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Final Exam, Advanced Algorithms 2019-2020

e You are only allowed to have a handwritten A4 page written on both sides.

e Communication, calculators, cell phones, computers, etc... are not allowed.

e Your explanations should be clear enough and in sufficient detail that a fellow student
can understand them. In particular, do not only give pseudo-code without explanations.
A good guideline is that a description of an algorithm should be such that a fellow

student can easily implement the algorithm following the description.

e You are allowed to refer to material covered in the lecture notes including

theorems without reproving them.
e Problems are not necessarily ordered by difficulty.
e Do not touch until the start of the exam.
Good luck!

Name: N° Sciper:

Problem 1 | Problem 2 | Problem 3 | Problem 4 | Problem 5

/ 24 points | / 14 points | / 12 points | / 17 points | / 19 points

Problem 6

/ 14 points

Total / 100
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1 (24 pts) Linear programming.
la (12 pts) Duality. Consider the following linear program:

Minimize 171 + 8x9 + 20x3
Subject to 1+ Txo + 223> 9
311+ zo+4r3>1

x1,x2,23 >0

Write down its dual and the complementarity slackness conditions.

Solution:
The dual problem of the abovementioned primal is the following:

Maximize 9y; + y2

Subject to y; +3y2 <1
Tyt Y2 <8
2y1 +4y2 < 20
y1,y2 >0

The complementarity slackness conditions say that if (x1,x2,23) and (y;,y2) are feasible
solutions to the primal and the dual LPs respectivly, then :

z1>0 = y1+3y2=1
zo >0 =Ty + y2 =38
} 3 >0 =2y +4y2 =20
y1 >0 = x1+Trs+223=9
Y2 >0 =321+ a9 +4x3=1

(r1,22,23) is an optimal solution of the primal and
(y1,y2) is an optimal solution of the dual
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1b (12 pts) Simplex method. Suppose we use the Simplex method to solve the following
linear program:

Maximize 6x1 — 4x9 — 923

Subject to ;] —2x3+ 51 =5
2x1 4+ xo+4x3+ 59 =35
4xg — 3x0 + S3 =12

T1, T2, T3, S1, S2, $3 >0
At the current step, we have the following Simplex tableau:

T, = 542x3— 51
82225— $2—8£L‘3+281
s3 =124 3xo — 43

z=30—4x9 + 3x3 — 651

Write the tableau obtained by executing one iteration (pivot) of the Simplex method start-
ing from the above tableau.

Solution:
Only x3 has a positive coefficient in z, we will pivot 3. We have
S wy — w3 < 00 (1), 3 <25/8 (2), v3<12/4=3(3) — x3:=3, s3:=0

x3 =3+ 3x2/4 — s3/4

1 =5+2-(34+3w2/4—s3/4) — 51
=11+ 3x9/2 — s3/2 — 51

Sg =25 — w9 — 8(3 — 3wa/4 — s3/4) + 251
=1-—"Txg + 251 — 253

z =30 — 4xo + 3(3 + 3w2/4 — s3/4) — 651
=39 — 25T2/4 - 681 - 393/4

371::11 .732::0 Tr;:?) 81::0 82:21 83::0
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2

(14 pts) Set Balancing. You are given a collection of sets Si, S, ..., Sy, in a universe U of size
n with |S;| <tforalli=1,...,m. A function x : U — {—1,+1} is called a g-balanced coloring
if for every ¢ = 1,...,m one has

> xe) <a

eeS;

Give an efficient randomized algorithm for finding a ¢-balanced coloring with ¢ = O(y/tlogm).
Your algorithm must succeed with probability at least 9/10.

In this problem you should (a) design an efficient algorithm and (b) prove its correctness.

Solution:
Algorithm: sample x(e) := 7. ~ Uniform({—1,1}) for j € {1,...,n}.

Analysis: First we define event A as sampling a coloring which is not g-balanced. Then we
can upper bound the probability if this event as:

>ql =pr ‘ZTG >4 OR ... OR‘ 3

€S; e€St e€Sm

>q

where the inequalities follow from the union bound, Hoeffding’s inequality and the fact that
|S;| < t respectively.

Then by selecting ¢ = /2t log 27"’ for some failure probability p, we can achieve the desired
bound Pr[A] < p:

2t log 2m P
Pr[A] <2mexp | ——— | =2m-— =p.

This shows in particular if the algorithm has to succeed with probability at least 0.9, having

q = +/2tlog (2]—"17 = O(y/tlogm) is sufficient.
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3 (12 pts) Alice, Bob and Charlie. Suppose that Alice and Bob have two documents d4 and dp
respectively, and Charlie wants to learn about the difference between them. We represent each
document by its word frequency vector as follows. We assume that words in d4 and dp come
from some dictionary of size n, and let x € R™ be a vector such that for every word ¢ € [n]ﬂ the
entry x; equals the number of times the i-th word in the dictionary occurs in d4. Similarly, let
y € R” be a vector such that for every word i € [n] the entry y; denotes the number of times the
i-th word in the dictionary occurs in dg. We assume that the number of words in each document
is bounded by a polynomial in n.

In the subproblems below you will design efficient communication protocols for Alice and
Bob that let Charlie learn about the difference of d4 and dg. All protocols must succeed with
probability at least 9/10. For all subproblems below you may assume that Alice, Bob and Charlie
have a source of shared random bits.

3a (5 pts) Suppose that for an integer parameter k there exist at most k£ words that are present
in d4 but not in dg, and at most k£ words that are present in dg but not in d4. Show that
Alice and Bob can each send a message of O(klog?n) bits to Charlie, from which Charlie
can recover the words that are present in d4 but not in dpg.

3b (7 pts) Suppose that there exists i* € [n] such that for all ¢ € [n]\ {¢*} one has |z; —y;| < 2,
and for i* one has |z —y+| > n'/2. Show that Alice and Bob can each send a O(log? n)-bit
message to Charlie, from which Charlie can recover the identity of the special word *.

(Hint: recall one of the streaming algorithms covered in class, and note that it is a linear
sketch that can be applied to arbitrary vectors of length n in with integer entries bounded by a
polynomial in n.)

(Recall that you are allowed to refer to material covered in the lecture notes. In this problem
you must explain how your protocol works and why it is correct with the required probability.)

Note: you do not need to do detailed calculations in this problem.

"We let [n] := {1,2,...,n}.
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Solution:
Recall from lectures the COUNTSKETCH algorithm for f5 heavy hitters. Given a vector v,
and a parameter ¢ € (0, 1), we can return an approximate vector v such that

Vi v —vi| < Blvl|2/2.

This requires O(¢~2?1og?n) bits of space.

3a Define the indicator vectors T and 7 denoting whether each word of the dictionary appears
at least once in d4 or dp respectively. Formally 7; = 1(z; > 0) and similarly y; = 1(y; > 1).
Let Alice and Bob apply COUNTSKETCH to T and ¥ respectively, with ¢ = 1/1/3k and with the
same random seed, and send it to Charlie. This requires O(kzlog2 n) space and allows Charlie
to decode a COUNTSKETCH of v = T — i where each coordinate is approximated with error
V1/3k - ||v]]2/2 < 1/2. Charlie can simply recover the words in d4 but not dp by looking at
coordinates of v that are greater than 1/2.

3b This time Alice and Bob apply COUNTSKETCH to z and y respectively, with ¢ = 1/3 and
with the same random seed, and send it to Charlie. This allows Charlie to decode a COUNTS-
KETCH of v = x — y. This takes O(log2 n) and allows Charlie to recover any coordinate i such
that |v;| > 1/9 - ||v||2. i* is such a coordniate, since ||v]|3 < 4n + v and vi > n.
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4 (17 pts) Spectral graph theory. Let G = (V,E) be a d-regular undirected graph, and let
M = %A denote its normalized adjacency matrix. Let 1 = Ay > A9 > ... > A\,_1 > A, denote
the eigenvalues of M.

4a (12 pts) Prove that if \,_; = —1, then G is disconnected.

Solution: Suppose for contradiction that G is connected and \,,—; = —1.

Claim 1 If v is such that Mv = —v, then for some a € R all coordinates of v are +a. Also, all
edges of E go between vertices of value a and —a.

Proof. Let a = max;cy |v;|. Suppose there exists a vertex i, such that |v;] < a. Then, since
G is connected, there must exist an edge between two vertices j and k, such that |v;| = a but
|ug| < a. This would mean

a=lojl =1(Mo)l = |7 3 vl < gz ST M)«za_a
er(y

Lel(4) el (j)\{k} el (5

which is a contradiction.
Supose now there exists an edge between vertices j and k, where v; = v = a. This is
similarly a contradiction:

1 1 1
a:vj:—(Mv)jz—g Z E(Uk+ w) <3 Z —a = a.
ter(y) teT (H)\{k} ter(y)
A similar contradiction can be shown when v; = v, = —a. ]
Since A\,—1 = —1, there exist two non-parallel vectors that are (—1)-eigenvectors of M, say v

and v/. We may assume that all coordinates of v and v’ are 4=1. Let

S:{i€V|Ui:1}
S'={ieVl,=1}.

Since v and v’ are non-parallel, S” # S and S’ # V '\ S. We know that all edges cross between S
and V'\ S, as well as between S" and V'\ S’. Therefore, SVS" and V' \ (SVS’) are disconnected,
non-empty sides of the graph, which is a contradiction.
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4b (5 pts; do not start this problem until you are done with all others) Prove that if A, > —1/2,
then the graph G is not tripartite (recall that a graph is tripartite if its vertex set can be
partitioned into three disjoint sets such that all of its edges connect vertices in different
components).

Solution: We will prove the contrapositive: If G is bipartite, then A, < —1/2. We will instead
look at the normalized Laplacian of G, L = I — M. We must prove that largest eigenvalue of L
is at least 1.5 or alternately
x| Lz
max

T > 1.5.
0#4xzcRY T ' X

Recall that the quadratic form of the Laplacian is

' Lz = Z (T4 — z0)2.

(u,v)€EE

Since G is tripartite, we can partition V into A U B U C such that there are no edges in
Ax A, Bx B, or C xC. Let the number of edges in B x C, C' x A, and A x B be «, 3, and ~

respectively. Since G is d-regular we can note the relations

a—+ B =dC,
B+ =dA,
v+ a=dB.

Consider the following three vectors in RV: w is +1 on A, —1 on B and 0 on C. y is +1 on

B, —1onC,andOon A. zis +1 on C, —1 on A, and 0 on B.

w'w = |A| + |B|

y'y =Bl +|C|

21z =|C|+ |A]

w Lw=a+ 3 +4y

y Ly =4a+ B+~

2 Lz=a+48+7

From this we can deduce
w'Lw+y "Ly + 2" Lz

= 1.5,
wlw+yy+zTz
SO T
x' Lx
o€ lw,y, 2} —=" > 1.5,
T {w Y z} T 2
as desired.
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5 (19 pts) Online ad allocation. Alice and Bob started companies selling hand sanitizer, and
are now advertising their products online to potential customers ci,cs, ..., c,, where ¢; € C for
alli=1,...,n. When a customer ¢; arrives, they can be shown advertisement for either Alice’s
or Bob’s hand sanitizer — we say that the customer is allocated to either Alice or Bob in that
case. If S1 and Sy are the sets of customers allocated to Alice and Bob respectively at the end of
the sequence, Alice will pay v1(S7) Francs to the online advertisement engine and Bob will pay
v2(S9). Here vy : 2¢ — R and vs : 2 — R, are non-negative monotone submodular functions.
The goal in the online ad allocation problem is to design an allocation rule that maximizes
v1(S1) + v2(S2). In this problem you will analyze the competitive ratio of the greedy algorithm,
stated below:

Algorithm 1 Greedy algorithm for online ad allocation
1: Sl — @, SQ — @

2: fori=1,...,n do

3: if v1(¢i|S1) > v2(c4|S2) then

4: Sy« S1U{ei} > Allocate i-th customer ¢; to Alice
5 else

6: Sg « SaU{¢ei} > Allocate i-th customer ¢; to Bob
7 end if

8: end for

You will prove that greedy achieves a competitive ratio of 1/2 by induction on n, the number
of customers. We now describe the inductive step. Suppose that the first customer is allocated
to Alice (the other case is analogous). Define for S C C the functions v} (S) = v1(S|{c1}) and
vh(S) = v2(S), and let p = vi({e1}). Let T = (v1,v2;¢1,...,c¢,) denote the input instance
of the ad allocation problem, and let Z' = (v}, v);ca,...,¢,) denote the instance Z with the
first customer removed and the functions vy, vy replaced with v}, v). Let ALG denote the value
achieved by greedy on Z, and let OPT denote the optimal offline solution on Z. Similarly, let
ALG’ denote the value achieved by greedy on Z’, and let OPT’ denote the optimal offline solution
on 7.

5a (5 pts) Prove that v;», j = 1,2, are non-negative monotone submodular functions.

5b (10 pts) Prove that OPT < OPT’ + 2p.
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5¢ (4 pts) Show how to complete the proof using (b).
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Solution:

Ha

5b

5c

Note that

vi(e| X) = vi({e} UX) — vi(X)
=v({e}UX[{a}) —vi(X[{a})
=u({e,atUX) —v({a}) - (n{atUX) —vi({al}))
=uv({e,atUX)—v({a}uX)
=uvi(e|{c1} UX).

Let X, Y be be such that X C Y. Note that for any element ¢, X U{c} C Y U{c}. Hence,
we have

vile| X) =vi(e[{a}UX) = u(e[{a}UY) =0v(e]Y).

Thus v} satisfies diminishing returns property, and hence submodular. The non-negativity
and monotonocity of v{ follows from the monotonocity of v;.

Let O = (O1,02) be the optimal allocation for I, so that OPT = v1(0O1) + v2(02) and
OPT' = v (01) 4+ v4(02). Also note that (O1 \ {c¢1},02\ {c1}) is a feasible solution on I’
and moreover, since we assume c¢; is allocated to Alice, v1({c1}) > v2({c1}). Thus we have

OPT' > v{ (01 \ {e1}) + v4(02\ {c1})
=v1(01) —vi({e1}) +v2(02 \ {c1}).

Due to submodularity, we have v2(O2 \ {c1}) + va({c1}) > v2(O2) + v2(0), and due to
non-negativity, this yields v2(O2 \ {c1}) > v2(02) — va({c1}). Thus

OPT/ Z 7)1(01) + 1}2(02) — 1}1({01}) — 1)2({01}) Z OPT — 21}1({01}) = OPT — 2p.

For n = 1, we get the optimal solution. Suppose n > 1. By the inductive hypothesis,
ALG' > OPT'/2. Thus we have

ALG =p+ ALG' > p+ OPT'/2 = (2p + OPT')/2 > OPT/2.
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6 (14 pts) Learning from experts. Recall that the hedge algorithm for learning from experts
achieves the following guarantees in the setting of N experts with payoffs m® & [—1,4+1]Y
for t = 1,2,...,T. For every € € (0,1), if p® for t = 1,...,T is the distribution picked by
Hedge, then for every expert i = 1,2,..., N, one has Zthl p® . m® < Zthl mgt) + IHTN + €T

Minimizing the additive error term on the right hand side, we set € = \/% and obtain

T T
Zp(t) -m® < Zmz(»t) +2VTInN.
t=1

t=1

In this problem you will prove that the above guarantee is essentially the best possible,
showing that there exists a constant ¢ > 0 such that no algorithrnﬂ can satisfy

T T
S p® . m® <3 m 4+ eVT N, (1)
t=1 t=1

For every t = 1,2,...,T let m® € {—1,+1}" denote a vector of independent Bernoulli

random variables, and for every i = 1,2,..., N let X; = Zle mz(.t). Assume that NV is bounded
by a polynomial in 7.

6a (7 pts) Prove that Elmin;—1 2 n X;] = —Q(y/T'log N). You may use the following
Theorem 2 (Anti-concentration inequality for binomial random variables) LetY =
Ethl Y:, where Y; are independent random variables such that Pr[Y; = 1] = Pr[Y; = 0] =
1/2. Then for r € [0,T/8]

1
PrlY <T/2—7r] > ﬁe_IGTQ/T.

2Recall that an algorithm here is a method for choosing p® as a function of m™, s =1,...,¢ — 1, for every
t=1,...,T.
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6b (7 pts) Use (a) to prove that no algorithm can satisfy (1)) for some absolute constant ¢ > 0.
(Hint: recall that p*) is chosen before observing m®) )

Solution: Part a. We use Theorem 1 (anti-concentration bound) for X;’s. First, for each

(®)
i€ [N]andt e [T],let ngt) = mi2+1, which implies that nz(»t) € {0,1}. Now, let Y; := Zthl ngt).

Now, for each i € [N], using Theorem 1, we have

Pr I:Y'Z < g — iw/TlogN] > %5@71671‘353{;]\] = ieflogN _ iN*l.

Noting that X; =Y; — %, we get

1 1
Pr {Xi < —4\/TlogN] > 1751\7*1.

Consequently, if we define Z := min;—s _ n X;, we have

N—-1
Pr {Z > —i\/TlogN} < <1 — lN‘1> < e N NS <o

15

Now, if we let j = argmin,c X;, we have the following:
1 1
EX;]=E {XjZ < —4\/TlogN} - Pr [Z < —4\/TlogN]
1 1
+E [Xj|Z > —4\/T10gN] -Pr [Z > —4\/T10gN} )

At this point one should note that,
1 1
E [Xj|Z > —4\/T10gN] =E [min{Xl,ZHZ > —4\/T10gN}
1
<E {X1|Z > —4\/TlogN]
=E[X;]=0

Therefore,

1

E[X;] <E [Xj|z < 4@] - Pr [Z < jym}
—VTlogN - (1 %)
< _ém

This implies that for constant ¢ = % we have

E[X;] < —cy/Tlog N,

or equivalently (as stated in the question statement)

E[X;] = - (\/W) :

IN
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Part b. Note that p®) is chosen before observing m®, as the hint suggests and by the way
(),

m,’’s are chosen, they are independent, so E [Zthl p® -m(t)} = 0. Thus, again if we let
1

16> we have

J = argmin;e ) X; and ¢ =

T

T
E z;p(t) -m® — Z;mg.t) —cy/Tlogn
= t

=K

T
3 p m(t)] _E

t=1
1 1
> 0+§\/TlogN— 1—6\/T og N

|
_ L TlgN >0
TR

T
1
ngt)] — E\/TlogN

t=1

where the first transition is due to Part a. This indicates that no matter what algorithm we
use, there is a chance that we fail to satisfy the desired inequality.
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