
Foundations of Software
Spring 2025

Week 5

1



Plan

Corresponding notes: Chapter 8 and 9 of TAPL

1. Some intuitions about types

2. typing arithmetic expressions to prevent errors (interleaved
with Lean livecoding)

3. simply typed lambda calculus (STLC) (your upcoming
project)

4. STLC and Propositional Logic: Toward Curry-Howard

2



Types

3



Problematic arithmetic expressions

Consider the term

t = if true then (pred false) else 0

Which of the following is true?

1. t is stuck

2. t is a closed term

3. t is typeable, i.e., there exists T such that t : T

4. there exists t′ such that t −→∗ t′ and t′ is stuck

4



The type of variables in STLC

Consider the term

t = λx : Bool. if x then false else true

What is T in t : T?

1. T = Bool

2. T = Bool→ Bool

3. there are multiple such T’s

4. none of the above

5



Recall: Arithmetic Expressions – Syntax

t ::= terms
true constant true
false constant false
if t then t else t conditional
0 constant zero
succ t successor
pred t predecessor
iszero t zero test

v ::= values
true true value
false false value
nv numeric value

nv ::= numeric values

0 zero value

succ nv successor value

6



Recall: Arithmetic Expressions – Evaluation Rules

if true then t2 else t3 −→ t2 (E-IfTrue)

if false then t2 else t3 −→ t3 (E-IfFalse)

pred 0 −→ 0 (E-PredZero)

pred (succ nv1) −→ nv1 (E-PredSucc)

iszero 0 −→ true (E-IszeroZero)

iszero (succ nv1) −→ false (E-IszeroSucc)

7



Recall: Arithmetic Expressions – Evaluation Rules

t1 −→ t′1

if t1 then t2 else t3 −→ if t′1 then t2 else t3
(E-If)

t1 −→ t′1

succ t1 −→ succ t′1
(E-Succ)

t1 −→ t′1

pred t1 −→ pred t′1
(E-Pred)

t1 −→ t′1

iszero t1 −→ iszero t′1
(E-IsZero)

8



Types

In this language, values have two possible “shapes”: they are
either booleans or numbers.

T ::= types
Bool type of booleans
Nat type of numbers

Intuitively, things go wrong only when we mistake a bool for a
number, i.e. when we do something that ”does not make sense”.

succ true

iszero true

9



Types

In this language, values have two possible “shapes”: they are
either booleans or numbers.

T ::= types
Bool type of booleans
Nat type of numbers

Intuitively, things go wrong only when we mistake a bool for a
number, i.e. when we do something that ”does not make sense”.

succ true

iszero true

9



Solution

Problem: Intuitively, things go wrong only when we mistake a
bool for a number, i.e. when we do something that ”does not
make sense” (does not have semantics).

Idea: Forbid programs that do not make sense. But how?

Actionable Solution: Tag every expression to see if it is a bool or
a number, and reject program that are passing a bool to succ

10



Solution

Problem: Intuitively, things go wrong only when we mistake a
bool for a number, i.e. when we do something that ”does not
make sense” (does not have semantics).

Idea: Forbid programs that do not make sense. But how?

Actionable Solution: Tag every expression to see if it is a bool or
a number, and reject program that are passing a bool to succ

10



Solution

Problem: Intuitively, things go wrong only when we mistake a
bool for a number, i.e. when we do something that ”does not
make sense” (does not have semantics).

Idea: Forbid programs that do not make sense. But how?

Actionable Solution: Tag every expression to see if it is a bool or
a number, and reject program that are passing a bool to succ

10



Typing Rules

true : Bool (T-True)

false : Bool (T-False)

0 : Nat (T-Zero)

t1 : Nat

succ t1 : Nat
(T-Succ)

t1 : Nat

pred t1 : Nat
(T-Pred)

t1 : Nat

iszero t1 : Bool
(T-IsZero)

t1 : Bool t2 : T t3 : T

if t1 then t2 else t3 : T
(T-If)

11



Typing Rules

true : Bool (T-True)

false : Bool (T-False)

0 : Nat (T-Zero)

t1 : Nat

succ t1 : Nat
(T-Succ)

t1 : Nat

pred t1 : Nat
(T-Pred)

t1 : Nat

iszero t1 : Bool
(T-IsZero)

t1 : Bool t2 : T t3 : T

if t1 then t2 else t3 : T
(T-If)

11



Typing Derivations

Every pair (t, T) in the typing relation can be justified by a
derivation tree built from instances of the inference rules.

T-Zero
0 : Nat

T-IsZero
iszero 0 : Bool

T-Zero
0 : Nat

T-Zero
0 : Nat

T-Pred
pred 0 : Nat

T-If
if iszero 0 then 0 else pred 0 : Nat

Proofs of properties about the typing relation often proceed by
induction on typing derivations.

12



Imprecision of Typing

Like other static program analyses, type systems are generally
imprecise: they do not predict exactly what kind of value will be
returned by every program, but just a conservative (safe)
approximation.

t1 : Bool t2 : T t3 : T

if t1 then t2 else t3 : T
(T-If)

Using this rule, we cannot assign a type to

if true then 0 else pred false

if true then 0 else false

even though these terms will certainly evaluate to a number.

13



Type Safety

The safety (or soundness) of this type system can be expressed as
follows: a well-typed program can never get stuck.
If t : T, then ∀t′, t −→∗ t′ t’ is not stuck
Reminder, t’ is not stuck is defined by either:

I t’ is a value, i.e. the computation finished.

I Or one can take at least one more step from t’:
∃t′′, t’ −→ t′′

In other words, evaluation of a typed term never ”goes wrong”!

14



Type Safety

The safety (or soundness) of this type system can be expressed as
follows: a well-typed program can never get stuck.
If t : T, then ∀t′, t −→∗ t′ t’ is not stuck
Reminder, t’ is not stuck is defined by either:

I t’ is a value, i.e. the computation finished.

I Or one can take at least one more step from t’:
∃t′′, t’ −→ t′′

In other words, evaluation of a typed term never ”goes wrong”!

14



Decomposing Type Safety

The safety (or soundness) of type systems is very often decompose
into two properties:

1. Progress: A well-typed term is not stuck
If t : T, then either t is a value or else t −→ t′ for some
t′.

2. Preservation: Types are preserved by one-step evaluation
If t : T and t −→ t′, then t′ : T.

How do you conclude from these two lemmas? Easy exercise left to

the reader

15



Decomposing Type Safety

The safety (or soundness) of type systems is very often decompose
into two properties:

1. Progress: A well-typed term is not stuck
If t : T, then either t is a value or else t −→ t′ for some
t′.

2. Preservation: Types are preserved by one-step evaluation
If t : T and t −→ t′, then t′ : T.

How do you conclude from these two lemmas?

Easy exercise left to

the reader

15



Decomposing Type Safety

The safety (or soundness) of type systems is very often decompose
into two properties:

1. Progress: A well-typed term is not stuck
If t : T, then either t is a value or else t −→ t′ for some
t′.

2. Preservation: Types are preserved by one-step evaluation
If t : T and t −→ t′, then t′ : T.

How do you conclude from these two lemmas? Easy exercise left to

the reader

15



Inversion

Lemma:

1. If true : R, then R = Bool.

2. If false : R, then R = Bool.

3. If if t1 then t2 else t3 : R, then t1 : Bool, t2 : R, and
t3 : R.

4. If 0 : R, then R = Nat.

5. If succ t1 : R, then R = Nat and t1 : Nat.

6. If pred t1 : R, then R = Nat and t1 : Nat.

7. If iszero t1 : R, then R = Bool and t1 : Nat.

Proof: ...

This leads directly to a recursive algorithm for calculating the type
of a term...

16



Inversion

Lemma:

1. If true : R, then R = Bool.

2. If false : R, then R = Bool.

3. If if t1 then t2 else t3 : R, then t1 : Bool, t2 : R, and
t3 : R.

4. If 0 : R, then R = Nat.

5. If succ t1 : R, then R = Nat and t1 : Nat.

6. If pred t1 : R, then R = Nat and t1 : Nat.

7. If iszero t1 : R, then R = Bool and t1 : Nat.

Proof: ...

This leads directly to a recursive algorithm for calculating the type
of a term...

16



Inversion

Lemma:

1. If true : R, then R = Bool.

2. If false : R, then R = Bool.

3. If if t1 then t2 else t3 : R, then t1 : Bool, t2 : R, and
t3 : R.

4. If 0 : R, then R = Nat.

5. If succ t1 : R, then R = Nat and t1 : Nat.

6. If pred t1 : R, then R = Nat and t1 : Nat.

7. If iszero t1 : R, then R = Bool and t1 : Nat.

Proof: ...

This leads directly to a recursive algorithm for calculating the type
of a term...

16



Typechecking Algorithm
typeof(t) = match t with

| true => Bool

| false => Bool

| 0 => Nat

| succ t1 =>

let T1 = typeof(t1) in

if T1 = Nat then Nat else error "not typable"

| pred t1 =>

let T1 = typeof(t1) in

if T1 = Nat then Nat else error "not typable"

| iszero t1 =>

let T1 = typeof(t1) in

if T1 = Nat then Bool else "not typable"

| ‘‘‘if t1 then t2 else t3‘‘‘ =>

-- This ^ if is the if of the arith language

let T1 = typeof(t1) in

let T2 = typeof(t2) in

let T3 = typeof(t3) in

if T1 = Bool and T2=T3 then T2

-- this ^ one is the if of the "host" language

else error "not typable" 17



Proving progress and
preservation

18



Progress

Theorem: Suppose t is a well-typed term (that is, t : T for some
type T). Then either t is a value or else there is some t′ with
t −→ t′.

Proof: By induction on a derivation of t : T.

The T-True, T-False, and T-Zero cases are immediate, since
t in these cases is a value.

Case T-If: t = if t1 then t2 else t3
t1 : Bool t2 : T t3 : T

By the induction hypothesis, either t1 is a value or else there is
some t′1 such that t1 −→ t′1. If t1 is a value, then the canonical
forms lemma tells us that it must be either true or false, in
which case either E-IfTrue or E-IfFalse applies to t. On the
other hand, if t1 −→ t′1, then, by E-If,
t −→ if t′1 then t2 else t3.

19



Progress

Theorem: Suppose t is a well-typed term (that is, t : T for some
type T). Then either t is a value or else there is some t′ with
t −→ t′.

Proof:

By induction on a derivation of t : T.

The T-True, T-False, and T-Zero cases are immediate, since
t in these cases is a value.

Case T-If: t = if t1 then t2 else t3
t1 : Bool t2 : T t3 : T

By the induction hypothesis, either t1 is a value or else there is
some t′1 such that t1 −→ t′1. If t1 is a value, then the canonical
forms lemma tells us that it must be either true or false, in
which case either E-IfTrue or E-IfFalse applies to t. On the
other hand, if t1 −→ t′1, then, by E-If,
t −→ if t′1 then t2 else t3.

19



Progress

Theorem: Suppose t is a well-typed term (that is, t : T for some
type T). Then either t is a value or else there is some t′ with
t −→ t′.

Proof: By induction on a derivation of t : T.

The T-True, T-False, and T-Zero cases are immediate, since
t in these cases is a value.

Case T-If: t = if t1 then t2 else t3
t1 : Bool t2 : T t3 : T

By the induction hypothesis, either t1 is a value or else there is
some t′1 such that t1 −→ t′1. If t1 is a value, then the canonical
forms lemma tells us that it must be either true or false, in
which case either E-IfTrue or E-IfFalse applies to t. On the
other hand, if t1 −→ t′1, then, by E-If,
t −→ if t′1 then t2 else t3.

19



Progress

Theorem: Suppose t is a well-typed term (that is, t : T for some
type T). Then either t is a value or else there is some t′ with
t −→ t′.

Proof: By induction on a derivation of t : T.

The T-True, T-False, and T-Zero cases are immediate, since
t in these cases is a value.

Case T-If: t = if t1 then t2 else t3
t1 : Bool t2 : T t3 : T

By the induction hypothesis, either t1 is a value or else there is
some t′1 such that t1 −→ t′1. If t1 is a value, then the canonical
forms lemma tells us that it must be either true or false, in
which case either E-IfTrue or E-IfFalse applies to t. On the
other hand, if t1 −→ t′1, then, by E-If,
t −→ if t′1 then t2 else t3.

19



Progress

Theorem: Suppose t is a well-typed term (that is, t : T for some
type T). Then either t is a value or else there is some t′ with
t −→ t′.

Proof: By induction on a derivation of t : T.

The T-True, T-False, and T-Zero cases are immediate, since
t in these cases is a value.

Case T-If: t = if t1 then t2 else t3
t1 : Bool t2 : T t3 : T

By the induction hypothesis, either t1 is a value or else there is
some t′1 such that t1 −→ t′1. If t1 is a value, then the canonical
forms lemma tells us that it must be either true or false, in
which case either E-IfTrue or E-IfFalse applies to t. On the
other hand, if t1 −→ t′1, then, by E-If,
t −→ if t′1 then t2 else t3.

19



Progress

Theorem: Suppose t is a well-typed term (that is, t : T for some
type T). Then either t is a value or else there is some t′ with
t −→ t′.

Proof: By induction on a derivation of t : T.

The T-True, T-False, and T-Zero cases are immediate, since
t in these cases is a value.

Case T-If: t = if t1 then t2 else t3
t1 : Bool t2 : T t3 : T

By the induction hypothesis, either t1 is a value or else there is
some t′1 such that t1 −→ t′1. If t1 is a value, then the canonical
forms lemma tells us that it must be either true or false, in
which case either E-IfTrue or E-IfFalse applies to t. On the
other hand, if t1 −→ t′1, then, by E-If,
t −→ if t′1 then t2 else t3.

19



Progress

Theorem: Suppose t is a well-typed term (that is, t : T for some
type T). Then either t is a value or else there is some t′ with
t −→ t′.

Proof: By induction on a derivation of t : T.

The cases for rules T-Zero, T-Succ, T-Pred, and T-IsZero
are similar.

(Recommended: Try to reconstruct them.)

20



Preservation

Theorem: If t : T and t −→ t′, then t′ : T.

Proof: By induction on the given typing derivation.

21



Preservation

Theorem: If t : T and t −→ t′, then t′ : T.

Proof: By induction on the given typing derivation.

21



Preservation

Theorem: If t : T and t −→ t′, then t′ : T.

Proof: By induction on the given typing derivation.

Case T-True: t = true T = Bool

Then t is a value.

21



Preservation

Theorem: If t : T and t −→ t′, then t′ : T.

Proof: By induction on the given typing derivation.

Case T-If:
t = if t1 then t2 else t3 t1 : Bool t2 : T t3 : T

There are three evaluation rules by which t −→ t′ can be derived:
E-IfTrue, E-IfFalse, and E-If. Consider each case separately.

21



Preservation

Theorem: If t : T and t −→ t′, then t′ : T.

Proof: By induction on the given typing derivation.

Case T-If:
t = if t1 then t2 else t3 t1 : Bool t2 : T t3 : T

There are three evaluation rules by which t −→ t′ can be derived:
E-IfTrue, E-IfFalse, and E-If. Consider each case separately.

Subcase E-IfTrue: t1 = true t′ = t2

Immediate, by the assumption t2 : T.

(E-IfFalse subcase: Similar.)

21



Preservation

Theorem: If t : T and t −→ t′, then t′ : T.

Proof: By induction on the given typing derivation.

Case T-If:
t = if t1 then t2 else t3 t1 : Bool t2 : T t3 : T

There are three evaluation rules by which t −→ t′ can be derived:
E-IfTrue, E-IfFalse, and E-If. Consider each case separately.

Subcase E-If: t1 −→ t′1 t′ = if t′1 then t2 else t3

Applying the IH to the subderivation of t1 : Bool yields
t′1 : Bool. Combining this with the assumptions that t2 : T and
t3 : T, we can apply rule T-If to conclude that
if t′1 then t2 else t3 : T, that is, t′ : T.

21



The Simply Typed
Lambda-Calculus

22



The simply typed lambda-calculus

The system we are about to define is commonly called the simply
typed lambda-calculus, or λ→ for short.

Unlike the untyped lambda-calculus, the “pure” form of λ→ (with
no primitive values or operations) is not very interesting; to talk
about λ→, we always begin with some set of “base types.”

I So, strictly speaking, there are many variants of λ→,
depending on the choice of base types.

I For now, we’ll work with a variant constructed over the
booleans.

What could ”go wrong”?

true false

λx.true x

23



The simply typed lambda-calculus

The system we are about to define is commonly called the simply
typed lambda-calculus, or λ→ for short.

Unlike the untyped lambda-calculus, the “pure” form of λ→ (with
no primitive values or operations) is not very interesting; to talk
about λ→, we always begin with some set of “base types.”

I So, strictly speaking, there are many variants of λ→,
depending on the choice of base types.

I For now, we’ll work with a variant constructed over the
booleans.

What could ”go wrong”?

true false

λx.true x

23



The simply typed lambda-calculus

The system we are about to define is commonly called the simply
typed lambda-calculus, or λ→ for short.

Unlike the untyped lambda-calculus, the “pure” form of λ→ (with
no primitive values or operations) is not very interesting; to talk
about λ→, we always begin with some set of “base types.”

I So, strictly speaking, there are many variants of λ→,
depending on the choice of base types.

I For now, we’ll work with a variant constructed over the
booleans.

What could ”go wrong”?

true false

λx.true x

23



Untyped lambda-calculus with booleans

t ::= terms
x variable
λx.t abstraction
t t application
true constant true
false constant false
if t then t else t conditional

v ::= values
λx.t abstraction value
true true value
false false value

24



“Simple Types”

T ::= types
Bool type of booleans
T→T types of functions

What are some examples?

25



Type Annotations

We now have a choice to make. Do we...

I annotate lambda-abstractions with the expected type of the
argument

λx:T1. t2

(as in most mainstream programming languages), or

I continue to write lambda-abstractions as before

λx. t2

and ask the typing rules to “guess” an appropriate annotation
(as in OCaml)?

Both are reasonable choices, but the first makes the job of defining
the typing rules simpler. Let’s take this choice for now.

26



Typing rules

true : Bool (T-True)

false : Bool (T-False)

t1 : Bool t2 : T t3 : T

if t1 then t2 else t3 : T
(T-If)

λx:T1.t2 : T1→T2
(T-Abs)

x:T ∈ Γ

Γ ` x : T
(T-Var)

Γ ` t1 : T11→T12 Γ ` t2 : T11

Γ ` t1 t2 : T12
(T-App)

27



Typing rules

true : Bool (T-True)

false : Bool (T-False)

t1 : Bool t2 : T t3 : T

if t1 then t2 else t3 : T
(T-If)

???

λx:T1.t2 : T1→T2
(T-Abs)

x:T ∈ Γ

Γ ` x : T
(T-Var)

Γ ` t1 : T11→T12 Γ ` t2 : T11

Γ ` t1 t2 : T12
(T-App)

27



Typing rules

true : Bool (T-True)

false : Bool (T-False)

t1 : Bool t2 : T t3 : T

if t1 then t2 else t3 : T
(T-If)

Γ, x:T1 ` t2 : T2

Γ ` λx:T1.t2 : T1→T2
(T-Abs)

x:T ∈ Γ

Γ ` x : T
(T-Var)

Γ ` t1 : T11→T12 Γ ` t2 : T11

Γ ` t1 t2 : T12
(T-App)

27



Typing rules

Γ ` true : Bool (T-True)

Γ ` false : Bool (T-False)

Γ ` t1 : Bool Γ ` t2 : T Γ ` t3 : T

Γ ` if t1 then t2 else t3 : T
(T-If)

Γ, x:T1 ` t2 : T2

Γ ` λx:T1.t2 : T1→T2
(T-Abs)

x:T ∈ Γ

Γ ` x : T
(T-Var)

Γ ` t1 : T11→T12 Γ ` t2 : T11

Γ ` t1 t2 : T12
(T-App)

27



Typing Derivations

What derivations justify the following typing statements?

I ` (λx:Bool.x) true : Bool

I f:Bool→Bool `
f (if false then true else false) : Bool

I f:Bool→Bool `
λx:Bool. f (if x then false else x) : Bool→Bool

28



Safety of λ→with Bools

The fundamental property of the type system we have just defined
is soundness with respect to the operational semantics.

It can be proven by decomposing into proving progress and
preservation.

What if we remove the booleans and just keep the core lambda
calculus?

29



Safety of λ→with Bools

The fundamental property of the type system we have just defined
is soundness with respect to the operational semantics.

It can be proven by decomposing into proving progress and
preservation.

What if we remove the booleans and just keep the core lambda
calculus?

29



Untyped lambda-calculus

t ::= terms
x variable
λx.t abstraction
t t application

v ::= values
λx.t abstraction value

30



“Simple Types”

T ::= types
A1, ..., An Base types
T→T types of functions

What are some examples?

A1→ A1

A1→ A1→ A2

31



Typing rules for pure STLC

Γ, x:T1 ` t2 : T2

Γ ` λx:T1.t2 : T1→T2
(T-Abs)

x:T ∈ Γ

Γ ` x : T
(T-Var)

Γ ` t1 : T11→T12 Γ ` t2 : T11

Γ ` t1 t2 : T12
(T-App)

What does safety of the typesystem means for this language?
Closed terms in pure lambda calculus already do not go wrong!

So, STLC (for pure lambda calculus) is useless?

32



Typing rules for pure STLC

Γ, x:T1 ` t2 : T2

Γ ` λx:T1.t2 : T1→T2
(T-Abs)

x:T ∈ Γ

Γ ` x : T
(T-Var)

Γ ` t1 : T11→T12 Γ ` t2 : T11

Γ ` t1 t2 : T12
(T-App)

What does safety of the typesystem means for this language?

Closed terms in pure lambda calculus already do not go wrong!

So, STLC (for pure lambda calculus) is useless?

32



Typing rules for pure STLC

Γ, x:T1 ` t2 : T2

Γ ` λx:T1.t2 : T1→T2
(T-Abs)

x:T ∈ Γ

Γ ` x : T
(T-Var)

Γ ` t1 : T11→T12 Γ ` t2 : T11

Γ ` t1 t2 : T12
(T-App)

What does safety of the typesystem means for this language?
Closed terms in pure lambda calculus already do not go wrong!

So, STLC (for pure lambda calculus) is useless?

32



Seemingly unrelated: Propositional calculus!

Back to early stage of your undergrad education: Propositions:

X ::= Atoms

A,B,C,... Propositional variables

t ::= terms

true constant true

false constant false

X Atom

t ∧ t And

¬ t Not

t ∨ t Or

t ⇒ t Implication

t ⇔ t Equivalence

v ::= values

true true value

false false value

33



Seemingly unrelated: Propositional calculus!

Back to early stage of your undergrad education: Propositions:

X ::= Atoms

A,B,C,... Propositional variables

t ::= terms

true constant true

false constant false

X Atom

t ∧ t And

¬ t Not

t ∨ t Or

t ⇒ t Implication

t ⇔ t Equivalence

v ::= values

true true value

false false value

33



Seemingly unrelated: Propositional calculus!

Back to early stage of your undergrad education: Propositions:

X ::= Atoms

A,B,C,... Propositional variables

t ::= terms

true constant true

false constant false

X Atom

t ∧ t And

¬ t Not

t ∨ t Or

t ⇒ t Implication

t ⇔ t Equivalence

v ::= values

true true value

false false value

33



Propositional Logic

Logical expressivity of this language: very limited, no natural
numbers, no equality, no quantifiers. It is the Duplo of logic
(Lego/Logic for children).

We can still have theorems in this language.
We might be interested in proving that the following propositions
are tautologies:

((A⇒ B)⇒ A⇒ B

((A⇒ B)&&A)⇒ (A&&B)

Do a truth table! Little issues:
I Exponential size
I Disconnected from the ”intuitive proof”: in our head we don’t

do brute force. We do deductions! Let’s invent a language to
formalize the notion of deduction we do in our head, and let’s
call it ”Natural Deduction”.

Sales speech for Propositional Logic: Theorems are decidable!

34



Propositional Logic

Logical expressivity of this language: very limited, no natural
numbers, no equality, no quantifiers. It is the Duplo of logic
(Lego/Logic for children).
We can still have theorems in this language.
We might be interested in proving that the following propositions
are tautologies:

((A⇒ B)⇒ A⇒ B

((A⇒ B)&&A)⇒ (A&&B)

Do a truth table! Little issues:
I Exponential size
I Disconnected from the ”intuitive proof”: in our head we don’t

do brute force. We do deductions! Let’s invent a language to
formalize the notion of deduction we do in our head, and let’s
call it ”Natural Deduction”.

Sales speech for Propositional Logic: Theorems are decidable!

34



Propositional Logic

Logical expressivity of this language: very limited, no natural
numbers, no equality, no quantifiers. It is the Duplo of logic
(Lego/Logic for children).
We can still have theorems in this language.
We might be interested in proving that the following propositions
are tautologies:

((A⇒ B)⇒ A⇒ B

((A⇒ B)&&A)⇒ (A&&B)

Do a truth table! Little issues:
I Exponential size
I Disconnected from the ”intuitive proof”: in our head we don’t

do brute force. We do deductions! Let’s invent a language to
formalize the notion of deduction we do in our head, and let’s
call it ”Natural Deduction”.

Sales speech for Propositional Logic: Theorems are decidable!

34



Propositional Logic

Logical expressivity of this language: very limited, no natural
numbers, no equality, no quantifiers. It is the Duplo of logic
(Lego/Logic for children).
We can still have theorems in this language.
We might be interested in proving that the following propositions
are tautologies:

((A⇒ B)⇒ A⇒ B

((A⇒ B)&&A)⇒ (A&&B)

Do a truth table! Little issues:
I Exponential size
I Disconnected from the ”intuitive proof”: in our head we don’t

do brute force. We do deductions! Let’s invent a language to
formalize the notion of deduction we do in our head, and let’s
call it ”Natural Deduction”.

Sales speech for Propositional Logic: Theorems are decidable!

34



Propositional calculus - Intuitive proof

((A⇒ B)⇒ A⇒ B

If we assume that A implies B is true, and we assume that A is
true, then necessarily B is true.

35



Propositional calculus - Intuitive proof

((A⇒ B)⇒ A⇒ B

If we assume that A implies B is true, and we assume that A is
true, then necessarily B is true.

35



Rules of Inference for Implication

((A⇒ B)⇒ A⇒ B

36



Rules of Inference for Conjunction

((A⇒ B)&&A)⇒ (A&&B)

37



Toward Curry-Howard Isomorphism

STLC:

Γ ` t1 : T11→T12 Γ ` t2 : T11

Γ ` t1 t2 : T12
(T-App)

Γ, x:T1 ` t2 : T2

Γ ` λx:T1.t2 : T1→T2
(T-Abs)

x:T ∈ Γ

Γ ` x : T
(T-Var)

38



Toward Curry-Howard Isomorphism

STLC:

Γ, x:T1` t2 :T2

Γ ` λx:T1.t2 : T1→T2
(T-Abs)

x:T∈ Γ

Γ ` x :T
(T-Var)

Γ ` t1 :T11→T12 Γ ` t2 :T11

Γ ` t1 t2 :T12
(T-App)

39



First Curry-Howard Isomorphism

40



Example of Application of Curry-Howard

If we can write a lambda term a lambda term that has type:

((A→ B)→ A→ B

Then we have proven the theorem that the following proposition is
a tautology, without having to do a truth table!

((A⇒ B)⇒ A⇒ B

What about:
λ(x: A → B)(y:A).x y

41



Example of Application of Curry-Howard

If we can write a lambda term a lambda term that has type:

((A→ B)→ A→ B

Then we have proven the theorem that the following proposition is
a tautology, without having to do a truth table!

((A⇒ B)⇒ A⇒ B

What about:
λ(x: A → B)(y:A).x y

41



Already limited?

What about:
((A⇒ B)&&A)⇒ (A&&B)

42



Already limited?

What about:
((A⇒ B)&&A)⇒ (A&&B)

42



Product types

What about:
((A⇒ B)&&A)⇒ (A&&B)

λ(x: (A → B) × A).(fst x) (snd x)

43



Curry-Howard’s Zoo

44


