Midterm Exam, Advanced Algorithms 2020-2021

=Pi-L

e You are allowed to consult lectures notes of the course, but no outside material.

e Communication is not allowed.

e Your explanations should be clear enough and in sufficient detail that a fellow student
can understand them. In particular, do not only give pseudo-code without explanations.
A good guideline is that a description of an algorithm should be such that a fellow

student can easily implement the algorithm following the description.

e You are allowed to refer to material covered in the lecture notes including theorems

without reproving them.

Good luck!
Name: N° Sciper:
Problem 1 | Problem 2 | Problem 3 | Problem 4
/ 22 points | / 30 points | / 20 points | / 28 points
Total / 100
Page 1 (of 7)
CS-450 Advanced Algorithms, Midterm Exam e Spring 2021

Michael Kapralov

1 (22 pts) LP duality. Write down the duals of the linear programs below together with compli-
mentary slackness conditions.

la

minimize 3z + 4x9
S. t. x1+2x9>1
21 +4x9 > 5

x1,22 2 0.

Solution: The dual problem is

maximize y1 + Sys
st. y1 +2y2 <3
21+ 4y < 4
y1,y2 > 0

Complimentary slackness conditions are

1 >0=9y +2y2 =3
9> 0= 2y; +4ys =4
Yy >0=>21+225=1
Yo > 0= 221 + 490 =5

x; y are both optimal solutions <

1b

maximize 3x1 + 4x9 + x3
s.t. x14+2x0—23=0
r1+2x3 <3
S5x1 + 22 <2
r1,x9,x3 > 0.

Solution: First we need to convert this problem to a standard form. We convert minimization
problem into a maximization one by multiplying the loss function with —1. Then, we convert
an equality x1 + 2z9 — x3 = 0 by replacing it with two inequalities: x; + 222 — x3 > 0 and
x1 + 2z2 — x3 < 0. Last, we convert all the inequalities with a sign < to inequalities with a sign
> by multiplying these inequalities with —1.

After these transformations, our problem is equivalent to

minimize — 3x7 — 4z — T3

st. 14+ 2x2 —23>0
—x1—2x9+23>0

—x1 — 2x3 > —3

- 5:]:1 — X9 Z -2

x1, 22,73 > 0

Page 2 (of 7)

CS-450 Advanced Algorithms, Midterm Exam e Spring 2021
Michael Kapralov

The dual of this problem is

maximize — 3y3 — 2y4
st.y1 —y2— Y3 —Oys < —3
2y1 — 2y2 —ys < —4
—y1+y2—2ys < —1
Y1,92,Y3,y4 = 0

Complimentary slackness conditions are

r1>0=y1 —y2— Y3 —9ys = —3
o >0=2y; — 2y —ys = —4
z3>0= —y1+y2 —2yz3 = —1
x; y are both optimal solutions & ¢ 41 > 0= 21 + 229 —23 =10

Yo > 0= —21 — 2229+ 23 =0

y3 > 0= —x1 — 223 = —3

\y4>O:>—5x1—x2:—2

(30 pts) Optimal vertex removal. Suppose that you are given a directed graph G = (V| E)
together with an assignment of costs to vertices ¢ : V' — Ry and a set of vertices S C V that
form an independent set (i.e. none of the vertices in S are neighbors in GG). We say that a subset
R C V'\ S disconnects S if no vertex in S can reach another vertex in S when vertices in R are
removed together with all their edges. Your task is to find the cheapest set of vertices R C V'\ .S
that disconnects S, where the cost of a set R C V' is defined as), _p co.

2a (8 pts) Let P denote the set of simpleﬂ paths in G connecting pairs of vertices in S (here a
path P = (uy,ug,....,ux) is a sequence of vertices of G such that for every i =1,..., k—1
one has (u;,u;+1) € F; a path is simple if it contains no repeated vertices). Consider the
linear program below:

minimize E Cody

veV\S

s. t. Z dy >1 for every P € P
veEPweV\S
dy >0 forallve V\S.

Prove that for every R C V'\ S that disconnects S there exists a feasible solution (dy)ye1\s
to the LP above with cost bounded by the cost of R.

Solution: For any R C V \ S we can simply set d, = 1 for every v € R and d,, = 0 for every
v & R. This is a feasible solution: Since R disconnects .S, any path P € P must contain a vertex

v* in R. Therefore,
> dyzde =1
veEPweV\S
Furthermore, the cost of this solution is indeed the cost of R:

Z Cody = ZCU.

veV\S veER

"We call a path simple if it contains no repeated vertices.

Page 3 (of 7)

CS-450 Advanced Algorithms, Midterm Exam e Spring 2021
Michael Kapralov

2b (11 pts) Write down the dual of the LP in (a) together with complimentary slackness
conditions.

Solution: For each path P € P we introduce a variable xp. Then the dual LP is as follows:

maximize E Tp

PeP

s. t. Zmpgcv forallve V\ S
P>v
zp >0 for all P € P.

Complementary slackness states that for any pair of solutions d and z (to the primal and
dual LP’s respectively), both solutions are optimal if and only if

forallve V\S: d,=0or Z:Upzl.
P>v

Alternately one can say that both solutions are optimal if and only if

foral PeP: zp=0or Z dy, = 1.
vEPweEV\S

2c (11 pts, half x) Show how, given a candidate solution d = (dv)vev\s, one can in polynomial
time check whether d is feasible for the LP above, and find a violated constraint if d is not
feasible.

Solution: For a given vector d, we must determine if there are any paths P between two distinct
point of S, such that
Z dy < 1.

vEPWeEV\S

We modify the graph G into G’ to turn this into a shortest path problem. Let G’ = (V', E')
also be a directed graph. Let V' consist of vertices of S, as well as vertices v'® and v°" for all
vertices v € V'\ S. For every directed edge (u,v) € F, let there be a corresponding directed edge
(u',v") € E' where v/ =uifu € S and v/ = v if u € S, as well as v/ = v if v € S and v/ = v'®
if v ¢ S. Furthermore, let E’ contain the edge (v'",v°%) for each v € V' \ S.

There is a natural, one-to-one correspondence between paths of G connecting two vertices
in S, and paths of G’ connecting two vertices in S. Indeed, the path P = (uy,us,...,ux)
corresponds to the path where each w; is either left as it is (if u; € S), or replaced by u,it-“, udut
(if u; ¢ S). We call this new path P’. Note that u; and uy are both in S by definition. Let us
call the set of simple paths in G’, connecting two distinct points in S, P’

We give weights to edges of E’: Any edge of the form (v, v°"") has weight d,, while all other
edges have weight zero. Note that for all P € P

Z w(e/) = Z dy.

e’'eP’ vEPwEV\S

Therefore, it suffices to verify that the shortest path in P’ is of length at least one.

Since we are required only to give a polynomial time algorithm, this is very simple. For
example, one can run Dijkstra’s Algorithm from each vertex of S in G’. If there is no path
shorter than one in P’, d is feasible. If there is such a path, the equivalent path in G corresponds
to a violated constraint.

Page 4 (of 7)

CS-450 Advanced Algorithms, Midterm Exam e Spring 2021
Michael Kapralov

3 (20 pts) Collaborative basis. In the collaborative basis problem d > 2 participants are given

d X n matrices Aq,..., Ay for some n > 1. Their task is to select one column from each of
the matrices A;,i = 1,...,d, so that the selected columns form a basis for the entire space R
Give an efficient algorithm that, given matrices Ay, ..., A4, outputs YES if such a collection of

columns exists and NO otherwise.

Example 1. Suppose that d = 2,n = 4, and matrices A1, Ao are given by
5 2 1 2 10 2 3
A1_<5 15 0> and A2_<1 0 2 3)'

Then taking the second column of A; and the first column of Ay, we obtain a basis for R2.
Indeed, the matrix

2 1

1 1
is full rank, so the answer is YES.

Example 2. Suppose that d = 3,n = 2, and matrices are given by

1 2 -1 3 -2 6
Al = -2 2 ,AQ = 2 0 and A3 = 4 0
1 4 -1 5 -2 10

Here one notes that columns of A3z are just a scaled version of columns of Ay, and columns of As
can be obtained by taking a linear combination of columns of A1, so it is not possible to choose
one column from each matrix to obtain a basis for R3.

Hint: use matroids. You may use the fact that, given a collection of k vectors in R%, one can
check if the vectors are linearly independent (i.e., if the matriz whose columns are these vectors
has rank k) in time polynomial in k and d.

Solution: Let the ordered pair (i,) correspond to the j-th column of A;. Let E = [d] x [n] be
the set of all column indices. Define I; to contain all subsets of E such as X where the matrix
containing the columns included in X has rank |X|. The matroid M; = (E,I;) is a linear
matroid. Furthermore define Is to contain all subsets of ' with at most one column from each
matrix. Setting E; = {i} x [n] and k; = 1 it is clear to see that the matroid My = (E, I2) is a
partition matroid.

Now note that we are interested in finding an independent set in the intersection of these
two matroids. Furthermore, using the given hint the inclusion of a set X in I; can be checked
in polynomial time. Checking if X is in I can also be done in polynomial time by comparing
the matrix index of all pairs in X in O(|X|?). Therefore Edomond’s theorem gives an efficient
algorithm for finding a max weight independent set in the intersection of M7 and M. Setting
the weight of all columns to 1, our algorithm should answer YES if the found independent set
contains d columns and should answer NO otherwise.

Page 5 (of 7)

CS-450 Advanced Algorithms, Midterm Exam e Spring 2021
Michael Kapralov

4 (28 pts) Matrix reconstruction. A well known advertisement agency decided to hire you to
find the right advertisement placement strategy for their clients. Suppose that there are n types
of billboards in Lausanne and m clients, and you used a linear program to determine how many
billboards of each type every client should use. Specifically, your LP solver produced an n x m
matrix A, where for i = 1,...,n and 7 = 1,...,m the (i,)’th entry of the matrix shows how
many billboards of type ¢ the j'th client should use. There is a problem though: the entries in
the matrix are not integers. At the very least they are non-negative, however, and every row
sum as well as every column sum is an integer. You will design an efficient algorithm to round
the matrix entries to integers with the following constraints:

e Any non-integer element x in the matrix can only be replaced by |z | or [z].

e In the output matrix, for any row (or column), the sum of entries in that row (or column)
should remain the same as in the initial matrix.

Note: there might be many correct output matrices for a given initial matriz, and you only need to
output one of them. You should design the algorithm, prove its correctness and establish runtime
bounds.

(Hint: use ideas developed in class for a problem on graphs)
Example 1: The matrix

1 22 1 58
3 0 1 2
2 1.8 3 0.2
can be rounded to the matrix
1 216
3 01 2
2 2 30

Example 2: The matrix
0.3 0.3 0.3 0.1
0.2 0.5 0.1 0.2
0.5 0.2 0.6 0.7

can be rounded to the matrix
1 0 00
0 0 01
01 10

Solution: We can convert this problem to a graph problem as follows. Create a bipartite graph
G(V,E), with V.= RUC and RN C = (), where each vertex in R correspond to a row of our
matrix and each vertex in C' correspond to a column of our matrix. Now, connect each vertex in
R to all vertices in C' (complete bipartite graph). Assign value A; ; to edge connecting i’th vertex
in R to j'th vertex in C. Now, the problem looks very similar to what we had in the lecture
notes proving that any extreme point solution to the maximum weight bipartite matching LP
is integral. We apply the same approach here: Since we know that sum of each row and each
column is an integer, we conclude that if we only consider non-integer valued edges we can find
an even sized cycle in this graph. Now, let the values of edges in this cycle be x1, zo, ..., zor. Let
€ = minjepp{zi — |2:) , 1 — (z; — [7])}. Color the edges of this cycle in an alternating fashion
and subtract (or add) € to value of edges of one color and add (or subtract) € from value of edges

Page 6 (of 7)

CS-450 Advanced Algorithms, Midterm Exam e Spring 2021
Michael Kapralov

of the other color, so that value of at least one edge becomes integer. Note that this way, we
guarantee three events:

e At least value of one edge becomes integer.

e If value of an edge was € [r,r+1] for r € Z before this operation, it remains in that interval
after the operation.

e For any row and column the sum is unchanged.

So, in each step value of at least one edge becomes integer and this algorithm will terminate
when all edges get integer values.

Runtime analysis: Let n, be the number or rows and n. be the number of columns of
matrix. Then the graph has n,n. edges. In order to find cycles one can run DFS which takes
time O(n,n.) time, and this procedure can continue for at most n,n. rounds (since at each round
we make at least one edge integer valued). So, the total runtime is O (n%ng) However, one can
find such a cycle takes O(n,+n.) time (more specifically O(max{n.,n,})), using DFS: one starts
from a vertex and explores new vertices in each round, and as soon as one visits a vertex that
has already visited, one stops. Then, the runtime becomes O(n,n.(n, + n.)).

Page 7 (of 7)

CS-450 Advanced Algorithms, Midterm Exam e Spring 2021
Michael Kapralov

