

Foundations of Software

Spring 2025

Week 4

Recall: Church Numerals

We have seen how certain terms in the lambda-calculus can be used to represent natural numbers.

$$c_0 = \lambda s. \lambda z. z$$

$$c_1 = \lambda s. \lambda z. s z$$

$$c_2 = \lambda s. \lambda z. s (s z)$$

$$c_3 = \lambda s. \lambda z. s (s (s z))$$

Other lambda-terms represent common operations on numbers:

$$scc = \lambda n. \lambda s. \lambda z. s (n s z)$$

Recall: Church Numerals

We have seen how certain terms in the lambda-calculus can be used to represent natural numbers.

$$c_0 = \lambda s. \lambda z. z$$

$$c_1 = \lambda s. \lambda z. s z$$

$$c_2 = \lambda s. \lambda z. s (s z)$$

$$c_3 = \lambda s. \lambda z. s (s (s z))$$

Other lambda-terms represent common operations on numbers:

$$scc = \lambda n. \lambda s. \lambda z. s (n s z)$$

In what sense can we say this representation is “correct”?

In particular, on what basis can we argue that `scc` on church numerals corresponds to ordinary successor on numbers?

The naive approach

One possibility:

For each n , the term $\text{scc } c_n$ evaluates to c_{n+1} .

The naive approach... doesn't work

One possibility:

For each n , the term $\text{scc } c_n$ evaluates to c_{n+1} .

Unfortunately, this is false.

E.g.:

$$\begin{aligned}\text{scc } c_2 &= (\lambda n. \lambda s. \lambda z. s (n s z)) (\lambda s. \lambda z. s (s z)) \\ &\rightarrow \lambda s. \lambda z. s ((\lambda s. \lambda z. s (s z)) s z) \\ &\neq \lambda s. \lambda z. s (s (s z)) \\ &= c_3\end{aligned}$$

A better approach

Recall the intuition behind the church numeral representation:

- ▶ a number n is represented as a term that “does something n times to something else”
- ▶ scc takes a term that “does something n times to something else” and returns a term that “does something $n + 1$ times to something else”

I.e., what we really care about is that $scc\ c_2$ behaves the same as c_3 when applied to two arguments.

$$\begin{aligned}scc\ c_2\ v\ w &= (\lambda n. \ \lambda s. \ \lambda z. \ s\ (n\ s\ z)) \ (\lambda s. \ \lambda z. \ s\ (s\ z)) \ v\ w \\&\rightarrow (\lambda s. \ \lambda z. \ s\ ((\lambda s. \ \lambda z. \ s\ (s\ z))\ s\ z)) \ v\ w \\&\rightarrow (\lambda z. \ v\ ((\lambda s. \ \lambda z. \ s\ (s\ z))\ v\ z))\ w \\&\rightarrow v\ ((\lambda s. \ \lambda z. \ s\ (s\ z))\ v\ w) \\&\rightarrow v\ ((\lambda z. \ v\ (v\ z))\ w) \\&\rightarrow v\ (v\ (v\ w))\end{aligned}$$

$$\begin{aligned}c_3\ v\ w &= (\lambda s. \ \lambda z. \ s\ (s\ (s\ z)))\ v\ w \\&\rightarrow (\lambda z. \ v\ (v\ (v\ z)))\ w \\&\rightarrow v\ (v\ (v\ w))\end{aligned}$$

A general question

We have argued that, although scc c_2 and c_3 do not evaluate to the same thing, they are nevertheless “behaviorally equivalent.”

What, precisely, does behavioral equivalence mean?

Intuition

Roughly,

“terms s and t are behaviorally equivalent”

should mean:

“there is no ‘test’ that distinguishes s and t — i.e., no way to put them in the same context and observe different results.”

Intuition

Roughly,

“terms s and t are behaviorally equivalent”

should mean:

“there is no ‘test’ that distinguishes s and t — i.e., no way to put them in the same context and observe different results.”

To make this precise, we need to be clear what we mean by a *testing context* and how we are going to *observe* the results of a test.

Examples

tru = $\lambda t. \lambda f. t$

tru' = $\lambda t. \lambda f. (\lambda x. x) t$

fls = $\lambda t. \lambda f. f$

omega = $(\lambda x. x x) (\lambda x. x x)$

poisonpill = $\lambda x. \text{omega}$

placebo = $\lambda x. \text{tru}$

$Y_f = (\lambda x. f (x x)) (\lambda x. f (x x))$

Which of these are behaviorally equivalent?

Observational equivalence

As a first step toward defining behavioral equivalence, we can use the notion of *normalizability* to define a simple notion of *test*.

Two terms s and t are said to be *observationally equivalent* if either both are normalizable (i.e., they reach a normal form after a finite number of evaluation steps) or both diverge.

I.e., we “observe” a term’s behavior simply by running it and seeing if it halts.

Observational equivalence

As a first step toward defining behavioral equivalence, we can use the notion of *normalizability* to define a simple notion of *test*.

Two terms s and t are said to be *observationally equivalent* if either both are normalizable (i.e., they reach a normal form after a finite number of evaluation steps) or both diverge.

I.e., we “observe” a term’s behavior simply by running it and seeing if it halts.

Aside:

- ▶ Is observational equivalence a decidable property?

Observational equivalence

As a first step toward defining behavioral equivalence, we can use the notion of *normalizability* to define a simple notion of *test*.

Two terms s and t are said to be *observationally equivalent* if either both are normalizable (i.e., they reach a normal form after a finite number of evaluation steps) or both diverge.

I.e., we “observe” a term’s behavior simply by running it and seeing if it halts.

Aside:

- ▶ Is observational equivalence a decidable property?
- ▶ Does this mean the definition is ill-formed?

Examples

- ▶ `omega` and `tru` are *not* observationally equivalent

Examples

- ▶ `omega` and `tru` are *not* observationally equivalent
- ▶ `tru` and `fls` are observationally equivalent

Behavioral Equivalence

This primitive notion of observation now gives us a way of “testing” terms for behavioral equivalence

Terms s and t are said to be *behaviorally equivalent* if, for every finite sequence of values v_1, v_2, \dots, v_n , the applications

$s \ v_1 \ v_2 \ \dots \ v_n$

and

$t \ v_1 \ v_2 \ \dots \ v_n$

are observationally equivalent.

Examples

These terms are behaviorally equivalent:

$$\text{tru} = \lambda t. \lambda f. t$$
$$\text{tru}' = \lambda t. \lambda f. (\lambda x. x) t$$

So are these:

$$\text{omega} = (\lambda x. x x) (\lambda x. x x)$$
$$Y_f = (\lambda x. f (x x)) (\lambda x. f (x x))$$

These are not behaviorally equivalent (to each other, or to any of the terms above):

$$\text{fls} = \lambda t. \lambda f. f$$
$$\text{poisonpill} = \lambda x. \text{omega}$$
$$\text{placebo} = \lambda x. \text{tru}$$

Proving behavioral equivalence

Given terms s and t , how do we *prove* that they are (or are not) behaviorally equivalent?

Proving behavioral inequivalence

To prove that s and t are *not* behaviorally equivalent, it suffices to find a sequence of values $v_1 \dots v_n$ such that one of

$s \ v_1 \ v_2 \ \dots \ v_n$

and

$t \ v_1 \ v_2 \ \dots \ v_n$

diverges, while the other reaches a normal form.

Proving behavioral inequivalence

Example:

- ▶ the single argument `unit` demonstrates that `fls` is not behaviorally equivalent to `poisonpill`:

$$\begin{aligned} \text{fls } \text{unit} \\ = (\lambda t. \lambda f. f) \text{ unit} \\ \longrightarrow^* \lambda f. f \end{aligned}$$
$$\begin{aligned} \text{poisonpill } \text{unit} \\ \text{diverges} \end{aligned}$$

Proving behavioral inequivalence

Example:

- ▶ the argument sequence $(\lambda x. x) \text{ poisonpill } (\lambda x. x)$ demonstrate that `tru` is not behaviorally equivalent to `fls`:

$$\begin{aligned} \text{tru } (\lambda x. x) \text{ poisonpill } (\lambda x. x) \\ \longrightarrow^* (\lambda x. x)(\lambda x. x) \\ \longrightarrow^* \lambda x. x \end{aligned}$$

$$\begin{aligned} \text{fls } (\lambda x. x) \text{ poisonpill } (\lambda x. x) \\ \longrightarrow^* \text{poisonpill } (\lambda x. x), \text{ which diverges} \end{aligned}$$

Proving behavioral equivalence

To prove that s and t are behaviorally equivalent, we have to work harder: we must show that, for every sequence of values $v_1 \dots v_n$, either both

$s \ v_1 \ v_2 \ \dots \ v_n$

and

$t \ v_1 \ v_2 \ \dots \ v_n$

diverge, or else both reach a normal form.

How can we do this?

Proving behavioral equivalence

In general, such proofs require some additional machinery that we will not have time to get into in this course (so-called *applicative bisimulation*). But, in some cases, we can find simple proofs.

Theorem: These terms are behaviorally equivalent:

$$\text{tru} = \lambda t. \lambda f. t$$

$$\text{tru}' = \lambda t. \lambda f. (\lambda x. x) t$$

Proof: Consider an arbitrary sequence of values $v_1 \dots v_n$.

- ▶ For the case where the sequence has up to one element (i.e., $n \leq 1$), note that both $\text{tru} / \text{tru } v_1$ and $\text{tru}' / \text{tru}' v_1$ reach normal forms after zero / one reduction steps.
- ▶ For the case where the sequence has more than one element (i.e., $n > 1$), note that both $\text{tru } v_1 v_2 v_3 \dots v_n$ and $\text{tru}' v_1 v_2 v_3 \dots v_n$ reduce to $v_1 v_3 \dots v_n$. So either both normalize or both diverge.

Proving behavioral equivalence

Theorem: These terms are behaviorally equivalent:

$$\text{omega} = (\lambda x. x x) (\lambda x. x x)$$

$$Y_f = (\lambda x. f (x x)) (\lambda x. f (x x))$$

Proof: Both

$$\text{omega } v_1 \dots v_n$$

and

$$Y_f \ v_1 \dots v_n$$

diverge, for every sequence of arguments $v_1 \dots v_n$.