
Foundations of Software
Spring 2025

Week 7

1

Plan

PREVIOUSLY: unit, sequencing, let, pairs, tuples

TODAY:

1. pairs

2. sums (Either)

3. tuples

4. records

5. options, variants

6. recursion

NEXT: state
NEXT: polymorphic (not so simple) typing

2

Pairs

t ::= ... terms
{t,t} pair
t.1 first projection
t.2 second projection

v ::= ... values
{v,v} pair value

T ::= ... types
T1× T2 product type

3

Evaluation rules for pairs

{v1,v2}.1 −→ v1 (E-PairBeta1)

{v1,v2}.2 −→ v2 (E-PairBeta2)

t1 −→ t′1
t1.1 −→ t′1.1

(E-Proj1)

t1 −→ t′1
t1.2 −→ t′1.2

(E-Proj2)

t1 −→ t′1
{t1,t2} −→ {t′1,t2}

(E-Pair1)

t2 −→ t′2
{v1,t2} −→ {v1,t

′
2}

(E-Pair2)

4

Typing rules for pairs

Γ ⊢ t1 : T1 Γ ⊢ t2 : T2

Γ ⊢ {t1,t2} : T1× T2
(T-Pair)

Γ ⊢ t1 : T11× T12

Γ ⊢ t1.1 : T11
(T-Proj1)

Γ ⊢ t1 : T11× T12

Γ ⊢ t1.2 : T12
(T-Proj2)

5

Sums

[On blackboard]

6

Curry Howard Revisited

[On blackboard]

7

Tuples

t ::= ... terms
{ti

i∈1..n} tuple
t.i projection

v ::= ... values
{vi

i∈1..n} tuple value

T ::= ... types
{Ti

i∈1..n} tuple type

8

Evaluation rules for tuples

{vi
i∈1..n}.j −→ vj (E-ProjTuple)

t1 −→ t′1
t1.i −→ t′1.i

(E-Proj)

tj −→ t′j

{vi
i∈1..j−1,tj,tk

k∈j+1..n}

−→ {vi
i∈1..j−1,t′j,tk

k∈j+1..n}

(E-Tuple)

9

Typing rules for tuples

for each i Γ ⊢ ti : Ti

Γ ⊢ {ti
i∈1..n} : {Ti

i∈1..n}
(T-Tuple)

Γ ⊢ t1 : {Ti
i∈1..n}

Γ ⊢ t1.j : Tj
(T-Proj)

10

Records

t ::= ... terms
{li=ti

i∈1..n} record
t.l projection

v ::= ... values
{li=vi

i∈1..n} record value

T ::= ... types
{li:Ti

i∈1..n} type of records

11

Evaluation rules for records

{li=vi
i∈1..n}.lj −→ vj (E-ProjRcd)

t1 −→ t′1
t1.l −→ t′1.l

(E-Proj)

tj −→ t′j

{li=vi
i∈1..j−1,lj=tj,lk=tk

k∈j+1..n}

−→ {li=vi
i∈1..j−1,lj=t

′
j,lk=tk

k∈j+1..n}

(E-Rcd)

12

Typing rules for records

for each i Γ ⊢ ti : Ti

Γ ⊢ {li=ti
i∈1..n} : {li:Ti

i∈1..n}
(T-Rcd)

Γ ⊢ t1 : {li:Ti
i∈1..n}

Γ ⊢ t1.lj : Tj
(T-Proj)

13

Sums and variants

14

Sums – motivating example

PhysicalAddr = {firstlast:String, addr:String}

VirtualAddr = {name:String, email:String}

Addr = PhysicalAddr + VirtualAddr

inl : “PhysicalAddr → PhysicalAddr+VirtualAddr”
inr : “VirtualAddr → PhysicalAddr+VirtualAddr”

getName = λa:Addr.
case a of

inl x ⇒ x.firstlast

| inr y ⇒ y.name;

15

New syntactic forms

t ::= ... terms
inl t tagging (left)
inr t tagging (right)
case t of inl x⇒t | inr x⇒t case

v ::= ... values
inl v tagged value (left)
inr v tagged value (right)

T ::= ... types
T+T sum type

T1+T2 is a disjoint union of T1 and T2 (the tags inl and inr

ensure disjointness)

16

New evaluation rules t −→ t′

case (inl v0)

of inl x1⇒t1 | inr x2⇒t2

−→ [x1 7→ v0]t1 (E-CaseInl)

case (inr v0)

of inl x1⇒t1 | inr x2⇒t2

−→ [x2 7→ v0]t2 (E-CaseInr)

t0 −→ t′0

case t0 of inl x1⇒t1 | inr x2⇒t2
−→ case t′0 of inl x1⇒t1 | inr x2⇒t2

(E-Case)

t1 −→ t′1

inl t1 −→ inl t′1
(E-Inl)

t1 −→ t′1

inr t1 −→ inr t′1
(E-Inr)

17

New typing rules Γ ⊢ t : T

Γ ⊢ t1 : T1

Γ ⊢ inl t1 : T1+T2
(T-Inl)

Γ ⊢ t1 : T2

Γ ⊢ inr t1 : T1+T2
(T-Inr)

Γ ⊢ t0 : T1+T2
Γ, x1:T1 ⊢ t1 : T Γ, x2:T2 ⊢ t2 : T

Γ ⊢ case t0 of inl x1⇒t1 | inr x2⇒t2 : T
(T-Case)

18

Types of Sums

Consider the term

t = inl (succ 0)

Clicker question: What can we say about it? (multiple possible
answers)

A. ⊢ t : Nat

B. ⊢ t : Nat + Bool

C. ⊢ t : Bool + Nat

D. ⊢ t : Nat + Nat

URL: ttpoll.eu
Session ID: cs452

19

Sums and Uniqueness of Types

Problem:
If t has type T, then inl t has type T+U for every U.

I.e., we’ve lost uniqueness of types.

Possible solutions:

▶ “Infer” U as needed during typechecking

▶ Give constructors different names and only allow each name
to appear in one sum type (requires generalization to
“variants,” which we’ll see next) — OCaml’s solution

▶ Annotate each inl and inr with the intended sum type

▶ (Add subtyping and a ”bottom” (Nothing) type — Scala’s
solution)

For simplicity, let’s choose the third.

20

New syntactic forms

t ::= ... terms
inl t as T tagging (left)
inr t as T tagging (right)

v ::= ... values
inl v as T tagged value (left)
inr v as T tagged value (right)

Note that as T here is not the ascription operator that we saw
before — i.e., not a separate syntactic form: in essence, there is an
ascription “built into” every use of inl or inr.

21

New typing rules Γ ⊢ t : T

Γ ⊢ t1 : T1

Γ ⊢ inl t1 as T1+T2 : T1+T2
(T-Inl)

Γ ⊢ t1 : T2

Γ ⊢ inr t1 as T1+T2 : T1+T2
(T-Inr)

22

Evaluation rules ignore annotations: t −→ t′

case (inl v0 as T0)

of inl x1⇒t1 | inr x2⇒t2
−→ [x1 7→ v0]t1

(E-CaseInl)

case (inr v0 as T0)

of inl x1⇒t1 | inr x2⇒t2
−→ [x2 7→ v0]t2

(E-CaseInr)

t1 −→ t′1
inl t1 as T2 −→ inl t′1 as T2

(E-Inl)

t1 −→ t′1
inr t1 as T2 −→ inr t′1 as T2

(E-Inr)

23

Variants

Just as we generalized binary products to labeled records, we can
generalize binary sums to labeled variants.

24

New syntactic forms

t ::= ... terms
<l=t> as T tagging
case t of <li=xi>⇒ti

i∈1..n case

T ::= ... types
<li:Ti

i∈1..n> type of variants

25

New evaluation rules t −→ t′

case (<lj=vj> as T) of <li=xi>⇒ti
i∈1..n

−→ [xj 7→ vj]tj
(E-CaseVariant)

t0 −→ t′0
case t0 of <li=xi>⇒ti

i∈1..n

−→ case t′0 of <li=xi>⇒ti
i∈1..n

(E-Case)

ti −→ t′i
<li=ti> as T −→ <li=t

′
i> as T

(E-Variant)

26

New typing rules Γ ⊢ t : T

Γ ⊢ tj : Tj

Γ ⊢ <lj=tj> as <li:Ti
i∈1..n> : <li:Ti

i∈1..n>
(T-Variant)

Γ ⊢ t0 : <li:Ti
i∈1..n>

for each i Γ, xi:Ti ⊢ ti : T

Γ ⊢ case t0 of <li=xi>⇒ti
i∈1..n : T

(T-Case)

27

Example

Addr = <physical:PhysicalAddr, virtual:VirtualAddr>;

a = <physical=pa> as Addr;

getName = λa:Addr.
case a of

<physical=x> ⇒ x.firstlast

| <virtual=y> ⇒ y.name;

28

Options

Just like in OCaml...

OptionalNat = <none:Unit, some:Nat>;

Table = Nat→OptionalNat;

emptyTable = λn:Nat. <none=unit> as OptionalNat;

extendTable =

λt:Table. λm:Nat. λv:Nat.
λn:Nat.
if equal n m then <some=v> as OptionalNat

else t n;

x = case t(5) of

<none=u> ⇒ 999

| <some=v> ⇒ v;

29

Enumerations

Weekday = <monday:Unit, tuesday:Unit, wednesday:Unit,

thursday:Unit, friday:Unit>;

nextBusinessDay = λw:Weekday.
case w of <monday=x> ⇒ <tuesday=unit> as Weekday

| <tuesday=x> ⇒ <wednesday=unit> as Weekday

| <wednesday=x> ⇒ <thursday=unit> as Weekday

| <thursday=x> ⇒ <friday=unit> as Weekday

| <friday=x> ⇒ <monday=unit> as Weekday;

30

Recursion

31

Recursion in λ→

▶ In λ→, all programs terminate. (Cf. Chapter 12.)

▶ Hence, untyped terms like omega and fix are not typable.

▶ But we can extend the system with a (typed) fixed-point
operator...

32

Example

ff = λie:Nat→Bool.

λx:Nat.
if iszero x then true

else if iszero (pred x) then false

else ie (pred (pred x));

iseven = fix ff;

iseven 7;

33

New syntactic forms

t ::= ... terms
fix t fixed point of t

New evaluation rules t −→ t′

fix (λx:T1.t2)
−→ [x 7→ (fix (λx:T1.t2))]t2

(E-FixBeta)

t1 −→ t′1
fix t1 −→ fix t′1

(E-Fix)

What would be the typing rule for terms of the form fix t?

34

New typing rules Γ ⊢ t : T

Γ ⊢ t1 : T1→T1

Γ ⊢ fix t1 : T1
(T-Fix)

35

A more convenient form

letrec x:T1=t1 in t2
def
= let x = fix (λx:T1.t1) in t2

letrec iseven : Nat→Bool =

λx:Nat.
if iszero x then true

else if iszero (pred x) then false

else iseven (pred (pred x))

in

iseven 7;

36

