
Final Exam, Advanced Algorithms 2018-2019

• You are only allowed to have a handwritten A4 page written on both sides.

• Communication, calculators, cell phones, computers, etc... are not allowed.

• Your explanations should be clear enough and in sufficient detail that a fellow student
can understand them. In particular, do not only give pseudo-code without explanations.
A good guideline is that a description of an algorithm should be such that a fellow
student can easily implement the algorithm following the description.

• You are allowed to refer to material covered in the lecture notes including
theorems without reproving them.

• Problems are not necessarily ordered by difficulty.

• Do not touch until the start of the exam.

Good luck!

Name: N◦ Sciper:

Problem 1 Problem 2 Problem 3 Problem 4 Problem 5 Problem 6

/ 10 points / 12 points / 15 points / 20 points / 20 points / 23 points

Total / 100

Page 1 (of 14)

CS-450 Advanced Algorithms, Final Exam • Spring 2019
Ola Svensson

1 (10 pts) Simplex method. Suppose we use the Simplex method to solve the following linear
program:

maximize 4x1 − 6x2 + 4x3

subject to x1 − 3x2 + x3 + s1 = 1

x1 + s2 = 8

3x2 + 2x3 + s3 = 6

x1, x2, x3, s1, s2, s3 ≥ 0

At the current step, we have the following Simplex tableau:

x1 = 1 + 3x2 − x3 − s1
s2 = 7− 3x2 + x3 + s1

s3 = 6− 3x2 − 2x3

z = 4 + 6x2 − 4s1

Write the tableau obtained by executing one iteration (pivot) of the Simplex method starting
from the above tableau.

Solution:
At the current step, we have the following Simplex tableau:

x1 = 1 + 3x2 − x3 − s1 (1)
s2 = 7− 3x2 + x3 + s1 (2)
s3 = 6− 3x2 − 2x3 (3)

z = 4 + 6x2 − 4s1

x1 := 1 x2 := 0 x3 := 0 s1 := 0 s2 := 7 s3 := 6

Only x2 has a positive coefficient in z, we will pivot x2. We have
↗ x2 −→ x2 ≤ ∞ (1), x2 ≤ 7/3 (2), x2 ≤ 6/3 (3) −→ x2 := 2, s3 := 0

x1 = 7− 3x3 − s1 − s3
s2 = 1 + 3x3 + s1 + s3

x2 = 2− 2x3/3− s3/3

z = 16− 4x3 − 2s3 − 4s1

x1 := 7 x2 := 2 x3 := 0 s1 := 0 s2 := 1 s3 := 0

Page 2 (of 14)

CS-450 Advanced Algorithms, Final Exam • Spring 2019
Ola Svensson

2 (12 pts) Improving Professor Ueli von Gruyères’ estimator. Last year Professor Ueli von
Gruyères worked hard to to obtain an estimator A to estimate the total cheese consumption of
fondue lovers in Switzerland. For a small ε > 0, his estimator A only asks 3/ε2 random persons
and have the following guarantee: if we let W denote the true answer and let X be the random
output of A then

Pr[|X −W | ≥ εW] ≤ 1/3 .

However, Ueli is now stuck because the error probability of 1/3 is too high. We are therefore
going to help Ueli by designing a new estimator with a much higher success probability while
still only asking relatively few persons.

For a fixed small parameter δ > 0, your task is to design and analyze an estimator that
outputs a random value Y with the following guarantee:

Pr[|Y −W | ≥ εW] ≤ δ . (1)

Your estimator should ask at most 3000 log(1/δ)/ε2 persons about their preferences.

While you should explain why your estimator works and what tools to use to analyze it, you
do not need to do any detailed calculations.

(In this problem you are asked to (i) design an estimator that asks at most 3000 log(1/δ)/ε2

persons and (ii) explain why it satisfies the guarantee (1). Recall that you are allowed to refer to
material covered in the lecture notes.)

Solution: We define our estimator as follows:

• Let t = 1000 log(1/δ).

• Run t independent copies of A to obtain estimates X1, X2, . . . , Xt.

• Output Y to be the median of X1, . . . , Xt.

Let Ii be the indicator random variable that |Xi −W | ≥ εW . For us to have |Y −W | ≥ εW
it must be that

∑t
i=1 Ii ≥ t/2. However, E[

∑t
i=1 Ii] ≤ t/3 and it is a sum of independent random

variables taking values in {0, 1}. We can thus apply Chernoff bounds to obtain

Pr[|Y −W | ≥ εW] ≤ Pr[

t∑
i=1

Ii ≥ t/2] ≤ e−t/100 ≤ δ ,

where we used that t = 1000 log(1/δ).

Page 3 (of 14)

CS-450 Advanced Algorithms, Final Exam • Spring 2019
Ola Svensson

3 (15 pts) Spectral graph theory. Consider a d-regular undirected graph G = (V,E) and let
M be its normalized adjacency matrix. As seen in class, M has n = |V | eigenvalues 1 = λ1 ≥
λ2 ≥ . . . ≥ λn ≥ −1 and the corresponding eigenvectors v1, v2, . . . , vn ∈ Rn can be selected to
be orthogonal vectors where

v1 =


1
1
...
1

 is the all one vector.

Assuming that λ2 = 1, your task is to design a procedure FindDisconnectedSet(v2) that
takes as input the second eigenvector and outputs a non-empty subset S (V of the vertices
such that there is no edge crossing the cut defined by S. In other words, the output S must
satisfy S 6= ∅, S 6= V and any edge e ∈ E has either both endpoints in S or both endpoints in
V \ S.

We remark that your procedure FindDisconnectedSet does not know the edgeset E of
the graph. Thus it needs to define the set S only based on the values v2(i) the second eigenvector
assigns to every vertex i ∈ V .

(In this problem you are asked to (i) design the algorithm FindDisconnectedSet and (ii)
argue that it outputs a non-empty S (V that cuts 0 edges assuming λ2 = 1. Recall that you are
allowed to refer to material covered in the lecture notes.)

Solution:
Let S = {i ∈ V : v2(i) ≤ 0}. Note that S 6= ∅ and S 6= V since v2 ⊥ v1 and v2 6= 0.
In class we saw that if λ2 = 1 then all vertices in a connected component must receive the

same value by the second eigenvector v2. In particular adjacent vertices receive the same value.
It follows that no vertex i with v2(i) ≤ 0 is adjacent to a vertex j with v2(j) > 0 and so no edges
crosses the cut defined by S.

For a different proof that doesn’t rely on orthogonality note that it is enough to choose S to
be the set of all vertices with their v2 values equal to some value (that occurs in v2). For example
S = {i ∈ V : v2(i) = v2(1)} - this is the set of all vertices whose second eigenvalue is equal to the
one of vertex 1. Now S 6= ∅ since the vertex 1 is contained in S. Also S 6= V since that would
mean that all vertices have the same eigenvalue, but this cannot happen since v2 6= v1 (more
precisely v2 cannot be a multiple of v1). From what was written above, all vertices v 6∈ S have
eigenvalues different from v1(1), and as such cannot be connected to vertices in S. This means
that S defines a cut, as requested.

Note that the spectral graph partitioning algorithm seen in class uses the edges of the graph
so doesn’t work directly.

Page 4 (of 14)

CS-450 Advanced Algorithms, Final Exam • Spring 2019
Ola Svensson

(This page is intentionally left blank.)

Page 5 (of 14)

CS-450 Advanced Algorithms, Final Exam • Spring 2019
Ola Svensson

4 (consisting of subproblems a-b, 20 pts) Online algorithms. You have 1 Euro and your goal is
to exchange it to Swiss francs during the next two consecutive days. The exchange rate is an
arbitrary function from days to real numbers from the interval [1,W 2], where W ≥ 1 is known
to the algorithm.

More precisely, at day 1, you learn the exchange rate x1 ∈ [1,W 2], where x1 is the amount
of Swiss francs you can buy from 1 Euro. You then need to decide between the following two
options:

(i) Trade the whole 1 Euro at day 1 and receive x1 Swiss francs.

(ii) Wait and trade the whole 1 Euro at day 2 at exchange rate x2 ∈ [1,W 2]. The exchange
rate x2 is known only at day 2, i.e., after you made your decision at day 1.

In the following two subproblems, we will analyze the competitive ratio of optimal deterministic
algorithms. Recall that we say that an online algorithm is c-competitive if, for any x1, x2 ∈
[1,W 2], it exchanges the 1 Euro into at least c ·max{x1, x2} Swiss francs.

4a (10 pts) Give a deterministic algorithm with a competitive ratio of 1/W .

(In this problem you are asked to (i) design a deterministic online algorithm for the above
problem and (ii) to prove that your algorithm is 1/W -competitive. Recall that you are
allowed to refer to material covered in the lecture notes.)

Solution: The algorithm is as follows:

• If x1 ≥W , then do the exchange on day 1 and receive x1 Swiss francs.

• Otherwise, do the exchange on day 2 and receive x2 Swiss francs.

We now analyze its competitiveness. If x1 ≥ W , then our algorithm gets at least W Swiss
francs. Optimum is at most W 2 and so we are 1/W competitive. Otherwise if x1 < W then we
get x2 ≥ 1 Swiss francs which is x2/max(x2, x1) ≥ 1/W competitive.

Page 6 (of 14)

CS-450 Advanced Algorithms, Final Exam • Spring 2019
Ola Svensson

4b (10 pts) Show that any deterministic algorithm has a competitive ratio of at most 1/W .

(In this problem you are asked to prove that any deterministic algorithm has a competitive
ratio of at most 1/W for the above problem. Recall that you are allowed to refer to material
covered in the lecture notes.)

Solution: Consider an deterministic online algorithm A and set x1 = W . There are two cases
depending on whether A trades the 1 Euro the first day or not. Suppose first that A trades the
Euro at day 1. Then we set x2 = W 2 and so the algorithm is only W/W 2 = 1/W competitive.
For the other case when A waits for the second day, we set x2 = 1. Then A gets 1 Swiss franc
whereas optimum would get W and so the algorithm is only 1/W competitive again.

Page 7 (of 14)

CS-450 Advanced Algorithms, Final Exam • Spring 2019
Ola Svensson

5 (20 pts) Streaming algorithms. In the following problem Alice holds a string x = 〈x1, x2, . . . , xn〉
and Bob holds a string y = 〈y1, y2, . . . , yn〉. Both strings are of length n and xi, yi ∈ {1, 2, . . . , n}
for i = 1, 2, . . . , n. The goal is for Alice and Bob to use little communication to estimate the
quantity

Q =

n∑
i=1

(xi + yi)
2 .

A trivial solution is for Alice to transfer all of her string x to Bob who then computes Q exactly.
However this requires Alice to send Θ(n log n) bits of information to Bob. In the following, we
use randomization and approximation to achieve a huge improvement on the number of bits
transferred from Alice to Bob. Indeed, for a small parameter ε > 0, your task is to devise and
analyze a protocol of the following type:

• On input x, Alice uses a randomized algorithm to compute a message m that consists of
O(log(n)/ε2) bits. She then transmits the message m to Bob.

• Bob then, as a function of y and the message m, computes an estimate Z.

Your protocol should ensure that

Pr[|Z −Q| ≥ εQ] ≤ 1/3 , (2)

where the probability is over the randomness used by Alice.

(In this problem you are asked to (i) explain how Alice computes the messagem of O(log(n)/ε2)
bits (ii) explain how Bob calculates the estimate Z, and (iii) prove that the calculated estimate
satisfies (2). Recall that you are allowed to refer to material covered in the lecture notes.)

Solution: We use the idea of the AMS algorithm. We first describe how Alice Alice calculates
the message m. Let A be the following procedure:

• Select a random h : [n] → {±1} 4-wise independent hash function. h takes O(log n) bits
to store.

• Calculate A =
∑n

i=1 h(i)xi.

Let t = 6/ε2. Alice runs A t times. Let hi and Ai be the hash function and the quantity
calculated by i:th invokation of A. Then Alice transmits the information h1, A1, h2, A2, . . . , ht, At

to Bob. Note that each hi takes O(log n) bits to store and each Ai is an integer between −n2
and n2 and so it also takes O(log n) bits to store. Therefore the message Alice transmits to Bob
is O(log(n)/ε2) bits.

Now Bob calculates the estimate Z as follows:

• For ` = 1, 2, . . . , t, let Z` = A` +
∑n

i=1 h`(i)yi.

• Output Z =
∑t

`=1 Z
2
`

t .

To prove that Z satisfies (2), we first analyze a single Z`. First, note that Z` = A` +∑n
i=1 h`(i)yi =

∑n
i=1 h`(i)(xi + yi) =

∑n
i=1 h`(i)fi, where we let fi = xi + yi. And so Z` =∑n

i=1 h`(i)fi where h` is a random 4-wise independent hash function. This is exactly the setting

Page 8 (of 14)

CS-450 Advanced Algorithms, Final Exam • Spring 2019
Ola Svensson

of the analysis of the AMS streaming algorithm seen in class. And so over the random selection
of the hash function, we know that

E[Z2
`] =

n∑
i=1

f2i = Q

and

Var[Z2
`] ≤ 2

(
n∑

i=1

f2i

)2

= 2Q2 .

Therefore, we have that

E[Z] = Q and Var[Z] ≤ 2Q2

t
.

So by Chebychev’s inequality

Pr[|Z −Q| ≥ εQ] ≤ 2Q2/t

ε2Q2
≤ 1/3 ,

by the selection of t = 6/ε2.

Page 9 (of 14)

CS-450 Advanced Algorithms, Final Exam • Spring 2019
Ola Svensson

(This page is intentionally left blank.)

Page 10 (of 14)

CS-450 Advanced Algorithms, Final Exam • Spring 2019
Ola Svensson

6 (consisting of subproblems a-b, 23 pts) Submodular vertex cover. In this problem, we give a
2-approximation algorithm for the submodular vertex cover problem which is a generalization of
the classic vertex cover problem seen in class. We first, in subproblem (a), give a new rounding
for the classic vertex cover problem and then give the algorithm for the more general problem in
subproblem (b).

6a (11 pts) Recall that a vertex cover instance is specified by an undirected graph G = (V,E)
and non-negative vertex-weights w : V → R+. The task is to find a vertex cover S ⊆ V
of minimum total weight

∑
i∈S w(i), where a subset S ⊆ V of the vertices is said to be a

vertex cover if for every edge {i, j} ∈ E, i ∈ S or j ∈ S. The natural LP relaxation (as
seen in class) is as follows:

minimize
∑
i∈V

w(i)xi

subject to xi + xj ≥ 1 for {i, j} ∈ E
xi ≥ 0 for i ∈ V

Given a fractional solution x to the above linear program, a natural approach to solve
the vertex cover problem is to give a rounding algorithm. Indeed, in class we analyzed a
simple rounding scheme: output the vertex cover S = {i ∈ V : xi ≥ 1/2}. We proved that
w(S) ≤ 2

∑
i∈V w(i)xi.

In this subproblem, your task is to prove that the following alternative randomized rounding
scheme give the same guarantee in expectation. The randomized rounding scheme is as
follows:

• Select t ∈ [0, 1/2] uniformly at random.

• Output St = {i ∈ V : xi ≥ t}.

Prove (i) that the output St is a feasible vertex cover solution (for any t ∈ [0, 1/2]) and (ii)
that E[

∑
i∈St

w(i)] ≤ 2 ·
∑

i∈V w(i)xi where the expectation is over the random choice of t.
We remark that you cannot say that x is half-integral as x may not be an extreme point
solution to the linear program.

(In this problem you are asked to prove that the randomized rounding scheme (i) always
outputs a feasible solution and (ii) the expected cost of the output solution is at most twice
the cost of the linear programming solution. Recall that you are allowed to refer to material
covered in the lecture notes.)

Solution:
First, the output is always feasible since we always include all vertices with xi ≥ 1/2 which

is a feasible vertex cover as seen in class. We proceed to analyze the approximation guarantee.
Let Xi be the indicator random variable that i is in the output vertex cover. Then Pr[Xi = 1]
is equal to the probability that t ≤ xi which is 1 if xi ≥ 1/2 and otherwise it is xi/(1/2) = 2xi.
We thus always have that Pr[Xi = 1] ≤ 2xi. Hence,

E[
∑
i∈St

w(i)] = E[
∑
i∈V

Xiw(i)] =
∑
i∈V

E[Xi]w(i)] ≤ 2
∑
i∈V

xiw(i) .

Page 11 (of 14)

CS-450 Advanced Algorithms, Final Exam • Spring 2019
Ola Svensson

(This page is intentionally left blank.)

Page 12 (of 14)

CS-450 Advanced Algorithms, Final Exam • Spring 2019
Ola Svensson

6b (12 pts) Design and analyze a deterministic 2-approximation algorithm for the submodular
vertex cover problem:

Input: An undirected graph G = (V,E) and a non-negative submodular function
f : 2V → R+ on the vertex subsets.

Output: A vertex cover S ⊆ V that minimizes f(S).

We remark that the classic vertex cover problem is the special case when f is the linear
function f(S) =

∑
i∈S w(i) for some non-negative vertex weights w.

A randomized 2-approximation algorithm will be given partial credits and to your help you
may use the following fact without proving it.

Fact. Let V = {1, 2, . . . , n} and let f̂ : [0, 1]n → R+ denote the Lovász extension
of f . There is a deterministic polynomial-time algorithm that minimizes f̂(x)
subject to xi + xj ≥ 1 for all {i, j} ∈ E and xi ∈ [0, 1] for all i ∈ V .

(In this problem you are asked to (i) design the algorithm, (ii) show that it runs in
polynomial-time, and (iii) prove that the value of the found solution is at most twice the
value of an optimal solution. You are allowed to use the above fact without any proof.
For full score your algorithm should be deterministic but randomized solutions will be given
partial credits. Recall that you are allowed to refer to material covered in the lecture notes.)

Solution: We use the same rounding scheme as in the first subproblem. We then have that the
expected cost of our solution is

2

∫ 1/2

0
f({i : xi ≥ t})dt .

On the other hand,

f̂(x) =

∫ 1

0
f({i : xi ≥ t})dt =

∫ 1/2

0
f({i : xi ≥ t})dt+

∫ 1

1/2
f({i : xi ≥ t})dt

which by non-negative is at least∫ 1/2

0
f({i : xi ≥ t})dt .

Our output is thus at most twice the lower bound in expectation. The algorithm can easily be
derandomized by trying all relevant t’s (at most n+ 1 many and select the best one).

Page 13 (of 14)

CS-450 Advanced Algorithms, Final Exam • Spring 2019
Ola Svensson

(This page is intentionally left blank.)

Page 14 (of 14)

CS-450 Advanced Algorithms, Final Exam • Spring 2019
Ola Svensson

