up — Up).(F N) — (F N)
AX:Up. X Up — Uy

AUy — Up.F N (Uo — Up) — Uy

An:N.NVec n N — Uy

AN — N.NMVec (f6) (N—N)— Uy

25



We have almost reached the
point where the object
language is the same as Lean's
ambient language!
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Pure Type Systems

N=S:s; MxSET:s;

[=V(x:S).T :s;
System (si,sj)
/\—> { (*,*) }
AP { (%), (x,0) }
F { (%) (0, ) }
F { (o) @+ (G,0) }
€ { (9 D) @9 @O )
F® cc
v
| The Lambda Cube
I Ay — F— FY — CC
v
AP

(T-P1)

27



What to do with dependent
types

28



Leibniz's equality
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Leibniz Equality: The Identity of Indiscernibles

» Fundamental Question: What does it mean for two things,
say x and y, to be equal?

> Leibniz’s Principle: Two objects are identical if and only if
they share all the same properties.

> If x has any property P, then y must also have property P.
> (And often vice-versa: if y has P, then x has P).
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Leibniz Equality: The Identity of Indiscernibles

» Fundamental Question: What does it mean for two things,
say x and y, to be equal?
> Leibniz’s Principle: Two objects are identical if and only if
they share all the same properties.
> If x has any property P, then y must also have property P.
> (And often vice-versa: if y has P, then x has P).
> In essence: x and y are the same if one can be substituted
for the other in any statement salva veritate (without
changing the truth value).

» Q This provides a way to define equality based on what we
can observe or predicate about objects.

30



Formal Definition (in Lean 4)

Leibniz Equality Definition

def LeibnizEq {alpha : Type u} (x y : alpha)

forall (P :

alpha -> Prop), P x -> P y

: Prop :

31



Formal Definition (in Lean 4)

Leibniz Equality Definition

forall (P : alpha -> Prop), Px -> P y

This definition essentially states: y possesses every property that x
possesses.

def LeibnizEq {alpha : Type u} (x y : alpha) : Prop :

31



Core Properties

1. Reflexivity, transitivity, symmetry Let's do it together!
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Core Properties

1. Reflexivity, transitivity, symmetry Let's do it together!
2. Substitutivity (Indiscernibility of Identicals):
» The very definition LeibnizEq x y is the principle of
substitutivity.
> If LeibnizEq x y holds, then y can be substituted for x
wherever x appears in a property P such that Px is true, and
Py will also be true.

» This is the foundation for "rewriting” based on equality.
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Type Universes in Lean/Coq
The rule [ = Type : Type is unsound (Girard's paradox).

'+ Prop: Type;
I Set : Type;

[ Type;i : Typeit1

I x:AF B : Prop MFA:s
M=V(x:A).B: Prop

M x:Ab B: Set N-A:s s € {Prop, Set}

M=V(x:A).B: Set

I x:AF B: Type; M= A: Type;
M=VY(x:A).B: Type;

33



Math Vs Logic
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Addressing what we diligently ignored: LEM

In intuitionistic logics (System F, Calculus of Constructions, etc...),
the law of excluded middle (LEM) and the law of double negation
(DNE) are not provable.

> LEM: VP.PV P
» DNE: VP.—==P — P

By curry-howard correspondence, there are no terms that inhabit
the types above.
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Addressing what we diligently ignored: LEM

In intuitionistic logics (System F, Calculus of Constructions, etc...),
the law of excluded middle (LEM) and the law of double negation
(DNE) are not provable.

> LEM: VP.PV P
» DNE: VP.—==P — P

By curry-howard correspondence, there are no terms that inhabit
the types above.

However, VP.P — ——P can be proved. How?

We will also prove that LEM is equivalent to DNE.

35



Limitations of Calculus of Constructions for Logic: Lack of
support for induction!

We did all that work for nothing!
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Limitations of Calculus of Constructions for Logic: Lack of
support for induction!

We did all that work for nothing!

We still cannot prove 1 + n = n+ 1 on our Church-encoded
numbers :(.

What we can do (Coquand et Huet, 1985):
2. Logical constructions

Here we start Mathematies from secratch.

As an exercise on equality theorem-proving, let us the following property
given in Andrews!, Theorem: If some iterale of a function admits a unique
fixpoint, then the function admits a fixpoint.

5.3. Tarski's theorem

As an exercise in relational constructions, let us now show Tarski's
theorem : If a function is monotonous over a complete upper-semi-lattice, it
admits a fixpoint?’,

36



Don't forget to admit to limitations!

This completes the description of our prototype implementation. Actu-
ally, we must admit a little cheating on the parser's part: the parser knows
beforehand about the mixfix syntax of a few constants. This is because we do
not know how to modify dynamically the tables of the parser generated by
Yacc. This is an unimportant technical detail the reader need not be con-
cerned about, since our parser is consistent with all the LET_SYNTAX com-
mands.
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Don't forget to admit to limitations!

This completes the description of our prototype implementation. Actu-
ally, we must admit a little cheating on the parser's part: the parser knows
beforehand about the mixfix syntax of a few constants. This is because we do
not know how to modify dynamically the tables of the parser generated by
Yacc. This is an unimportant technical detail the reader need not be con-
cerned about, since our parser is consistent with all the LET_SYNTAX com-

mands.
let COMPL_SEMI_LATTICE =

"iMIA->*1B.([w:Al(bound u M)->([x:A](bound x M)->(R u x))->B)->B";
PROP 'esl’ COMPL_SEMI_LATTICE;;

let TARSKI = "(Trans R) -> esl -> [f:A->A](mon f) -> <A>Sig({fix ))";;

let TARSKI_PROOF = "[trans:(Trans R)][ub:esl][f:A->A][mo:(mon {)]
Blh:[wAl((R u (f u))&(R (I u) u))->B)]
(ub ([wAl(Ru (fu))) B
([eAl[h1:JwAl(R u (f u))->(Rux)]
[h2:[wAN([v:AI(R v (f v))->(R v u))->(R x 1))

let p = ([y:Al[h:(Ry (f y))](trans y (f y) (f x) b’ (mo y x (h1 y h'))))
in let xRfx = (h2 {f x) p) in
(hx <(Rx (f x)),(R (f x) x)>(xRix.(h1 (f x) (mo x (f x) xRix)))))":
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Source of all evil : problem with type Checking
Value constructors:

NVec : N —x
nil : NVec 0
cons : N— (mN)— NVecn— NVecn+1

Appending vectors:

append :  Y(m:N).¥Y(m:N).NVec m — NVec n — NVec (n+ m)
append = Am:N.An:N. A:NVec m. \t:NVec n.

match | with

| nil =t

| cons x r y = cons x (r+ n) (append r ny t)

Question: How does the type checker know S (r+n) = n+ (5 r)?

38



Dependent Types in Programming Languages

Despite the huge success in proof assistants, its adoption in
programming languages is limited.

» Scala supports path-dependent types and literal types.
» Dependent Haskell is proposed by researchers.
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Dependent Types in Programming Languages

Despite the huge success in proof assistants, its adoption in
programming languages is limited.
» Scala supports path-dependent types and literal types.
» Dependent Haskell is proposed by researchers.

Challenge: the decidability of type checking. While it is decidable
in Coq/Lean, implementing full-blown calculus of construction
would not be decidable in Scala/Haskell, why?

39



