
Advanced Algorithms November 5, 2024

Lecture 12: Polynomial Identity Testing and Matchings
Notes by Ola Svensson1

These notes are based on the lecture notes of Lecture 7 in Shayan Oveis Gharan’s course “CSE 521:
Design and Analysis of Algorithms I” available here:

http://courses.cs.washington.edu/courses/cse521/17wi/

In this lecture we will discuss polynomial identity testing and its applications. In particular, we will
see how to quickly check whether AB = C for matrices A,B,C and to solve the matching problem by
calculating a determinant!

1 Polynomial Identity Testing and Schwartz-Zippel Lemma

Given two polynomials p(x) and q(x), we’d like to find out whether they are identical, i.e. whether they
produce identical outputs given any input x. In other words, we’d like to test whether the equation

p(x)− q(x) = 0

is identically true for all x ∈ Rd.

Definition 1 A monomial is a function defined as the product of powers of variables with nonnegative
exponents. A constant coefficient may be present. The degree of a monomial is the sum of all the
exponents involved.

Definition 2 A polynomial is a function defined as the sum of monomials. In a polynomial, each
component monomial is also referred to as a term. The degree of a polynomial is the largest degree of
any monomial with nonzero coefficient.

Example 1 Some examples of polynomials:

• 2x+ 3xy2 is a polynomial of two variables with degree 3. It has two monomials x with coefficient
2 and xy2 with coefficient 3.

• 0x3 + 4x2 + 3x− 1 is a polynomial of a single variable with degree 2.

• The determinant of a matrix A = [Ai,j]n×n is a polynomial of n2 variables with degree n:

det(A) =
∑

σ:[n]→[n]

sgn(σ)

n∏
i=1

Ai,σ(i),

where σ is a permutation defined on [n] = {1, . . . , n} and sgn(σ) is either +1 or −1 depending on
the nature of the permutation σ.

One naive way to test the identity of p and q is to simply make the list of all monomials for each
polynomial and compare the resulting lists. Unfortunately, it is often impratical to do so. For instance,
the determinant function consists of n! terms, so listing them would cost us exponential time. For
such polynomials, we are only afforded with oracle access, where we may inquire the output of the
polynomial for a specific input. For instance, if we assign specific values to all terms in matrix Ai,j = xi,j

for all i, j, we can compute the determinant in O(n3) time using the LU decomposition. The determinant
example inspires the following formulation:

1Disclaimer: These notes were written as notes for the lecturer. They have not been peer-reviewed and may contain
inconsistent notation, typos, and omit citations of relevant works.

1

Definition 3 (Polynomial Identity Testing) Given polynomials p and q defined over a common set
of variables x, we’d like to determine whether p(x) − q(x) = 0 is true for all values of x. We are only
given oracle access: no individual term of p or q is known, but we may evaluate p and q at any specific
input x.

Example 2 First consider a polynomial of a single variable of degree n

p(x) = a0x
n + a1x

n−1 + . . .+ an−1x+ an.

Is p identical to zero? It suffices to evaluate p at (n+ 1) distinct values of x, e.g.

p(1), p(2), . . . , p(n+ 1).

If any of them evaluates to nonzero, p is clearly not identical to zero. If, on the other hand, all of the
(n + 1) values are zero, then p is indeed identical to zero. Why is that? By the Fundamental Theorem
of Algebra, any nonzero polynomial of degree d has at most d real roots. If p were not identical to zero,
then since it has degree n, it would have at most n real roots. Since p(1) = p(2) = · · · = p(n+ 1) = 0, p
has at least (n+ 1) roots and thus p must be identically zero.

The multivariate case is not so simple, as multivariate polynomials may have infinitely many roots.
For instance, the polynomial

x2 − y

has uncountably many roots, namely any (x, y) satisfying y =
√
x. So even with an infinitely long list of

roots for p, we cannot know for certain whether p is identically zero or not. All hope is not lost, however;
it turns out that it’s quite unlikely for any nonzero polynomial to evaluate to zero, provided that inputs
are selected randomly:

Lemma 4 (The Schwartz-Zippel Lemma) Let p(x1, . . . , xn) be a nonzero polynomial of n variables
with degree d. Let S be a finite subset of R, with at least d elements in it. If we assign x1, . . . , xn values
from S independently and uniformly at random, then

P[p(x1, . . . , xn) = 0] ≤ d

|S|
.

This is an amazing result — all it takes is to pick a set S and try random inputs. If the polynomial p
evaluates to zero, it is highly unlikely that p is nonzero: the probability that p evaluates to zero when it’s
not identically zero is quite small, especially when |S| ≫ d. What’s also amazing is that there is (yet) no
deterministic counterpart to this randomized procedure. In fact, finding a deterministic algorithm for
polynomial identity testing would lead to many interesting results, with impact akin to P=NP [KI04].
Before jumping to the full proof of the Schwartz-Zippel Lemma, let’s first prove a simpler instance.

2 Matrix Identity Testing

Suppose we are given three n × n matrices A, B, and C. We’d like to test whether AB = C. Yes,
we could simply multiply A by B, but that would cost O(n3) time. It turns out we can do better, by
turning to a randomized approach.
Let S be a finite subset of R, and let’s build a random vector x ∈ Rn by choosing each coordinate xi

independently and uniformly at random from S:

xi ∼ Uniform(S)

2

We test whether ABx = Cx; if ABx = Cx, then we conclude AB = C. This procedure costs at most
O(n2), involving three matrix-vector multiplications. The cost is even lower when the matrices are
sparse.
Now how likely is the false positive under this regime? That is, if AB ̸= C, how likely is the outcome

ABx = Cx? We will show that the false positive is highly unlikely:

Theorem 5 If AB ̸= C, then

Pxi∼S [ABx ̸= Cx] ≥ 1− 1

|S|
.

This theorem can be directly proven by an application of Theorem 4. But, here we give a direct proof.
It turns out that the proof below is in a sense similar to the proof of Theorem 4, but it is tuned to the
case when p, q have degree 1. Proof First, let’s write AB and C in terms of row vectors:

AB =

 a1
...
an

 , C =

 c1
...
cn

 .

Since AB ̸= C, they should differ in at least one row: ai ̸= ci for some i. We will show that the inner
products ⟨ai, x⟩ and ⟨ci, x⟩ are most likely different:

P[⟨ai, x⟩ ≠ ⟨ci, x⟩] ≥ 1− 1

|S|

Notice that ⟨ai, x⟩ and ⟨ci, x⟩ are really 1-degree polynomials of variables x1, . . . xn, so we could simply
apply Schwartz-Zippel Lemma and be done with the proof. But for the sake of learning, let’s produce a
direct proof that does not depend on the lemma. In fact, the proof here will help us build a proof for
the lemma as well.
To show P[⟨ai, x⟩ ≠ ⟨ci, x⟩] ≥ 1− 1/|S|, we employ a technique known as the principle of deferred

decision: random choices are made only when they become relevant to the algorithm at hand. Since
ai ̸= ci, there exists a coordinate j such that ai,j ̸= ci,j . Now, set x1, . . . xn except xj arbitrarily. Since
all xi’s are chosen independently of one another, the randomness of xj is preserved when other xi’s get
fixed. Now how likely is the event

n∑
k=1

aikxk −
n∑

k=1

cikxk = 0? (1)

Equation (1) can be re-written as

xj(aij − cij) = −
∑
k ̸=j

(aik − cik)xk. (2)

Since all other xi’s are fixed, and ai,j ̸= ci,j , equation (2) holds for only one value of xj . So at most one
value from S will satisfy the equation, i.e.,

∴ Pxj∼S [⟨ai, x⟩ = ⟨ci, x⟩] ≤
1

|S|
.

Since other xi’s don’t affect the choice of xj , the probability is not affected when we let other xi’s be
random:

Px∼S [⟨ai, x⟩ = ⟨ci, x⟩] ≤
1

|S|
.

Deferred decision is a great tool to use, but we ought to be careful: any analysis we make after fixing
certain variables must hold regardless of their values (hence the world “arbitrarily”). The proof of the
Schwartz-Zippel Lemma will show how not to use deferred decision.

3

3 Proof of Schwartz-Zippel Lemma

Proof [Proof of Lemma 4] We proceed by strong induction.
Base case: n = 1. The problem is reduced to the univariate case presented in Example 2.
Inductive step. Suppose that lemma holds for any polynomial with less than n variables; let’s show

that it would also hold if we have n variables.
First, fix x1, . . . , xn−1 arbitrarily. Then all values in p(x1, . . . , xn) are known except for xn, so p

becomes a univariate polynomial of xn of degree k, for some k ≤ d:

p(xn) = akx
k
n + ak−1x

k−1
n + . . .+ a1x

1
n + a0.

We’ve reduced the problem to the univariate case again, so the probability for p to be zero is small:

P[p(xn) = 0] ≤ k

|S|
≤ d

|S|
. (3)

So are we done? No. We still would need to argue that the probability in (3) would be unaffected by
the choice of x1, . . . , xn−1. Unfortunately, this is not the case. Say, an adversary could come and choose
x1, . . . , xn−1 such that the resulting polynomial of xn is identically 0. In this case, P[p = 0] = 1, and the
induction hypothesis does not imply anything.
How can we salvage this argument? Intuitively, we should argue that the adverserial scenario dis-

cussed above will be “rare.” To that end, we make use of the long division for polynomials [CLO08]:

Let p(x) be a polynomial with degree d and d(x) be a polynomial with degree k ≤ d. Then
we can write p(x) as follows:

p(x) = d(x)q(x) + r(x)

where the quotient q(x) has degree at most (d− k) and the remainder r(x) has degree at
most k − 1. The polynomial d(x) is the divisor.

Let k be the largest degree xn in all monomials of p. So p can be “divided” by xk
n as follows:

p(x1, . . . , xn) = xk
nq(x1, . . . , xn−1) + r(x1, . . . , xn),

where q is a polynomial of x1, . . . , xn−1 of degree (d − k) and the degree of xn in r is at most degree
(k − 1).
Now, we again use the principle of defferred decision. First, we assign values to x1, . . . , xn−1 uniformly

at random from S, and we save the randomness of xn for later use. Using the inductive assumption, we
have

Px1,...,xn−1∼S [q(x1, . . . , xn−1) = 0] ≤ d− k

|S|
. (4)

Observe that if q ̸= 0, then p(x1, . . . , xn) is a univariate polynomial in xn, and the coefficient of xk
n

is nonzero. So, conditioned on q ̸= 0, p(x1, . . . ,n) is a univariate polynomial which is not identically 0.
Since the degree of this polynomial is k, for a random value of S, it is zero with probability at most
k/|S|, i.e.,

Pxn∼S [p = 0|q ̸= 0] ≤ k

|S|
. (5)

We can now finish the proof using equations (4) and (5). by Bayes rule,

P[p = 0] = P [p = 0|q = 0] · P [q = 0] + P [p = 0|q ̸= 0]P [q ̸= 0]

≤ P [q = 0] + P [p = 0|q ̸= 0]

≤ d− k

|S|
+

k

|S|
=

d

|S|
.

4

4 Bipartite Graph Matching

Polynomial identity testing can be use to determine the existence of a perfect matching within a given
bipartite graph G = (X,Y,E).

Definition 6 A bipartite graph G = (X,Y,E) is a graph where every edge in E connects a vertex in
X to a vertex in Y .

Definition 7 A matching of graph G is a subset of edges in E that do not share any common vertex.
A perfect matching of a graph G is a matching that involves every vertex in G.

There is a deterministic algorithm that finds a perfect matching in O(|E|
√

|X|+ |Y |). Now let’s
build a randomized algorithm.
First, define the adjacency matrix as follows:

Aij =

{
xij if vertices xi and yj are connected with an edge
0 otherwise

Let’s assume |X| = |Y |, so that the adjacency matrix is a square. (If X and Y had different number of
vertices, we would not have any perfect matching by definition.)

Example 3 Consider the following n-by-n bipartite graph and biadjacency matrix A:

u3

u2

u1

v2

v1

v3

A =

 xu1v1 0 0
0 xu2v2

xu2v3

0 xu3v2
xu3v3



Then

det(A) = xu1v1xu2v2xu3v3 − xu1v1xu2v3xu3v2 ,

where the two monomials correspond to the two perfect matchings.

Theorem 8 Graph G has a perfect matching if and only if the determinant det(A) is not identical to
zero.

Proof [⇒] Suppose G has a perfect matching. That is, there is a bijection f that maps each xi ∈ X to
a unique yj ∈ Y . (Since it is a matching, no two vertices in X will be mapped to the same vertex in Y .
Since the matching is perfect, no vertex in Y will be left out.) Therefore, we can see f as a permutation
on the set of integers [n] = {1, 2, . . . , n}. It follows that

n∏
i=1

Ai,f(i) =

n∏
i=1

xi,f(i)

is a nonzero monomial of the polynomial det(A), recall the formula for the determinant:

det(A) =
∑

σ:[n]→[n]

sgn(σ)

n∏
i=1

Ai,σ(i),

5

In particular, when σ = f in the above polynomial we get a monomial with a nonzero coefficient. This
monomial is different from all other monomials of det(A), i.e., there is no cancellations. This means that
det(A) is not a zero polynomial.

[⇐] Now, suppose det(A) is not identical to zero. That is, for some values of xij ’s, the determinant
becomes nonzero. Recalling that

det(A) =
∑

σ:[n]→[n]

sgn(σ)

n∏
i=1

Ai,σ(i),

The nonzero determinant means that, for at least one permutation σ : [n] → [n], all terms Ai,σ(i) for
1 ≤ i ≤ m are set to be variables xi,σ(i), not to zeros. But this indicates that each vertex xi ∈ X got
matched to vertex yσ(i) ∈ Y . Since σ is a bijection, the corresponding matching is perfect.

The above theorem gives a simple and efficient algorithm to test if a given bipartite graph has a
perfect matching. By Schwartz-Zippel lemma it is enough to assign values to xi,j from a set S of
numbers of size |S| ≥ n2. Then, if G has a perfect matching, det(A) ̸= 0 with probability at least
1− 1/n.
The disadvantage of this algorithm is that it doesn’t give us the perfect matching; it only tells us

whether G has one or not. How do we find the perfect matching? For a bipartite graph G, we choose a
big set |S| ≫ n and set xij = 2wij where wij is chosen independently and uniformly at random from S.
Then, we can show that, with high probability, there is a unique minimum weight perfect (see exercises).
This means that we can write

det(A) = 2w(M)(±1 + [even number]),

where w(M) is the sum of the weight of edges of the minimum weight prefect matching. Having this
in hand, all we need to do is to test for every edge of G if that edge is a part of the minimum weight
perfect matching. Note that w(M) is uniquely defined in the above, given det(A); in particular, w(M) is
the the largest exponent of 2 that divides det(A). For every edge (xi, yj), we delete the edge and test if
the weight the of the minimum weight perfect matching decreases to w(M)−wi,j . If this happens, then
(xi, yj) ∈ M and otherwise it is not. This algorithm can be implemented in parallel in O(polylog(n))
time using polynomially many processors.

5 Remarks on General Graph Matching

It turns out the idea in the previous section generalizes to find perfect matchings in general graph,
although the proof is a lot more difficult. We begin by constructing skew-symmetric matrix (also
called Tutte matrix) as follows:

Aij =


xij if vertices vi and vj are connected with an edge, i < j

−xij if vertices vi and vj are connected with an edge, i ≥ j

0 otherwise

Theorem 9 Graph G has a perfect matching if and only if the determinant det(A) is not identical to
zero.

We omit the proof. How difficult is to test det(A) against zero? We don’t want to spend O(n3) time to
compute the determinant. It turns out that there is a parallel algorithm that comptues the determinant
using poly(n) processors in O(log2(n)) time [Mul86].

6

	Polynomial Identity Testing and Schwartz-Zippel Lemma
	Matrix Identity Testing
	Proof of Schwartz-Zippel Lemma
	Bipartite Graph Matching
	Remarks on General Graph Matching

