Foundations of Software
Spring 2025

Week 7

Plan
PREVIOUSLY: unit, sequencing, let, pairs, tuples

TODAY:

1. pairs
sums (Either)
tuples
records

options, variants

AR

recursion

NEXT: state
NEXT: polymorphic (not so simple) typing

Pairs

{t,t}
t.1
t.2

{v,v}

T1 X To

terms
pair
first projection
second projection

values
pair value

types
product type

Evaluation rules for pairs

{Vl,VQ}.l —r V1
{V1,V2}.2 — V2

ty — t)
t1.1—t).1

t] — t]
t1.2—>t/1.2

t] — t]

{t1,t2} — {t],t2}

ty — th

{vi,t2} — {vy,t5}

(E-PAIRBETA1)

(E-PAIRBETA2)

(E-ProJl)

(E-ProJ2)

(E-PAIR1)

(E-PAIR2)

Typing rules for pairs

NFt1: Ty Fty @ T)

M= {t1,t2} : T1 X T>

Mty : T11 X T1o
N=t1.1: Tz

Mty : T11 X T2
M=t1.2: Too

(T-PAIR)

(T-ProJl)

(T-ProJ2)

Sums
[On blackboard]

Curry Howard Revisited
[On blackboard]

Tuples

{t; €}
t.1

{V,’ f€1.,n}

{T, iEl,An}

terms
tuple
projection

values
tuple value

types
tuple type

Evaluation rules for tuples

{v; €1} j — v (E-PrROJTUPLE)

t] — t!
.—/1‘ (E-ProJ)
t1.1—t7.1

. /
{Vi i€l..j-1 ,tj ,tk kEjJrlnn}
— Ly L, (Y

(E-TupPLE)

Typing rules for tuples

foreachi TTH<t;:T;

r F {tl iEl..n} : {T, iEl,.n}

r'_tl . {TI i€1.4n}
M t1.] T

(T-TuPLE)

(T-ProJ)

10

Records

t =

{ll=tl i&lun}
t.1

{1i=vi iEl,.n}

{ll-T/ iElA.n}

terms
record
projection

values
record value

types
type of records

11

Evaluation rules for records

{1=v; €} 1 — v, (E-ProJRCD)

t] — t
—,1 (E-ProJ)
t1.1 — ty. 1

/
{1,=V1 i€l..j—1 s l_]=tj , 1k=tk k€j+1..n}
s {1i=Vi i€l..j—1 ’1J=t_; :1k=tk k€j+1..n}

(E-Rcb)

12

Typing rules for records

foreachi Tkt;:T;

r ', {lf=ti iEl..n} . {li:Ti iEl.,n}

[+ ty {1f:Ti ielnn}
|_|—t1.lj 2T

(T-Rceb)

(T-Proy)

13

Sums and variants

14

Sums — motivating example

PhysicalAddr

{firstlast:String, addr:String}
VirtualAddr {name:String, email:String}

Addr PhysicalAddr + VirtualAddr

inl : “PhysicalAddr — PhysicalAddr+VirtualAddr”
inr : "VirtualAddr — PhysicalAddr+VirtualAddr”

getName =)Aa:Addr.
case a of
inl x = x.firstlast
| inr y = y.name;

15

New syntactic forms

t

terms
inl t tagging (left)
inr t tagging (right)

case t of inl x=t | inr x=t case

values

inl v tagged value (left)
inr v tagged value (right)
types

T+T sum type

T1+T5 is a disjoint union of T1 and T, (the tags inl and inr
ensure disjointness)

16

New evaluation rules

case (inl wvg) — [x1 — vty
of inl x;=-t; | inr x,=1t,

case (inr vg) — [x2— vo]tg(
of inl x;=t; | inr x,=t,
tg — tg
case tp of inl x;=t; | inr x,=t,
—> case tj of inl x;=t; | inr x=t)
t; — t]
inl t; — inl t
t] — t)

inr t; — inr t)

(E-CAsEINL)

E-CASEINR)

(E-CAsE)

(E-INL)

(E-INR)

17

New typing rules FM-t:T

M=ty : T
S (T-InL)
Finl t1 : T1+T)
MEty: T
b (T-INR)
NFidinr t1 : T1+To
[ty : T1+To
M x1:TyFt1 : T [xp:TobFty: T
y &1 1 1 2.12 2 (T—CASE)

[F case tg of inl x1=t; | inr x>=to : T

18

Types of Sums

Consider the term

t =inl (succ 0)

Clicker question: What can we say about it? (multiple possible
answers)

A. Ft : Nat

B. Ft : Nat + Bool
C. Ft : Bool + Nat
D. -t : Nat + Nat

URL: ttpoll.eu
Session ID: cs452

19

Sums and Uniqueness of Types

Problem:
If t has type T, then inl t has type T+U for every U.

l.e., we've lost uniqueness of types.

Possible solutions:
» “Infer” U as needed during typechecking

» Give constructors different names and only allow each name
to appear in one sum type (requires generalization to
“variants,” which we'll see next) — OCaml’s solution

» Annotate each inl and inr with the intended sum type

» (Add subtyping and a "bottom” (Nothing) type — Scala’s
solution)

For simplicity, let's choose the third.

20

New syntactic forms

t o= .. terms
inl t as T tagging (left)
inr t as T tagging (right)
Vo= L values
inl v as T tagged value (left)
inr v as T tagged value (right)

Note that as T here is not the ascription operator that we saw
before — i.e., not a separate syntactic form: in essence, there is an
ascription “built into” every use of inl or inr.

21

New typing rules

Mt :Tq

[Finl t1 as T1+T>

[ty :To

: T1+T»

[+ inr t1 as Ty1+T>

: T1+T»

22

Evaluation rules ignore annotations: t — t/

case (inl vg as Tp)
of inl x1=t1 | inr x>=1t) (E—CASEINL)
— [X1 — Vo]tl

case (inr vg as Tp)
of inl x1=t; | inr x>=ts (E-CASEINR)
— [X2 — Vo]t2

t; — t]
! . (E-INL)
inl t; as Tp —> inl t; as Tp
t] — t
! (E-INR)

inr t; as Tp — inr t] as T

23

Variants

Just as we generalized binary products to labeled records, we can
generalize binary sums to labeled variants.

24

New syntactic forms
t o=
<1=t> as T
case t of <l;=x;>=t; €"

T = ..
<1i:Ti iFl..n>

terms

tagging
case

types
type of variants

25

New evaluation rules t — t/

case (<1;=v;> as T) of <1l;=x;>=t; "

(E-CASEVARIANT)
— [xj = vjlt;

to — t

. E-CASE
case tg of <1;=x;>=t; " ()

— case t} of <1l;=x;>=t; '“!"

tj — th

7 (E-VARIANT)
<lj=t;> as T —><1;=t/> as T

26

New typing rules s

[tj : TJ
: : (T-VARIANT)
M <1=t;> as <1;:T; ‘€1"> 1 <1;:T; '€1m>

MFtg: <1;:T; €-">
foreach/ [, x;:T;jFt;:T
[+ case tg of <1;=x;>=t; €"

T-C
T (T-CASE)

27

Example

Addr = <physical:PhysicalAddr, virtual:VirtualAddr>;
a = <physical=pa> as Addr;

getName = \a:Addr.
case a of
<physical=x> = x.firstlast
| <virtual=y> = y.name;

28

Options
Just like in OCaml...
OptionalNat = <none:Unit, some:Nat>;
Table = Nat—0OptionalNat;

emptyTable = An:Nat. <none=unit> as OptionalNat;

extendTable =
At:Table. Am:Nat. Av:Nat.
An:Nat.
if equal n m then <some=v> as OptionalNat
else t n;

x = case t(5) of
<none=u> = 999
| <some=v> = v;

29

Enumerations

Weekday = <monday:Unit, tuesday:Unit, wednesday:Unit,
thursday:Unit, friday:Unit>;

nextBusinessDay = A\w:Weekday.
case w of <monday=x> — <tuesday=unit> as Weekday
| <tuesday=x> = <wednesday=unit> as Weekday
| <wednesday=x> = <thursday=unit> as Weekday
| <thursday=x> = <friday=unit> as Weekday
| <friday=x> = <monday=unit> as Weekday;

30

Recursion

31

Recursion in _,

» In A, all programs terminate. (Cf. Chapter 12.)
» Hence, untyped terms like omega and fix are not typable.

> But we can extend the system with a (typed) fixed-point
operator...

32

Example

ff = Mie:Nat—Bool.
Ax:Nat.
if iszero x then true
else if iszero (pred x) then false
else ie (pred (pred x));

iseven = fix ff;

iseven 7;

33

New syntactic forms
t o= .. terms

fix t fixed point of t
New evaluation rules t —t/

fix (A\x:Tq.t2)

— [x = (fix (Ax:T1.t2))]t2 (E-FIXBETA)

t] — t]

E-Fix
fix t; — fix t ()

What would be the typing rule for terms of the form fix t?

34

New typing rules

Nt : T1—T

MFfix t; : Ty

35

A more convenient form

. lef . .
letrec x:Ti=t; in tp» = let x = fix (A\x:Ty.t1) in t»

letrec iseven : Nat—Bool =
Ax:Nat.
if iszero x then true
else if iszero (pred x) then false
else iseven (pred (pred x))
in
iseven 7;

36

