
Foundations of Software
Spring 2025

Week 4

1



Equivalence of Lambda Terms

2



Recall: Church Numerals

We have seen how certain terms in the lambda-calculus can be
used to represent natural numbers.

c0 = λs. λz. z

c1 = λs. λz. s z

c2 = λs. λz. s (s z)

c3 = λs. λz. s (s (s z))

Other lambda-terms represent common operations on numbers:

scc = λn. λs. λz. s (n s z)

In what sense can we say this representation is “correct”?
In particular, on what basis can we argue that scc on church
numerals corresponds to ordinary successor on numbers?

3



Recall: Church Numerals

We have seen how certain terms in the lambda-calculus can be
used to represent natural numbers.

c0 = λs. λz. z

c1 = λs. λz. s z

c2 = λs. λz. s (s z)

c3 = λs. λz. s (s (s z))

Other lambda-terms represent common operations on numbers:

scc = λn. λs. λz. s (n s z)

In what sense can we say this representation is “correct”?
In particular, on what basis can we argue that scc on church
numerals corresponds to ordinary successor on numbers?

3



The naive approach

... doesn’t work

One possibility:

For each n, the term scc cn evaluates to cn+1.

Unfortunately, this is false.
E.g.:

scc c2 = (λn. λs. λz. s (n s z)) (λs. λz. s (s z))

−→ λs. λz. s ((λs. λz. s (s z)) s z)

̸= λs. λz. s (s (s z))

= c3

4



The naive approach... doesn’t work

One possibility:

For each n, the term scc cn evaluates to cn+1.

Unfortunately, this is false.
E.g.:

scc c2 = (λn. λs. λz. s (n s z)) (λs. λz. s (s z))

−→ λs. λz. s ((λs. λz. s (s z)) s z)

̸= λs. λz. s (s (s z))

= c3

4



A better approach

Recall the intuition behind the church numeral representation:

▶ a number n is represented as a term that “does something n
times to something else”

▶ scc takes a term that “does something n times to something
else” and returns a term that “does something n + 1 times to
something else”

I.e., what we really care about is that scc c2 behaves the same as
c3 when applied to two arguments.

5



scc c2 v w = (λn. λs. λz. s (n s z)) (λs. λz. s (s z)) v w

−→(λs. λz. s ((λs. λz. s (s z)) s z)) v w

−→(λz. v ((λs. λz. s (s z)) v z)) w

−→v ((λs. λz. s (s z)) v w)

−→v ((λz. v (v z)) w)

−→v (v (v w))

c3 v w = (λs. λz. s (s (s z))) v w

−→(λz. v (v (v z))) w

−→v (v (v w)))

6



A general question

We have argued that, although scc c2 and c3 do not evaluate to
the same thing, they are nevertheless “behaviorally equivalent.”

What, precisely, does behavioral equivalence mean?

7



Intuition

Roughly,

“terms s and t are behaviorally equivalent”

should mean:

“there is no ‘test’ that distinguishes s and t — i.e., no way to
put them in the same context and observe different results.”

To make this precise, we need to be clear what we mean by a
testing context and how we are going to observe the results of a
test.

8



Intuition

Roughly,

“terms s and t are behaviorally equivalent”

should mean:

“there is no ‘test’ that distinguishes s and t — i.e., no way to
put them in the same context and observe different results.”

To make this precise, we need to be clear what we mean by a
testing context and how we are going to observe the results of a
test.

8



Examples

tru = λt. λf. t

tru’ = λt. λf. (λx.x) t

fls = λt. λf. f

omega = (λx. x x) (λx. x x)

poisonpill = λx. omega

placebo = λx. tru

Yf = (λx. f (x x)) (λx. f (x x))

Which of these are behaviorally equivalent?

9



Observational equivalence

As a first step toward defining behavioral equivalence, we can use
the notion of normalizability to define a simple notion of test.

Two terms s and t are said to be observationally equivalent if
either both are normalizable (i.e., they reach a normal form
after a finite number of evaluation steps) or both diverge.

I.e., we “observe” a term’s behavior simply by running it and
seeing if it halts.

Aside:

▶ Is observational equivalence a decidable property?

▶ Does this mean the definition is ill-formed?

10



Observational equivalence

As a first step toward defining behavioral equivalence, we can use
the notion of normalizability to define a simple notion of test.

Two terms s and t are said to be observationally equivalent if
either both are normalizable (i.e., they reach a normal form
after a finite number of evaluation steps) or both diverge.

I.e., we “observe” a term’s behavior simply by running it and
seeing if it halts.

Aside:

▶ Is observational equivalence a decidable property?

▶ Does this mean the definition is ill-formed?

10



Observational equivalence

As a first step toward defining behavioral equivalence, we can use
the notion of normalizability to define a simple notion of test.

Two terms s and t are said to be observationally equivalent if
either both are normalizable (i.e., they reach a normal form
after a finite number of evaluation steps) or both diverge.

I.e., we “observe” a term’s behavior simply by running it and
seeing if it halts.

Aside:

▶ Is observational equivalence a decidable property?

▶ Does this mean the definition is ill-formed?

10



Examples

▶ omega and tru are not observationally equivalent

▶ tru and fls are observationally equivalent

11



Examples

▶ omega and tru are not observationally equivalent

▶ tru and fls are observationally equivalent

11



Behavioral Equivalence

This primitive notion of observation now gives us a way of
“testing” terms for behavioral equivalence

Terms s and t are said to be behaviorally equivalent if, for
every finite sequence of values v1, v2, ..., vn, the
applications

s v1 v2 ... vn

and
t v1 v2 ... vn

are observationally equivalent.

12



Examples

These terms are behaviorally equivalent:

tru = λt. λf. t

tru’ = λt. λf. (λx.x) t

So are these:

omega = (λx. x x) (λx. x x)

Yf = (λx. f (x x)) (λx. f (x x))

These are not behaviorally equivalent (to each other, or to any of
the terms above):

fls = λt. λf. f

poisonpill = λx. omega

placebo = λx. tru

13



Proving behavioral equivalence

Given terms s and t, how do we prove that they are (or are not)
behaviorally equivalent?

14



Proving behavioral inequivalence

To prove that s and t are not behaviorally equivalent, it suffices to
find a sequence of values v1 . . . vn such that one of

s v1 v2 ... vn

and
t v1 v2 ... vn

diverges, while the other reaches a normal form.

15



Proving behavioral inequivalence

Example:

▶ the single argument unit demonstrates that fls is not
behaviorally equivalent to poisonpill:

fls unit

= (λt. λf. f) unit

−→∗ λf. f

poisonpill unit

diverges

16



Proving behavioral inequivalence

Example:

▶ the argument sequence (λx. x) poisonpill (λx. x)

demonstrate that tru is not behaviorally equivalent to fls:

tru (λx. x) poisonpill (λx. x)

−→∗ (λx. x)(λx. x)

−→∗ λx. x

fls (λx. x) poisonpill (λx. x)

−→∗ poisonpill (λx. x), which diverges

17



Proving behavioral equivalence

To prove that s and t are behaviorally equivalent, we have to work
harder: we must show that, for every sequence of values v1 . . . vn,
either both

s v1 v2 ... vn

and
t v1 v2 ... vn

diverge, or else both reach a normal form.

How can we do this?

18



Proving behavioral equivalence

In general, such proofs require some additional machinery that we
will not have time to get into in this course (so-called applicative
bisimulation). But, in some cases, we can find simple proofs.
Theorem: These terms are behaviorally equivalent:

tru = λt. λf. t

tru’ = λt. λf. (λx.x) t

Proof: Consider an arbitrary sequence of values v1 . . . vn.

▶ For the case where the sequence has up to one element (i.e.,
n ≤ 1), note that both tru / tru v1 and tru′ / tru′ v1
reach normal forms after zero / one reduction steps.

▶ For the case where the sequence has more than one element
(i.e., n > 1), note that both tru v1 v2 v3 ... vn and
tru′ v1 v2 v3 ... vn reduce to v1 v3 ... vn. So either
both normalize or both diverge.

19



Proving behavioral equivalence

Theorem: These terms are behaviorally equivalent:

omega = (λx. x x) (λx. x x)

Yf = (λx. f (x x)) (λx. f (x x))

Proof: Both

omega v1 . . . vn

and

Yf v1 . . . vn

diverge, for every sequence of arguments v1 . . . vn.

20


