Foundations of Software
Spring 2025

Week 1

Logistic, Proof Principles, Abstract Syntax and
Abstract Machine

Week 1

Logistic

The Foundations of Software course consists of
» Lectures (Mon 8:15-11:00, ELD 020)

> Exercises: solve written exercise sheets (Tue 8:15-10:00, GRB
330)

» Projects: graded programming and mechanization
assignments (Tue 10:15-12:00, CE 1105). (20% of the grade)

» One large homework mid-may (20% of the grade)

> A written final exam (60 % of the grade)

Assignments

» Five programming and mechanization assignments throughout
the semester (in Lean4) - due every 2-3 weeks

» Each project focuses on theoretical aspects covered in class
> New assignments released on Moodle after previous deadline

> Live explanation to TA required during Tuesday sessions
(10:00, CE1105)

Teaching Team

Lecturers:

» Martin Odersky
martin.odersky@epfl.ch

» Thomas Bourgeat
thomas.bourgeat®@epfl.ch

Teaching Assistants:

» Martina Camaioni
martina.camaioni@epfl.ch

» Yichen Xu
yichen.xu®@epfl.ch

» Cao Nguyen Pham
nguyen.pham@epfl.ch

mailto:martin.odersky@epfl.ch
mailto:thomas.bourgeat@epfl.ch
mailto:martina.camaioni@epfl.ch
mailto:yichen.xu@epfl.ch
mailto:nguyen.pham@epfl.ch

Textbook

The lectures are closely following the textbook:

Types and Programming Languages,
Benjamin C. Pierce, MIT Press, 2002.

The electronic version of the book is available for free in the EPFL
digital library.

Textbook

The lectures are closely following the textbook:

Types and Programming Languages,
Benjamin C. Pierce, MIT Press, 2002.

The electronic version of the book is available for free in the EPFL
digital library.

These slides are based on teaching materials originally developed
by Benjamin C. Pierce, with contributions from Martin Odersky,

Sébastien Doeraene, and Thomas Bourgeat.

Today the material is based on Chapter 2 and Chapter 3.

Part |
Modeling programming
languages

Where we're going

Everything in this course is based on treating programs as
mathematical objects — i.e., we will be building mathematical
theories whose basic objects of study are programs (and whole
programming languages).

Jargon: We will be studying the metatheory of programming
languages.

10

Usefulness

In theory, what is this theory useful /good for:

| 2

>
>
>
>

help design principled programming languages

shed some light on compilation

verify the correctness of programs (and of hardware)
serve as a foundation for logic

build proof systems

11

Usefulness

In theory, what is this theory useful /good for:
» help design principled programming languages
» shed some light on compilation
» verify the correctness of programs (and of hardware)
> serve as a foundation for logic
» build proof systems

This theory is not only paper theory. We will mechanize most
concepts in the Lean4 proof assistant (by the end of tomorrow, it
will be clearer what this means).

11

Lean4

» Lean4 is both a proof system and a programming language

» FoS is not a Lean4 class, though you will learn Lean4, and it
might end up being one of the challenges of the course

Exercise of the week: an intuitive/gamified introduction to Lean4
(ungraded):

adam.math.hhu.de/# /g/leanprover-community /nng4

12

Lean4

» Lean4 is both a proof system and a programming language

» FoS is not a Lean4 class, though you will learn Lean4, and it
might end up being one of the challenges of the course

Exercise of the week: an intuitive/gamified introduction to Lean4
(ungraded):

adam.math.hhu.de/# /g/leanprover-community /nng4
By tomorrow morning for exercise and project sessions, you should

install Lean4 on your machine. If you have trouble you can ask for
help to the TAs in the sessions.

12

Warning!

The material in the next couple of slides is more slippery than it
may first appear.

“I believe it when | hear it" is not a sufficient test of understanding.

A much better test is “l can explain it so that someone else
believes it.”

13

Mathematical Foundations -
Memories of BA1 and BA3
(though not so easy!)

14

Functions

» A function 7 : A — B is a mapping that associates each
element in set A with exactly one element in set B

> Key properties:

> Total: every element in A must be mapped
» Well-defined: each input maps to exactly one output

» Example: 7 : N — N defined by f(n) =n+1

15

Relations
A binary relation R between sets A and B is a subset of A x B

» Example: R = {(x,2x)|x € N}
» Example of a few common properties for binary relations:
> Reflexive: Vx.(x,x) € R
» Symmetric: (x,y) € R = (y.x) € R
» Transitive: (x,y) € RA(y,z) e R = (x,z) € R
» Functions are binary relations. Not every binary relation is a
function. Why?

16

Relations
A binary relation R between sets A and B is a subset of A x B

» Example: R = {(x,2x)|x € N}
» Example of a few common properties for binary relations:
> Reflexive: Vx.(x,x) € R
» Symmetric: (x,y) € R = (y.x) € R
» Transitive: (x,y) € RA(y,z) e R = (x,z) € R
» Functions are binary relations. Not every binary relation is a
function. Why?

One can also have n-ary relations, as subsets of Ay, ..., A,.
Example:

S={(x,y,z) e NxNxN|x+y=z}

> (2,3,5) e Ssince2+3=5
» (0,7,7) € Ssince 0+7=7
>

(2,2,5) ¢ Ssince 2+2#5 16

Induction

Principle of induction on natural numbers:
Suppose that P is a predicate on the natural numbers.
Then:
If P(0)
and, for all i, P(i) implies P(i + 1),
then P(n) holds for all n.

17

Example

Theorem: 20 21 . 427 = 20+l — 1, for every n.
Proof: Let P(i) be “20 + 21 4 . 42/ =2/t 1"
» Show P(0):
0=1=21-1

» Show that P(/) implies P(i + 1):

0424 42 = (204204 4 27) 21
_ (2i+1 _ 1) + 2i+1 by IH
- 2. (2i+1) -1
— 92i+2 _q

» The result (P(n) for all n) follows by the principle of
induction.

18

Shorthand form

Theorem: 20 + 21 . 427 = 2"F1 _ 1, for every n.
Proof: By induction on n.

» Base case (n = 0):

20 _1=021_1

» Inductive case (n =/ + 1):

20 421 42l = (20421 4 4 27) 421

= (21 —1) 21 IH
2,(2i+1)_1
— 2i+2_1

19

Strong Induction

Principle of strong induction on natural numbers:
Suppose that P is a predicate on the natural numbers.

Then:
If, for each natural number n,

given P(i) for all i < n
we can show P(n),
then P(n) holds for all n.

20

Example of strong induction (shorthand form)

Theorem: Every natural n > 1 is the product of (one or more)
prime numbers.

Proof: By strong induction on n.

» [H: Every natural 1 < m < n is the product of prime numbers.

» If nis a prime number, then it is the product of itself.
> Otherwise,

> By definition, there exist 1 < my, my < n such that n = mym.
» By the IH, m; and ms are both the product of prime numbers.

» Therefore, n = mymo is also the product of prime numbers.

21

Strong versus ordinary induction

Ordinary and complete induction are interderivable — assuming
one, we can prove the other (can you do it?).

22

Inductively Defined Sets
An inductively defined set S is specified by:

> Base cases: elements that are in S

» Inductive rules: ways to construct new elements in S

Example: Natural numbers N
> Base case: 0 € N
» Inductive rule: If n€ N, then1 +ne N

Mathematically, N is defined as the smallest set that contains the
base case and that is closed by the inductive rules.

23

Lists of Integers

Let's define the set L of objects that can represent lists of integers
inductively:

> Base case:
» There is an empty list nil in L

» Inductive rule:

> If / € L and n € Z, then we can build a new list by adding n at
the front, cons(n, (), which is in L

24

Lists of Integers

Let's define the set L of objects that can represent lists of integers
inductively:

> Base case:
» There is an empty list nil in L

» Inductive rule:

> If / € L and n € Z, then we can build a new list by adding n at
the front, cons(n, (), which is in L

Examples:
» cons(3,nil)isin L (singleton list [3])
> cons(1,cons(2,nil))isin L (list [1,2])
» cons(—1,cons(0, cons(1,nil))) isin L (list [-1,0,1])

24

Reasoning about inductively defined sets

An inductively defined set comes with an induction principle (often
called structural induction).

We can prove a property for all the elements of an inductively
defined set, using structural induction.

25

Reasoning about inductively defined sets

An inductively defined set comes with an induction principle (often
called structural induction).

We can prove a property for all the elements of an inductively
defined set, using structural induction.

Example: Natural numbers N
> Base case: 0 € N
» Inductive rule: If n€ N, then 1 +ne N

You already know the induction principle corresponding to this
inductively defined set!

25

Well-Parenthesized Words

Let's define the set W/ of objects to model well-parenthesized
words:

> Base case:
» There is the empty word ¢ in W

» Inductive rules:
> If w e W, then we can build a wrapped word, (w), which is in
w
» If wi, w, € W, then we build the concatenation of the two
words, wiws, which is in W/

26

Well-Parenthesized Words

Let's define the set W/ of objects to model well-parenthesized
words:

> Base case:
» There is the empty word ¢ in W

» Inductive rules:

> If w e W, then we can build a wrapped word, (w), which is in
w

» If wi, w, € W, then we build the concatenation of the two
words, wiws, which is in W/

Examples:

» ()isin W (using base case then first rule)
» (())isin W (using previous example and first rule)
» ()()isin W (using second rule with wy = wy = ())

26

Length Function and Evenness Property

Length function /en : W — N defined recursively:
» lene =0
» len (w) =len w + 2

» len wiwo = len wy + len wy

Theorem: For all w € W, len w is even.

27

Length Function and Evenness Property

Length function /en : W — N defined recursively:
> lene =10
» len (w) =len w + 2

» len wiwo = len wy + len wo

Theorem: For all w € W, len w is even.

Proof: By induction on the structure of w € W:
> Base case: len(c) = 0 is even
» Case (w): If len w is even, then len (w) = len w + 2 is even

» Case wiws: If len wy and len wo are even, then their sum
len wiws is even

27

Indexed family of sets: Lists of Size n

Instead of defining a single set, we can define simultaneously a
family of sets.

Let's define a family of sets {L,},cn where L,, contains all lists of
integers of length exactly n:

> Base case: Ly = {nil}

» Inductive rule: For any n > 0 and k € Z:
If ¢ € L, then cons(k, /) € L,

28

Indexed family of sets: Lists of Size n

Instead of defining a single set, we can define simultaneously a
family of sets.

Let's define a family of sets {L,},cn where L,, contains all lists of
integers of length exactly n:

> Base case: Ly = {nil}

» Inductive rule: For any n > 0 and k € Z:
If ¢ € L, then cons(k, /) € L,

Examples:
> Lo ={nil}
» L; = {cons(k,nil) | k € Z}
(all singleton lists)
» L, = {cons(ki,cons(ko,nil)) | ki, ko € Z}
(all lists of length 2)

28

Inductively Defined Predicate (or Proposition)

A predicate P(x), which is a function, can be thought of as a set
{x|P(x) is true}. Hence, we can define propositions (logical
statements) inductively:

» An inductively defined predicate P is defined by:

> Base cases: directly true statements
> Inference rules: ways to derive new true statements

29

Inductively Defined Predicate (or Proposition)

A predicate P(x), which is a function, can be thought of as a set
{x|P(x) is true}. Hence, we can define propositions (logical
statements) inductively:

» An inductively defined predicate P is defined by:
> Base cases: directly true statements
> Inference rules: ways to derive new true statements

» Example: A predicate String — Bool that returns true for
well-parenthesized strings (written WP s)
> Base: WP "" is true
> Rules: Adding matching parentheses and concatenation
If we have s such that WP s, then WP " ("++s++")"

If we have s; and s, such that WP s; and WP s, then
WP si++s,

29

Inductively Defined Propositions - alternative formulation

Example: Well-parenthesized strings (written WP s)
> Base: Empty string is well-parenthesized
WP-Empt
WP = [mpty]
» Rules: Adding matching parentheses and concatenation

WP s
WP " ("++s++m) [WP-Wrap]

wpP S1 WP S2
WP sr+5s [WP-Concat]

30

Syntax

31

Simple Arithmetic Expressions

Here is a BNF grammar for a very simple language of arithmetic
expressions:

t = terms

true constant true
false constant false
if t then t else t conditional

0 constant zero
succ t successor
pred t predecessor
iszero t zero test

Terminology:

> +t here is a metavariable

Abstract vs. concrete syntax

Q: Does this grammar define a set of character strings, a set of
token lists, or a set of abstract syntax trees?

33

Abstract vs. concrete syntax

Q: Does this grammar define a set of character strings, a set of
token lists, or a set of abstract syntax trees?

A: In a sense, all three. But we are primarily interested, here, in
abstract syntax trees.

For this reason, grammars like the one on the previous slide are
sometimes called abstract grammars. An abstract grammar defines
a set of abstract syntax trees and suggests a mapping from
character strings to trees.

We then write terms as linear character strings rather than trees
simply for convenience. If there is any potential confusion about
what tree is intended, we use parentheses to disambiguate.

33

Q: So, are

succ O
succ (0)

(((succ (CCCC0)IIIII))

“the same term”"?

What about

succ 0
pred (succ (succ 0))

34

A more explicit form of the definition

The set 7 of terms is the smallest set such that
1. {true, false, 0} C T;
2. if t1 € T, then {succ ti, pred ti, iszero t1} C T;

3.ift1 €T, tre T, and t3 € T, then
if t; then to else t3 € 7.

35

Inference rules

An alternate notation for the same definition:

true € T false e T 0eT
t1 € T t1 € T t1 € T
succ t1 €T pred t; € T iszero t1 €T

t1€7T toeT t3€ T
if t; then t, else t3€ T

Note that “the smallest set closed under...
not stated explicitly).

is implied (but often

Terminology:
P axiom vs. rule

> concrete rule vs. rule schema

36

Terms, concretely

Define an infinite sequence of sets, Sp, S1, S», ..., as follows:
So = 0
Sit1 = {true, false, 0}

U {succ ti, pred ti, iszero t; |t; € S}
U {if t1 then to else t3 ‘ t1,to,t3 € S,’}

Now let

S = UiSi

37

Comparing the definitions

We have seen two different presentations of terms:
1. as the smallest set that is closed under certain rules (7)

> explicit inductive definition
» BNF shorthand
» inference rule shorthand

2. as the limit (S) of a series of sets (of larger and larger terms)

38

Comparing the definitions

We have seen two different presentations of terms:
1. as the smallest set that is closed under certain rules (7)

> explicit inductive definition
» BNF shorthand
» inference rule shorthand

2. as the limit (S) of a series of sets (of larger and larger terms)

What does it mean to assert that “these presentations are
equivalent”?

38

Operational Semantics

39

Abstract Machines

An abstract machine consists of:
> a set of states

» a transition relation on states, written —. Note that
mathematically — is a binary relation!

We read “t — t/” as “t evaluates to t’ in one step”.

A state records all the information in the machine at a given
moment. For example, an abstract-machine-style description of a
conventional microprocessor would include the program counter,
the contents of the registers, the contents of main memory, and
the machine code program being executed.

40

Abstract Machines

For the very simple languages we are considering at the moment,
however, the term being evaluated is the whole state of the
abstract machine.

Nb. Often, the transition relation is actually a partial function:

i.e., from a given state, there is at most one possible next state.
But in general there may be many.

41

Operational semantics for Booleans

Syntax of terms and values

t = terms
true constant true
false constant false
if t then t else t conditional
v o= values
true true value

false false value

Evaluation relation for Booleans

The evaluation relation t — t’ is the smallest relation closed
under the following rules:

if true then t, else t3 — ty (E-IFTRUE)
if false then ty else t3 — t3 (E-IFFALSE)

t] — t]

E-Ir
if t; then ty else tz3 — if t} then to else t3()

43

Terminology
Computation rules:

if true then t, else t3 — ty (E-IFTRUE)

if false then ty else t3 — t3 (E-IFFALSE)

Congruence rule:

t] — t
: - (E-IF)
if t; then ty else t3 — if t7 then ty else t3

Computation rules perform “real” computation steps.
Congruence rules determine where computation rules can be

applied next.

44

Evaluation, more explicitly

— is the smallest two-place relation closed under the following
rules:

((if true then ty else t3), t2) € —»
((if false then tp else t3),t3) € —

(t1,t)) € —

((if t; then tp else t3), (if t} then ty else t3)) € —

The notation t — t is short-hand for (t.t) € —.

45

An example

Let t be the term
if true then (if false then false else true) else false

What is t' in t — t/?

1.
2.
3.
4.
5.

t/ = true

t/ = if true then true else false
t/ = if false then false else true
There is no such t’

| don't know

46

Reading for next week

» Chapter 3 — Untyped Arithmetic Expressions
» Some of it is recap; most important:

» 3.3 Induction on terms
» 3.5 Evaluation

47

Induction on Syntax

48

Recall: terms, concretely

Define an infinite sequence of sets, Sp, S1, S», ..., as follows:
So =0
Sit1 = {true, false, 0}

U {succ ti, pred ti, iszero t; |t; € S}
U {if t; then ty else t3 | ti,t2,t3 € S}

Now let

S = UiSi

Definition: The depth of a term t is the smallest / such that
t eSS,

49

Induction on Terms

Definition: The depth of a term t is the smallest / such that

t e S;.

From the definition of S, it is clear that, if a term t is in S;, then
all of its immediate subterms must be in S; 1, i.e., they must have
strictly smaller depths.

This observation justifies the principle of induction on terms.

Let P be a predicate on terms.

If, for each term s,
given P(r) for all immediate subterms r of s
we can show P(s),

then P(t) holds for all t.

50

Recursive Function Definitions

The set of constants appearing in a term t, written Consts(t), is

defined as follows:

Consts(true)
Consts(false)
Consts(0)
Consts(succ t1)
Consts(pred t1)
Consts(iszero t)
(

Consts(if t; then t, else t3)

{true}
{false}
{0}
Consts(t1
Consts(t1
Consts(t1
Consts(t1
UConsts(t3

~— N N N

U Consts(t)
)

Simple, right?

51

First question:

Normally, a “definition” just assigns a convenient name to a
previously-known thing. But here, the “thing” on the
right-hand side involves the very name that we are “defining”!

So in what sense is this a definition??

52

Second question:

Suppose we had written this instead...

The set of constants appearing in a term t, written BadConsts(t),
is defined as follows:

BadConsts(true) = {true}

BadConsts(false) = {false}

BadConsts(0) = {0}

BadConsts(0) = {}

BadConsts(succ t1) = BadConsts(t1)

BadConsts(pred ti) = BadConsts(t1)
BadConsts(iszero t;) = BadConsts(iszero (iszero t1))

What is the essential difference between these two definitions?
How do we tell the difference between well-formed recursive
definitions and ill-formed ones?

What, exactly, does a well-formed recursive definition mean?

53

What is a function?

Recall that a function f from A (its domain) to B (its co-domain)
can be viewed as a two-place relation (called the “"graph” of the
function) with certain properties:

> It is total: Every element of its domain occurs at least once in
its graph. More precisely:
For every a € A, there exists some b € B such that (a, b) €
f.

> |t is deterministic: every element of its domain occurs at most

once in its graph. More precisely:
If (a.b1) € f and (a, by) € f, then by = by.

54

We have seen how to define relations inductively. E.g....
Let Consts be the smallest two-place relation closed under the
following rules:

(true, {true}) € Consts
(false, {false}) € Consts

(0, {0}) € Consts

(t1, C) € Consts
succ ty, C) € Consts
(:

(t1, C) € Consts
(pred ti, C) € Consts

(t1, C) € Consts
(iszero ti, C) € Consts

(t1, G1) € Consts (t2, &) € Consts (t3, G3) € Consts
(if t; then t, else t3, G U G U G) € Consts

55

This definition certainly defines a relation (i.e., the smallest one
with a certain closure property).

Q: How can we be sure that this relation is a function?

56

This definition certainly defines a relation (i.e., the smallest one
with a certain closure property).

Q: How can we be sure that this relation is a function?

A: Prove it!

56

Theorem:

The relation Consts defined by the inference rules a couple of
slides ago is total and deterministic.

l.e., for each term t there is exactly one set of terms C such that
(t, C) € Consts.

Proof:

57

Theorem:

The relation Consts defined by the inference rules a couple of
slides ago is total and deterministic.

l.e., for each term t there is exactly one set of terms C such that
(t, C) € Consts.

Proof: By induction on t.

57

Theorem:

The relation Consts defined by the inference rules a couple of
slides ago is total and deterministic.

l.e., for each term t there is exactly one set of terms C such that
(t, C) € Consts.

Proof: By induction on t.
To apply the induction principle for terms, we must show, for an
arbitrary term t, that if

for each immediate subterm s of t, there is exactly one set of
terms C such that (s, C;) € Consts

then
there is exactly one set of terms C such that (t, C) € Consts.

57

Proceed by cases on the form of t.

> If tis 0, true, or false, then we can immediately see from
the definition of Consts that there is exactly one set of terms
C (namely {t}) such that (t, C) € Consts.

58

Proceed by cases on the form of t.

> If tis 0, true, or false, then we can immediately see from
the definition of Consts that there is exactly one set of terms
C (namely {t}) such that (t, C) € Consts.

» If t is succ ti, then the induction hypothesis tells us that
there is exactly one set of terms C; such that
(t1,C1) € Consts. But then it is clear from the definition of
Consts that there is exactly one set C (namely C;) such that
(t, C) € Consts.

58

Proceed by cases on the form of t.

> If tis 0, true, or false, then we can immediately see from
the definition of Consts that there is exactly one set of terms
C (namely {t}) such that (t, C) € Consts.

» If t is succ ti, then the induction hypothesis tells us that
there is exactly one set of terms C; such that
(t1,C1) € Consts. But then it is clear from the definition of
Consts that there is exactly one set C (namely C;) such that
(t, C) € Consts.

Similarly when t is pred ti or iszero ti.

58

> If tisif s; then s, else s3, then the induction
hypothesis tells us

> there is exactly one set of terms C; such that (t1, C;) € Consts
> there is exactly one set of terms C, such that (t,, () € Consts
> there is exactly one set of terms C; such that (t3, C3) € Consts

But then it is clear from the definition of Consts that there is
exactly one set C (namely C; U G, U G3) such that
(t, C) € Consts.

59

How about the bad definition?

(true, {true}) € BadConsts
(false, {false}) € BadConsts
(0, {0}) € BadConsts

(0, {}) € BadConsts

(t1, C) € BadConsts
(succ ti, C) € BadConsts

(t1, C) € BadConsts
(pred ti, C) € BadConsts

(iszero (iszero t1), C) € BadConsts

(iszero ti, C) € BadConsts

60

This set of rules defines a perfectly good relation — it's just that
this relation does not happen to be a function!

Just for fun, let's calculate some cases of this relation...
» For what values of C do we have (false, C) € BadConsts?

61

This set of rules defines a perfectly good relation — it's just that
this relation does not happen to be a function!

Just for fun, let's calculate some cases of this relation...
» For what values of C do we have (false, C) € BadConsts?
» For what values of C do we have (succ 0, C) € BadConsts?

61

This set of rules defines a perfectly good relation — it's just that
this relation does not happen to be a function!

Just for fun, let's calculate some cases of this relation...
» For what values of C do we have (false, C) € BadConsts?
» For what values of C do we have (succ 0, C) € BadConsts?

» For what values of C do we have
(if false then 0 else 0, C) € BadConsts?

61

This set of rules defines a perfectly good relation — it's just that
this relation does not happen to be a function!

Just for fun, let's calculate some cases of this relation...
» For what values of C do we have (false, C) € BadConsts?
» For what values of C do we have (succ 0, C) € BadConsts?

» For what values of C do we have
(if false then 0 else 0, C) € BadConsts?

» For what values of C do we have
(iszero 0, C) € BadConsts?

61

Another Recursive Definition

size(true)
size(false)
size(0)
size(succ t1)
size(pred t)

size(iszero tp)

size(if t; then ty else t3)

1

1

1

size(t1) +

size(t1) + 1

Size(tl) +1

size(t1) + size(t2) + size(t3) + 1

62

Another proof by induction

Theorem: The number of distinct constants in a term is at most
the size of the term. l.e., |Consts(t)| < size(t).

Proof:

63

Another proof by induction

Theorem: The number of distinct constants in a term is at most
the size of the term. l.e., |Consts(t)| < size(t).

Proof: By induction on t.

63

Another proof by induction

Theorem: The number of distinct constants in a term is at most
the size of the term. l.e., |Consts(t)| < size(t).

Proof: By induction on t.
Assuming the desired property for immediate subterms of t, we
must prove it for t itself.

63

Another proof by induction

Theorem: The number of distinct constants in a term is at most
the size of the term. l.e., |Consts(t)| < size(t).

Proof: By induction on t.

Assuming the desired property for immediate subterms of t, we
must prove it for t itself.

There are “three” cases to consider:

Case: t is a constant

Immediate: |Consts(t)| = [{t}| = 1 = size(t).

63

Another proof by induction

Theorem: The number of distinct constants in a term is at most
the size of the term. l.e., |Consts(t)| < size(t).

Proof: By induction on t.
Assuming the desired property for immediate subterms of t, we
must prove it for t itself.

There are “three” cases to consider:

Case: t is a constant

Immediate: |Consts(t)| = [{t}| = 1 = size(t).
Case: t = succ tj, pred tj, or iszero t;

By the induction hypothesis, |Consts(t1)| < size(t1). We now

calculate as follows:
|Consts(t)| = |Consts(t1)| < size(t1) < size(t1) + 1 = size(t).

63

Case: t =if t; then t, else t3

By the induction hypothesis, |Consts(t1)| < size(t1),
|Consts(to)| < size(t2), and |Consts(ts)| < size(t3). We now

calculate as follows:

| Consts(t)|

IVANRVANVANT

| Consts(t1) U Consts(t2) U Consts(t3)]
|Consts(t1)] + |Consts(t2)| + | Consts(t3)
size(t1) + size(tz) + size(ts3)

size(t1) + size(tz) + size(t3) + 1

size(t).

64

