Foundations of Software
Spring 2025

Week 5

Plan

Corresponding notes: Chapter 8 and 9 of TAPL

1. Some intuitions about types

2. typing arithmetic expressions to prevent errors (interleaved
with Lean livecoding)

3. simply typed lambda calculus (STLC) (your upcoming
project)

4. STLC and Propositional Logic: Toward Curry-Howard

Types

Problematic arithmetic expressions

Consider the term

t = if true then (pred false) else 0

Which of the following is true?
1. t is stuck
2. tis a closed term
3. t is typeable, i.e., there exists T such that t : T
4. there exists t’ such that t —" t/ and t’ is stuck

The type of variables in STLC

Consider the term

t = Ax : Bool. if x then false else true

Whatis Tint : T?

1. T =Bool

2. T =Bool — Bool
3. there are multiple such T's
4

. none of the above

Recall: Arithmetic Expressions — Syntax

nv

true

false

if t then t else t
0

succ t

pred t

iszero t

true
false
nv

0

succ nv

terms
constant true
constant false
conditional
constant zero
successor
predecessor
zero test
values
true value
false value
numeric value

numeric values
zero value
successor value

Recall: Arithmetic Expressions — Evaluation Rules

if true then t, else t3 — t» (E-IFTRUE)

if false then ty else t3 — t3 (E-IFFALSE)

pred 0 — 0 (E-PREDZERO)
pred (succ nvi;) — nvy (E-PrREDSUCC)
iszero 0 — true (E-ISZEROZERO)

iszero (succ nvy) —» false (E-ISZEROSUCC)

Recall: Arithmetic Expressions — Evaluation Rules

t1

i
— T

(E-Ir)

if t; then t, else t3

t1

— if t| then t; else t3

i
— t

succ tip

t1

— succ t

!
— T

pred t;

t1

— pred t

!
— T

iszero t;

— iszero t}

(E-Succ)

(E-PRrED)

(E-ISZERO)

Types

In this language, values have two possible “shapes”: they are
either booleans or numbers.

T = types
Bool type of booleans
Nat type of numbers

Types

In this language, values have two possible “shapes”: they are
either booleans or numbers.

T = types
Bool type of booleans
Nat type of numbers

Intuitively, things go wrong only when we mistake a bool for a
number, i.e. when we do something that " does not make sense”.

succ true

iszero true

Solution

Problem: Intuitively, things go wrong only when we mistake a
bool for a number, i.e. when we do something that " does not
make sense” (does not have semantics).

10

Solution

Problem: Intuitively, things go wrong only when we mistake a
bool for a number, i.e. when we do something that " does not
make sense” (does not have semantics).

Idea: Forbid programs that do not make sense. But how?

10

Solution

Problem: Intuitively, things go wrong only when we mistake a
bool for a number, i.e. when we do something that " does not
make sense” (does not have semantics).

Idea: Forbid programs that do not make sense. But how?

Actionable Solution: Tag every expression to see if it is a bool or
a number, and reject program that are passing a bool to succ

10

Typing Rules

true : Bool

false : Bool
0 : Nat
t1 : Nat

succ t; : Nat

t1 : Nat

pred ti : Nat

t1 : Nat

iszero tj : Bool

(T-TRUE)
(T-FALSE)
(T-ZERO)

(T-Succ)

(T-PrED)

(T-ISZERO)

11

Typing Rules

true : Bool

false : Bool
0 : Nat
t1 : Nat

succ t; : Nat
t1 : Nat
pred ti : Nat

t1 : Nat

iszero tj : Bool
t1 : Bool to ! T t3 : T
if t; then to else t3: T

(T-TRUE)
(T-FALSE)
(T-ZERO)

(T-Succ)

(T-PrED)

(T-ISZERO)

(T-IrF)

11

Typing Derivations

Every pair (t,T) in the typing relation can be justified by a
derivation tree built from instances of the inference rules.

T-ZERO T-ZERO
0 : Nat 0 : Nat
T-1ISZERO T-ZERO —— T-PRED
iszero O : Bool 0 : Nat pred O : Nat
T-1r

if iszero O then O else pred O : Nat

Proofs of properties about the typing relation often proceed by
induction on typing derivations.

12

Imprecision of Typing

Like other static program analyses, type systems are generally
imprecise: they do not predict exactly what kind of value will be
returned by every program, but just a conservative (safe)
approximation.

t1 : Bool to ! T t3 . T

(T-Ir)
if t; then to else t3: T

Using this rule, we cannot assign a type to
if true then O else pred false
if true then 0 else false

even though these terms will certainly evaluate to a number.

13

Type Safety

The safety (or soundness) of this type system can be expressed as
follows: a well-typed program can never get stuck.

If t : T, then Vt'.t —" ¢t/ t’ is not stuck

Reminder, t' is not stuck is defined by either:

> t'is a value, i.e. the computation finished.

» Or one can take at least one more step from t":
"t —t”

14

Type Safety

The safety (or soundness) of this type system can be expressed as
follows: a well-typed program can never get stuck.

If t : T, then Vt'.t —" ¢t/ t’ is not stuck

Reminder, t' is not stuck is defined by either:

> t'is a value, i.e. the computation finished.

» Or one can take at least one more step from t":
"t —t”

In other words, evaluation of a typed term never " goes wrong"!

14

Decomposing Type Safety
The safety (or soundness) of type systems is very often decompose
into two properties:
1. Progress: A well-typed term is not stuck
If t : T, then either t is a value or else t — t' for some
t.
2. Preservation: Types are preserved by one-step evaluation
Ift : Tandt— t', thent : T.

15

Decomposing Type Safety
The safety (or soundness) of type systems is very often decompose
into two properties:
1. Progress: A well-typed term is not stuck
If t : T, then either t is a value or else t — t' for some
t.
2. Preservation: Types are preserved by one-step evaluation
Ift : Tandt— t', thent : T.

How do you conclude from these two lemmas?

15

Decomposing Type Safety

The safety (or soundness) of type systems is very often decompose
into two properties:

1. Progress: A well-typed term is not stuck
If t : T, then either t is a value or else t — t' for some
t.

2. Preservation: Types are preserved by one-step evaluation
Ift : Tandt— t', thent : T.

How do you conclude from these two lemmas? Easy exercise left to

the reader

15

Inversion

Lemma:
1. If true : R, then R = Bool.
2. If false : R, then R = Bool.
3. If if t1 then t, else t3 : R, then t; : Bool, t, : R, and
t3 : R.
4. 1f 0 : R, then R = Nat.
5. If succ t; : R, then R = Nat and t; : Nat.
6. If pred t; : R, then R = Nat and t; : Nat.
7. If iszero tj : R, then R = Bool and t; : Nat.

16

Inversion

Lemma:
1. If true : R, then R = Bool.
2. If false : R, then R = Bool.
3. If if t1 then t, else t3 : R, then t; : Bool, t, : R, and
t3 : R.
If 0 : R, then R = Nat.
If succ t1 : R, then R = Nat and t; : Nat.
If pred t; : R, then R = Nat and t; : Nat.
7. If iszero t1 : R, then R = Bool and t; : Nat.
Proof:

o o &

16

Inversion

Lemma:
1. If true : R, then R = Bool.
2. If false : R, then R = Bool.
3. If if t1 then t, else t3 : R, then t; : Bool, t, : R, and
t3 : R.
If 0 : R, then R = Nat.
If succ t1 : R, then R = Nat and t; : Nat.
If pred t; : R, then R = Nat and t; : Nat.
7. If iszero t1 : R, then R = Bool and t; : Nat.
Proof:

o o &

This leads directly to a recursive algorithm for calculating the type
of a term...

16

Typechecking Algorithm

typeof (t) = match t with

true => Bool

false => Bool

0 => Nat

succ t1 =>

let T1 = typeof(tl) in

if Tl = Nat then Nat else error "not typable"
pred tl1 =>

let T1 = typeof(tl) in

if T1 = Nat then Nat else error "not typable"
iszero t1 =>

let T1 = typeof(tl) in

if Tl = Nat then Bool else "not typable"
€¢¢if t1 then t2 else t3<¢¢ =>

-- This = if is the if of the arith language

-- this

let T1 = typeof(tl) in

let T2 = typeof(t2) in

let T3 = typeof(t3) in

if T1 = Bool and T2=T3 then T2

" one is the if of the "host" language
else error "not typable"

Proving progress and
preservation

18

Progress

Theorem: Suppose t is a well-typed term (that is, t : T for some
type T). Then either t is a value or else there is some t” with
t —t.

19

Progress

Theorem: Suppose t is a well-typed term (that is, t : T for some
type T). Then either t is a value or else there is some t” with
t —t.

Proof-

19

Progress

Theorem: Suppose t is a well-typed term (that is, t : T for some
type T). Then either t is a value or else there is some t” with
t —t.

Proof: By induction on a derivation of t : T.

19

Progress

Theorem: Suppose t is a well-typed term (that is, t : T for some
type T). Then either t is a value or else there is some t” with
t —t.

Proof: By induction on a derivation of t : T.

The T-TRUE, T-FALSE, and T-ZERO cases are immediate, since
t in these cases is a value.

19

Progress

Theorem: Suppose t is a well-typed term (that is, t : T for some
type T). Then either t is a value or else there is some t” with
t —t.

Proof: By induction on a derivation of t : T.

The T-TRUE, T-FALSE, and T-ZERO cases are immediate, since
t in these cases is a value.

Case T-1IF: t = if t; then t, else t3
t1 : Bool to ! T t3 ¢ T

19

Progress

Theorem: Suppose t is a well-typed term (that is, t : T for some
type T). Then either t is a value or else there is some t” with
t —t.

Proof: By induction on a derivation of t : T.

The T-TRUE, T-FALSE, and T-ZERO cases are immediate, since
t in these cases is a value.

Case T-IF: t =if t; then t, else t3

t1 : Bool to ! T t3 ¢ T
By the induction hypothesis, either t; is a value or else there is
some t) such that t; — t}. If t; is a value, then the canonical
forms lemma tells us that it must be either true or false, in
which case either E-IFTRUE or E-IFFALSE applies to t. On the
other hand, if t; — t/, then, by E-IF,
t — if t] then ty else ts.

19

Progress

Theorem: Suppose t is a well-typed term (that is, t : T for some
type T). Then either t is a value or else there is some t” with
t —t.

Proof: By induction on a derivation of t : T.

The cases for rules T-ZERO, T-Succ, T-PRED, and T-ISZERO
are similar.

(Recommended: Try to reconstruct them.)

20

Preservation

Theorem: If t : Tand t — t/, then t’ :

T.

21

Preservation

Theorem: If t : Tand t — t/, then t’ : T.

Proof: By induction on the given typing derivation.

21

Preservation

Theorem: If t : Tand t — t/, then t’ : T.

Proof: By induction on the given typing derivation.

Case T-TRUE: t = true T = Bool

Then t is a value.

21

Preservation
Theorem: If t : Tand t — t/, then t’ : T.

Proof: By induction on the given typing derivation.

Case T-1IF:
t =1if t; then to else t3 t; : Bool to : T t3: T

There are three evaluation rules by which t — t/ can be derived:
E-IFTRUE, E-IFFALSE, and E-IF. Consider each case separately.

21

Preservation

Theorem: If t : Tand t — t/, then t’ : T.

Proof: By induction on the given typing derivation.

Case T-1IF:
t =1if t; then to else t3 t; : Bool to : T t3: T

There are three evaluation rules by which t — t/ can be derived:
E-IFTRUE, E-IFFALSE, and E-IF. Consider each case separately.

Subcase E-IFTRUE: t1 = true t/ = t,

Immediate, by the assumption t, : T.

(E-IFFALSE subcase: Similar.)

21

Preservation

Theorem: If t : Tand t — t/, then t’ : T.

Proof: By induction on the given typing derivation.

Case T-1IF:
t =1if t; then to else t3 t; : Bool to : T t3: T

There are three evaluation rules by which t — t/ can be derived:
E-IFTRUE, E-IFFALSE, and E-IF. Consider each case separately.

Subcase E-IF: t; — t] t' =if t] then tp else t3
Applying the IH to the subderivation of t; : Bool yields

t} : Bool. Combining this with the assumptions that t> : T and
t3 : T, we can apply rule T-IF to conclude that

if t] then ty else t3 : T, thatis, t’ : T.

21

The Simply Typed
Lambda-Calculus

22

The simply typed lambda-calculus

The system we are about to define is commonly called the simply
typed lambda-calculus, or _, for short.

Unlike the untyped lambda-calculus, the “pure” form of A_, (with
no primitive values or operations) is not very interesting; to talk
about A, we always begin with some set of “base types.”
> So, strictly speaking, there are many variants of _,
depending on the choice of base types.

» For now, we'll work with a variant constructed over the
booleans.

23

The simply typed lambda-calculus

The system we are about to define is commonly called the simply
typed lambda-calculus, or _, for short.

Unlike the untyped lambda-calculus, the “pure” form of A_, (with
no primitive values or operations) is not very interesting; to talk
about A, we always begin with some set of “base types.”

> So, strictly speaking, there are many variants of _,
depending on the choice of base types.

» For now, we'll work with a variant constructed over the
booleans.

What could "go wrong”?

23

The simply typed lambda-calculus

The system we are about to define is commonly called the simply
typed lambda-calculus, or _, for short.

Unlike the untyped lambda-calculus, the “pure” form of A_, (with
no primitive values or operations) is not very interesting; to talk
about A, we always begin with some set of “base types.”

> So, strictly speaking, there are many variants of _,
depending on the choice of base types.

» For now, we'll work with a variant constructed over the
booleans.

What could "go wrong”?

true false

AX.true x

23

Untyped lambda-calculus with booleans

t

= terms
X variable
Ax.t abstraction
tt application
true constant true
false constant false
if t then t else t conditional
= values
AX.t abstraction value
true true value
false false value

24

“Simple Types”

T =
Bool
T—T

What are some examples?

types
type of booleans
types of functions

25

Type Annotations

We now have a choice to make. Do we...

» annotate lambda-abstractions with the expected type of the
argument

Ax:T1. to
(as in most mainstream programming languages), or
> continue to write lambda-abstractions as before
AX. to

and ask the typing rules to “guess’ an appropriate annotation
(as in OCaml)?

Both are reasonable choices, but the first makes the job of defining
the typing rules simpler. Let’'s take this choice for now.

26

Typing rules

true : Bool

false : Bool

t1 : Bool to i T

t3

: T

if t; then tr else t3

. T

(T-TRUE)
(T-FALSE)

(T-IrF)

27

Typing rules

true : Bool (T-TRUE)
false : Bool (T-FALSE)

t; : Bool tra: T t3: T
1 2 3 (T-Tr)

if t; then to else t3: T

777

(T-ABs)
Ax:T1.to 1 T1—=To

27

Typing rules

true : Bool (T-TRUE)
false : Bool (T-FALSE)

t; : Bool tra: T t3: T
1 2 3 (T-Tr)

if t; then to else t3: T

[x:T1F ty : To

(T-ABs)
NEAx:T1.to 1 T1—To
x:Tel
b (T-VaR)
N x:T

27

Typing rules

I+ true : Bool (T-TRUE)
I+ false : Bool (T-FALSE)
N t1 : Bool MlE ty: T N t3: T
1 : Boo 2 3 (T-Tr)
F if t; then to, else t3: T
M x:T1F tp: T
S S (T-ABs)
NEAx:T1.to 1 T1—To
x:Tel
T (T-VAR)
[x:T
N t1 @ T11—T Nty : T
1 11—~T12 2 11 (T-App)

M+ t1 to @ Too

27

Typing Derivations

What derivations justify the following typing statements?
» - (Ax:Bool.x) true : Bool

» f:Bool—Bool
f (if false then true else false) : Bool

» f:Bool—Bool
Ax:Bool. f (if x then false else x) : Bool—Bool

28

Safety of A\ _,with Bools

The fundamental property of the type system we have just defined
is soundness with respect to the operational semantics.

It can be proven by decomposing into proving progress and
preservation.

29

Safety of A\ _,with Bools

The fundamental property of the type system we have just defined
is soundness with respect to the operational semantics.

It can be proven by decomposing into proving progress and
preservation.

What if we remove the booleans and just keep the core lambda
calculus?

29

Untyped lambda-calculus

t = terms
X variable
AX.t abstraction
tt application
v o= values

AX.t abstraction value

“Simple Types”

T = types
Al ... An Base types
T—T types of functions

What are some examples?

Al — Al

Al — Al — A2

31

Typing rules for pure STLC

[x:T1F tr : Ty

(T-ABS)
M= Ax:T1.t2 1 T1—To
x:Tel
P (T-VAR)
N x:T
M=ty @ T11—T Ml t : T
1 11 12 2 11 (T-App)

M= t1 to @ Ti2

32

Typing rules for pure STLC

r,X!Tl - ty 1 T

(T-ABs)
M= Ax:T1.t2 1 T1—To
x:Tel
P (T-VAR)
=x:T
N t1 @ T11—T M=t : T
e SR (T-ApP)

M= t1 to @ Ti2

What does safety of the typesystem means for this language?

32

Typing rules for pure STLC

[x:T1F t2 : To

(T-ABs)
N Ax:T1.to 1 T1—To
x:Tel
_— (T-VAR)
N x:T
M= t1 : T11—T M=t : T
1 11 12 2 11 (T-APp)

M+ t1 to @ Too

What does safety of the typesystem means for this language?
Closed terms in pure lambda calculus already do not go wrong!

So, STLC (for pure lambda calculus) is useless?

32

Seemingly unrelated: Propositional calculus!

Back to early stage of your undergrad education: Propositions:

X u= Atoms
A,B,C,... Propositional variables
t = terms
true constant true
false constant false
X Atom
t At And
-t Not
t VvVt Or
t =t Implication
t &t Equivalence

33

Seemingly unrelated: Propositional calculus!

Back to early stage of your undergrad education: Propositions:

X u= Atoms
A,B,C,... Propositional variables
t = terms
true constant true
false constant false
X Atom
t At And
-t Not
t VvVt Or
t =t Implication
t &t Equivalence
v on= values
true true value
false false value

33

Seemingly unrelated: Propositional calculus!

Back to early stage of your undergrad education: Propositions:

X u= Atoms
A,B,C,... Propositional variables
t = terms
true constant true
false constant false
X Atom
t At And
-t Not
t VvVt Or
t =t Implication
t &t Equivalence
v on= values
true true value
false false value

33

Propositional Logic

Logical expressivity of this language: very limited, no natural
numbers, no equality, no quantifiers. It is the Duplo of logic
(Lego/Logic for children).

34

Propositional Logic

Logical expressivity of this language: very limited, no natural
numbers, no equality, no quantifiers. It is the Duplo of logic
(Lego/Logic for children).
We can still have theorems in this language.
We might be interested in proving that the following propositions
are tautologies:

(A=B)=A=8B

((A = B)&&A) = (A&&B)

34

Propositional Logic

Logical expressivity of this language: very limited, no natural
numbers, no equality, no quantifiers. It is the Duplo of logic
(Lego/Logic for children).

We can still have theorems in this language.

We might be interested in proving that the following propositions

are tautologies:
(A=B)=A=8B

((A = B)&&A) = (A&&B)

Do a truth table! Little issues:
» Exponential size
» Disconnected from the "intuitive proof’: in our head we don't
do brute force. We do deductions! Let's invent a language to
formalize the notion of deduction we do in our head, and let's
call it " Natural Deduction”.

34

Propositional Logic

Logical expressivity of this language: very limited, no natural
numbers, no equality, no quantifiers. It is the Duplo of logic
(Lego/Logic for children).
We can still have theorems in this language.
We might be interested in proving that the following propositions
are tautologies:

(A=B)=A=8B

((A = B)&&A) = (A&&B)

Do a truth table! Little issues:
» Exponential size
» Disconnected from the "intuitive proof’: in our head we don't
do brute force. We do deductions! Let's invent a language to
formalize the notion of deduction we do in our head, and let's
call it " Natural Deduction”.
Sales speech for Propositional Logic: Theorems are decidable!

34

Propositional calculus - Intuitive proof

(A=B)=A=8B

35

Propositional calculus - Intuitive proof
(A=B)=A=8B

If we assume that A implies B is true, and we assume that A is
true, then necessarily B is true.

35

Rules of Inference for Implication

]
¢ (i) u| 2 j*wwe)
=Y

(A=B)=A=8B

36

Rules of Inference for Conjunction

¢ Y pAY
oA (M) o (Ae)

(A = B)&&A) = (A&&B)

37

Toward Curry-Howard Isomorphism

STLC:
N t1 : T11—T M=t : T
1 T =T 2t Tia (T-ApP)
M+ t1 to @ Too
x:Ti1F t: T
Tl (T-Ans)
M= Ax:T1.t2 1 T1—To
x:Tel
kL (T-VaR)
[x:T

38

Toward Curry-Howard Isomorphism

STLC:
T T
! ’ (T-ABs)
A : T1—To
! (T-Var)
-VAR
T
T11—T T
11—T12 11 (T-App)
T12

39

First Curry-Howard Isomorphism

Logic side Programming side
hypotheses free variables
implication elimination (modus ponens) application
implication introduction abstraction

40

Example of Application of Curry-Howard

If we can write a lambda term a lambda term that has type:
(hL—B)—>A—B

Then we have proven the theorem that the following proposition is
a tautology, without having to do a truth table!

(A=B)=A=8B

41

Example of Application of Curry-Howard

If we can write a lambda term a lambda term that has type:
(hL—B)—>A—B

Then we have proven the theorem that the following proposition is
a tautology, without having to do a truth table!

(A=B)=A=8B

What about:
Ax: A = B)(y:A).x ¥y

41

Already limited?
What about:

(A = B)&&A) = (AL&B)

42

Already limited?

What about:
((A = B)&&A) = (A&&B)
Logic side Programming side
formula type
proof term

formula is true

type has an element

formula is false

type does not have an element

logical constant T (truth)

unit type

logical constant L (falsehood)

empty type

implication function type

conjunction product type

disjunction sum type
universal quantification dependent product type

existential quantification

dependent sum type

42

Product types
What about:

A(x:

((A = B)&&A) = (A&&B)

(A — B) x A).(fst x) (snd x)

43

Curry-Howard's Zoo

[Systeme fonctionn

Systéme form

Calcul des constructions (Thierry Coquand)

Logique intuitionniste d'ordre supérieur

Systeme F (Jean-Yves Girard)

Arithmétique de Peano du second ordre / Logique intuitionniste du second
ordre

Systéme T (Kurt Godel)

Systeme T1

Arithmétique de Peano du premier ordre / Logique intuitionniste du premier
ordre

?

TO (Récursion primitive) (Stephen Cole Kleene ? Thoralf Skolem ?)

Arithmétique primitive récursive

Lambda-calcul simplement typé

Calcul propositionnel minimal implicatif (déduction naturelle)

Logique combinatoire

Calcul propositionnel implicatif (a la Hilbert)

Calcul lambda-p de Parigot

Déduction naturelle en calcul propositionnel classique

Calcul lambda-p-p~ de Curien et Herbelin

Calcul des séquents classique

Calcul des séquents avec V et A

Calcul symétrique de Berardi et calcul dual de Wadler

/ Lambda-cal
Krivine

| avec contréle / Machine de

Logique classique du deuxiéme ordre

