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Equivalence of Lambda Terms
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Recall: Church Numerals

We have seen how certain terms in the lambda-calculus can be
used to represent natural numbers.

c0 = λs. λz. z

c1 = λs. λz. s z

c2 = λs. λz. s (s z)

c3 = λs. λz. s (s (s z))

Other lambda-terms represent common operations on numbers:

scc = λn. λs. λz. s (n s z)

In what sense can we say this representation is “correct”?
In particular, on what basis can we argue that scc on church
numerals corresponds to ordinary successor on numbers?
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The naive approach

... doesn’t work

One possibility:

For each n, the term scc cn evaluates to cn+1.

Unfortunately, this is false.
E.g.:

scc c2 = (λn. λs. λz. s (n s z)) (λs. λz. s (s z))

−→ λs. λz. s ((λs. λz. s (s z)) s z)

̸= λs. λz. s (s (s z))

= c3
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A better approach

Recall the intuition behind the church numeral representation:

▶ a number n is represented as a term that “does something n
times to something else”

▶ scc takes a term that “does something n times to something
else” and returns a term that “does something n + 1 times to
something else”

I.e., what we really care about is that scc c2 behaves the same as
c3 when applied to two arguments.
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scc c2 v w = (λn. λs. λz. s (n s z)) (λs. λz. s (s z)) v w

−→(λs. λz. s ((λs. λz. s (s z)) s z)) v w

−→(λz. v ((λs. λz. s (s z)) v z)) w

−→v ((λs. λz. s (s z)) v w)

−→v ((λz. v (v z)) w)

−→v (v (v w))

c3 v w = (λs. λz. s (s (s z))) v w

−→(λz. v (v (v z))) w

−→v (v (v w)))
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A general question

We have argued that, although scc c2 and c3 do not evaluate to
the same thing, they are nevertheless “behaviorally equivalent.”

What, precisely, does behavioral equivalence mean?
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Intuition

Roughly,

“terms s and t are behaviorally equivalent”

should mean:

“there is no ‘test’ that distinguishes s and t — i.e., no way to
put them in the same context and observe different results.”

To make this precise, we need to be clear what we mean by a
testing context and how we are going to observe the results of a
test.
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Examples

tru = λt. λf. t

tru’ = λt. λf. (λx.x) t

fls = λt. λf. f

omega = (λx. x x) (λx. x x)

poisonpill = λx. omega

placebo = λx. tru

Yf = (λx. f (x x)) (λx. f (x x))

Which of these are behaviorally equivalent?
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Observational equivalence

As a first step toward defining behavioral equivalence, we can use
the notion of normalizability to define a simple notion of test.

Two terms s and t are said to be observationally equivalent if
either both are normalizable (i.e., they reach a normal form
after a finite number of evaluation steps) or both diverge.

I.e., we “observe” a term’s behavior simply by running it and
seeing if it halts.

Aside:

▶ Is observational equivalence a decidable property?

▶ Does this mean the definition is ill-formed?
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Examples

▶ omega and tru are not observationally equivalent

▶ tru and fls are observationally equivalent
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Behavioral Equivalence

This primitive notion of observation now gives us a way of
“testing” terms for behavioral equivalence

Terms s and t are said to be behaviorally equivalent if, for
every finite sequence of values v1, v2, ..., vn, the
applications

s v1 v2 ... vn

and
t v1 v2 ... vn

are observationally equivalent.
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Examples

These terms are behaviorally equivalent:

tru = λt. λf. t

tru’ = λt. λf. (λx.x) t

So are these:

omega = (λx. x x) (λx. x x)

Yf = (λx. f (x x)) (λx. f (x x))

These are not behaviorally equivalent (to each other, or to any of
the terms above):

fls = λt. λf. f

poisonpill = λx. omega

placebo = λx. tru
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Proving behavioral equivalence

Given terms s and t, how do we prove that they are (or are not)
behaviorally equivalent?
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Proving behavioral inequivalence

To prove that s and t are not behaviorally equivalent, it suffices to
find a sequence of values v1 . . . vn such that one of

s v1 v2 ... vn

and
t v1 v2 ... vn

diverges, while the other reaches a normal form.
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Proving behavioral inequivalence

Example:

▶ the single argument unit demonstrates that fls is not
behaviorally equivalent to poisonpill:

fls unit

= (λt. λf. f) unit

−→∗ λf. f

poisonpill unit

diverges
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Proving behavioral inequivalence

Example:

▶ the argument sequence (λx. x) poisonpill (λx. x)

demonstrate that tru is not behaviorally equivalent to fls:

tru (λx. x) poisonpill (λx. x)

−→∗ (λx. x)(λx. x)

−→∗ λx. x

fls (λx. x) poisonpill (λx. x)

−→∗ poisonpill (λx. x), which diverges
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Proving behavioral equivalence

To prove that s and t are behaviorally equivalent, we have to work
harder: we must show that, for every sequence of values v1 . . . vn,
either both

s v1 v2 ... vn

and
t v1 v2 ... vn

diverge, or else both reach a normal form.

How can we do this?
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Proving behavioral equivalence

In general, such proofs require some additional machinery that we
will not have time to get into in this course (so-called applicative
bisimulation). But, in some cases, we can find simple proofs.
Theorem: These terms are behaviorally equivalent:

tru = λt. λf. t

tru’ = λt. λf. (λx.x) t

Proof: Consider an arbitrary sequence of values v1 . . . vn.

▶ For the case where the sequence has up to one element (i.e.,
n ≤ 1), note that both tru / tru v1 and tru′ / tru′ v1
reach normal forms after zero / one reduction steps.

▶ For the case where the sequence has more than one element
(i.e., n > 1), note that both tru v1 v2 v3 ... vn and
tru′ v1 v2 v3 ... vn reduce to v1 v3 ... vn. So either
both normalize or both diverge.
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Proving behavioral equivalence

Theorem: These terms are behaviorally equivalent:

omega = (λx. x x) (λx. x x)

Yf = (λx. f (x x)) (λx. f (x x))

Proof: Both

omega v1 . . . vn

and

Yf v1 . . . vn

diverge, for every sequence of arguments v1 . . . vn.
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