
Final Exam, Advanced Algorithms 2017-2018

• You are only allowed to have a handwritten A4 page written on both sides.

• Communication, calculators, cell phones, computers, etc... are not allowed.

• Your explanations should be clear enough and in sufficient detail that a fellow student
can understand them. In particular, do not only give pseudo-code without explanations.
A good guideline is that a description of an algorithm should be such that a fellow
student can easily implement the algorithm following the description.

• You are allowed to refer to material covered in the lecture notes including
theorems without reproving them.

• Problems are not necessarily ordered by difficulty.

• Do not touch until the start of the exam.

Good luck!

Name: N◦ Sciper:

Problem 1 Problem 2 Problem 3 Problem 4 Problem 5 Problem 6

/ 10 points / 15 points / 15 points / 15 points / 22 points / 23 points

Total / 100
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1 (10 pts) Submodular functions. Let N = {1, 2, 3, 4, 5, 6, 7, 8} and consider the submodular
function f : 2N → R defined by

f(S) = min(|S|, 5) for every S ⊆ N .

What is the value of f̂(0, 1/4, 1/2, 1/4, 3/4, 1/2, 3/4, 1) where f̂ denotes the Lovász extension of f?

(In this problem you are asked to calculate f̂(0, 1/4, 1/2, 1/4, 3/4, 1/2, 3/4, 1). Recall that you are
allowed to refer to material covered in the lecture notes.)

Solution: Recall the definition of the Lováz extension

Eσ∈[0,1][f({i : xi ≥ θ})] ,

where σ is distributed uniformly in the inteval [0, 1]. We thus have

f̂(0, 1/4, 1/2, 1/4, 3/4, 1/2, 3/4, 1) = Pr[θ ∈ [0, 1/4]] · f({2, 3, 4, 5, 6, 7, 8})
+ Pr[θ ∈ (1/4, 1/2]] · f({3, 5, 6, 7, 8})
+ Pr[θ ∈ (1/2, 3/4]] · f({5, 7, 8})
+ Pr[θ ∈ (3/4, 1]] · f({8})

= Pr[θ ∈ [0, 1/4]] · 5
+ Pr[θ ∈ (1/4, 1/2]] · 5
+ Pr[θ ∈ (1/2, 3/4]] · 3
+ Pr[θ ∈ (3/4, 1]] · 1

=
5 + 5 + 3 + 1

4
= 3.5 .
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2 (15 pts) LSH for Manhattan distance. Recall the Manhattan distance function that we saw
in class: for any d-dimensional Boolean vectors p, q ∈ {0, 1}d, the Manhattan distance is defined
by

dist(p, q) = ‖p− q‖1 = |{i : pi 6= qi}| .

Design a locality sensitive hash (LSH) family H of functions h : {0, 1}d → {0, 1, 2, 3} such that
for any p, q ∈ {0, 1}d,

Pr
h∼H

[h(p) = h(q)] =

(
1− dist(p, q)

d

)2

.

(In this problem you are asked to explain the hash family and show that it satisfies the above
property. Recall that you are allowed to refer to material covered in the lecture notes.)

Solution: There are two solutions (the first refers to material covered in class).
Solution 1: In class we designed LSH family H1 of hash functions h : {0, 1}d → {0, 1} so

that

Pr
h∼H1

[h(p) = h(q)] =

(
1− dist(p, q)

d

)
. (1)

Now define, similar to the construction of ANNS data structure, a new hash family H defined
as follows:

• Select h1 and h2 uniformly at random from H1.

• Define h : {0, 1}d → {0, 1, 2, 3} by h(p) = x where x equals the number in {0, 1, 2, 3} whose
binary representation is h1(p)h2(p), i.e., x = 2h1(p) + h2(p).

For any p, q ∈ {0, 1}d we thus have

Pr
h∼H

[h(p) = h(q)] = Pr
h1,h2∈H1

[h1(p) = h1(q) ∧ h2(p) = h2(q)]

= Pr
h1∈H1

[h1(p) = h1(q)] Pr
h2∈H1

[h2(p) = h2(q)] (h1 and h2 are selected independently)

=

(
1− dist(p, q)

d

)2

. (by (1))

Solution 2: Define H as follows:

• Select coordinates i, j ∈ [d] independently uniformly at random.

• Define h := hij(p) = x where x equals the number in {0, 1, 2, 3} whose binary representation
is pipj , i.e., x = 2pi + pj .
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We have that

Pr
h∈H

[h(p) = h(q)] = Pr
i,j∈[d]

[pi = qi ∧ pj = qj ]

= Pr
i∈[d]

[pi = qi] · Pr
j∈[d]

[pj = qj ] (by independence of i and j)

=

(
Pr
i∈[d]

[pi = qi]

)2

=

(
|{` : p` = q`}|

d

)2

=

(
d− |{` : p` 6= q`}|

d

)2

=

(
1− dist(p, q)

d

)2

.
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3 (15 pts) Estimating cheese consumption of fondue lovers. Professor Ueli von Gruyères
worked hard last year to calculate the yearly cheese consumption of each individual in Switzer-
land. Specifically, let U be the set of all persons in Switzerland. For each person i ∈ U , Ueli
calculated the amount wi ∈ R≥0 (in grams) of the yearly cheese consumption of person i. How-
ever, to help Coop and Migros in their supply-chain management, he needs to calculate the total
cheese consumption of those persons that prefer fondue over raclette. That is, if we let F ⊆ U
be those that prefer fondue over raclette, then Ueli wants to calculate

WF =
∑
i∈F

wi .

The issue is that Ueli does not know the set F and he does not have the time or energy to ask
the preferences of all persons. He therefore designs two estimators that only ask a single person:

Estimator A1: Let W =
∑

i∈U wi. Sample person i with probability wi
W and output W if i

prefers fondue and 0 otherwise.

Estimator A2: Sample person i with probability 1
|U | and output |U | ·wi if i prefers fondue and

0 otherwise.

Let X1 and X2 be the random outputs of A1 and A2, respectively. Ueli has shown that A1 and
A2 are unbiased estimators and he has also bounded their variances:

E[X1] = E[X2] =WF , Var[X1] ≤W 2 and Var[X2] ≤ |U |
∑
i∈U

w2
i .

However, Ueli is now stuck because the variances are too high to give any good guarantees for
the two estimators. We are therefore going to help Ueli by designing a new estimator with good
guarantees while still asking the preferences of relatively few persons.

For a fixed small parameter ε > 0, your task is to design and analyze an estimator that
outputs a random value Y with the following guarantee:

Pr[|Y −WF | ≥ εW ] ≤ 1/3 . (2)

Your estimator should ask at most 3/ε2 persons about their preferences.

(In this problem you are asked to (i) design an estimator that asks at most 3/ε2 persons about
their preferences and (ii) prove that it satisfies the guarantee (2). Recall that you are allowed to
refer to material covered in the lecture notes.)

Solution: We define our estimator as follows:

• Let t = 3/ε2.

• Run t independent copies of A1 to obtain estimates Z1, Z2, . . . , Zt.

• Output Y = (Z1 + Z2 + . . .+ Zt) /t.

Since A1 only asks one person, we have that our estimator only asks 3/ε2 persons (as required).
We now analyze the guarantee of our estimator. We have

E[Y ] = E [(Z1 + Z2 + . . .+ Zt) /t] =
1

t

t∑
i=1

E[Zi] =WF ,
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where the last equality follows from that A1 is an unbiased estimator which was given to us in
the stament. As seen in the lecture notes, we also have

Var[Y ] = Var[X1]/t

and so, by the problem statement, we know Var[Y ] ≤ W 2/t. We know apply Chebychev’s
inequality to analyze the guarantee of our estimator:

Pr[|Y −WF | ≥ εW ] ≤ Var[Y ]

ε2W 2
≤ W 2

tε2W 2
≤ 1/3 ,

where the last inequality is due to the selection t = 3/ε2.
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4 (15 pts) Online bin-packing. Recall the online bin-packing problem that we saw in Exercise
Set 10: We are given an unlimited number of bins, each of capacity 1. We get a sequence of
items one by one each having a size of at most 1, and are required to place them into bins as we
receive them. Our goal is to minimize the number of bins we use, subject to the constraint that
no bin should be filled to more than its capacity. An example is as follows:

1=3

1=3

1=3

1=4

arriving item of size 1=6

: : :

| {z }

empty bins

| {z }

used bins

1=4

1=4 1=4

Here, seven items have already arrived that we have packed in three bins. The newly arriving
item of size 1/6 can either be packed in the first bin, third bin, or in a new (previously unused)
bin. It cannot be packed in the second bin since 1/3 + 1/3 + 1/4 + 1/6 > 1. If it is packed in
the first or third bin, then we still use three bins, whereas if we pack it in a new bin, then we
use four bins.

In this problem you should, assuming that all items have size at most 0 < ε ≤ 1, design and
analyze an online algorithm for the online bin-packing problem that uses at most

1

1− ε
OPT+ 1 bins, (3)

where OPT denotes the minimum number of bins an optimal packing uses. In the above exam-
ple, ε = 1/3.

(In this problem you are asked to (i) design the online algorithm and (ii) prove that it satisfies
the guarantee (3). Recall that you are allowed to refer to material covered in the lecture notes.)

Solution: We consider the following greedy algorithm. At the arrival of an item of size s:

• If it fits, pack the item in an already used bin.

• Otherwise, pack the item in a new bin.

To analyze the algorithm and to prove (3) the following observation is crucial:

Claim 1 Whenever a new bin is opened, every other bin is packed with items of total size at
least 1− ε.

Proof. We only open up a new bin if the arriving item of size s ≤ ε does not fit in an already
used bin. Since it does not fit in an already used bin, it implies that every such bin is packed
with items of total size at least 1− ε. �

Notice that the above claim implies that at any point of time, all but 1 bin have load at least
1− ε. If our algorithm has opened m+ 1 bins, the total size of all items packed so far is thus at
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least (1 − ε)m. However, OPT clearly needs (1 − ε)m bins to pack these items (since each bin
can take items of size at most 1). Hence, m ≤ OPT

1−ε and

m+ 1 ≤ OPT

1− ε
+ 1 ,

as required.
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5 (consisting of subproblems a-b, 22 pts) Finding large cuts.

5a (9 pts) Consider the following algorithm that takes as input an undirected graph G =
(V,E):

SimpleCut(G = (V,E)):

1. Let H be a 2-universal family of hash functions h : V → {0, 1}.
2. Select h ∈ H at random.
3. return the vertex set S = {v ∈ V : h(v) = 0}.

Prove the following:

In expectation, the set S returned by SimpleCut cuts at least |E|/2 edges.

(In this problem you are asked to prove the above statement. Recall that you are allowed to
refer to material covered in the lecture notes.)

Solution: Let Xe be the indicator random variable that edge e is cut. Then

E[# edges cut] = E

[∑
e∈E

Xe

]
=
∑
e∈E

E[Xe] .

We complete the proof by showing that E[Xe] ≥ 1/2 for e = {u, v} ∈ E. We have

E[Xe] = Pr[e is cut] = Pr[h(u) 6= h(v)] = 1− Pr[h(u) = h(v)] ≥ 1/2 ,

where the last inequality follows because h was selected at random from a 2-universal hash family
H, and thus Pr[h(u) = h(v)] ≤ 1/2 for u 6= v.
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5b (13 pts) Design and analyze a polynomial-time algorithm for the following problem:

Input: a vertex set V .

Output: vertex subsets S1, S2, . . . , S` ⊆ V with the following property:

For every set of edges E ⊆
(
V
2

)
, there is an i ∈ {1, 2, . . . , `} such that

|{e ∈ E : |e ∩ Si| = 1}| ≥ |E|/2 ,

i.e., Si cuts at least half the edges in G = (V,E).

We remark that, since your algorithm should run in time polynomial in n = |V |, it can
output at most polynomially (in n) many vertex sets. We also emphasize that the algorithm
does not take the edge set E as input.

(In this problem you are asked to (i) design the algorithm, (ii) show that it runs in time
polynomial in n, and (iii) prove that the output satisfies the property given in the problem
statement. Recall that you are allowed to refer to material covered in the lecture notes.)

Solution: The algorithm is as follows:

1. Construct a 2-universal hash family H of hash functions h : V → {0, 1}.
As seen in class, we can construct such a family in time polynomial in n, and H
will contain O(n2) hash functions. Specifically, H has a hash function for each
a, b ∈ [p] with a 6= 0 where p is a prime satisfying |U | ≤ p ≤ 2|U |.

2. Let h1, h2, . . . , h` be the hash functions of H where ` = |H|.

3. For each i = 1, . . . , `, output the set Si = {v : hi(v) = 0}.

As already noted, the algorithm runs in time polynomial in n and it outputs polynomially
many vertex subsets. We proceed to verify the property given in the statement. Consider an
arbitrary edge set E ⊆

(
V
2

)
. By the previous subproblem,

|E|
2
≤ Eh∈H [# edges cut by {v : h(v) = 0}]

=
1

`

∑̀
i=1

(# edges cut by {v : hi(v) = 0})

=
1

`

∑̀
i=1

(# edges cut by Si) .

We thus have that the average number of edges that the sets S1, S2, . . . , S` cut is at least |E|/2.
This implies that at least one of those sets cuts at least |E|/2 edges.
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6 (consisting of subproblems a-b, 23 pts) Finding a min s, t-cut using linear programming.
Consider an undirected graph G = (V,E) and let s 6= t ∈ V . In the minimum (unweighted)
s, t-cut problem, we wish to find a set S ⊆ V such that s ∈ S, t 6∈ S and the number of edges
crossing the cut is minimized.

We shall use a linear program to solve this problem. Let P be the set of all paths between s
and t in the graph G. The linear program has a variable ye for each edge e ∈ E and is defined
as follows:

minimize
∑
e∈E

ye

subject to
∑
e∈p

ye ≥ 1 ∀p ∈ P,

ye ≥ 0 ∀e ∈ E.

For example, consider the following graph where the numbers on the edges depict the ye-
values of a feasible solution to the linear program:

s t

b

a

3/4

3/41/4

1/4
1/2

The values on the edges depict a feasible but not optimal solution to the linear program. That
it is feasible follows because each ye is non-negative and

∑
e∈p ye ≥ 1 for all p ∈ P . Indeed, for

the path s, b, a, t we have y{s,b} + y{b,a} + y{a,t} = 1/4 + 1/4 + 1/2 = 1, and similar calculations
for each path p between s and t show that

∑
e∈p ye ≥ 1. That the solution is not optimal follows

because its value is 2.5 whereas an optimal solution has value 2.

6a (10 pts) Let OPT denote the number of edges crossing a minimum s, t-cut and let OPTLP

denote the value of an optimal solution the linear program. Prove that OPTLP ≤ OPT.

(In this problem you are asked to prove OPTLP ≤ OPT. Recall that you are allowed to
refer to material covered in the lecture notes.)

Solution:
Let S be a minimum s, t-cut; then the number of edges cut by S is OPT. We shall exhibit

a feasible solution y to the linear program such that value of y is OPT. This then implies that
OPTLP ≤ OPT as the minimum value of a solution to the linear program is at most the value
of y. Define y as follows: for each e ∈ E

ye =

{
1 if e is cut by S,
0 otherwise.

Notice that, by this definition,
∑

e∈E ye = OPT. We proceed to show that y is a feasible solution:

• for each e ∈ E, we have ye ≥ 0;

• for each p ∈ P , we have
∑

e∈p ye ≥ 1 since any path from s to t must exit the set S. Indeed,
S contains s but it does not contain t, and these edges (that have one end point in S and
one end point outside of S) have y-value equal to 1.
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6b (13 pts) Prove that OPT ≤ OPTLP, where OPT and OPTLP are defined as in 6a.

Hint: Round a feasible linear programming solution y. In the (randomized) rounding it
may be helpful to consider, for each vertex v ∈ V , the length of the shortest path from s
to v in the graph where edge e ∈ E has length ye. For example, in the graph and linear
programming solution depicted in the problem statement, we have that the length of the
shortest path from s to a equals 1/2.

(In this problem you are asked to prove OPT ≤ OPTLP. Recall that you are allowed to
refer to material covered in the lecture notes.)

Solution: Let y be an optimal solution to the linear program of value OPTLP. We shall give a
randomized rounding that outputs an s, t-cut that in expectation cuts OPTLP edges. Since any
cut must cut at least OPT edges, it then follows that OPTLP ≥ OPT.

We now describe the rounding procedure. For each vertex v ∈ V , define

xv = the length of the shortest path from s to v in the graph where edge e ∈ E has length ye.

Notice that xs = 0 and xt ≥ 1. That xt ≥ 1 is due to the fact that for every path p ∈ P from s
to t we have

∑
e∈p ye ≥ 1. Furthermore, the variables x satisfy the following key property:

Claim 2 For every edge {u, v} ∈ E, we have y{u,v} ≥ |xv − xu|.

Proof. Name the vertices so that xv > xu and suppose toward contradiction that y{u,v} <
xv − xu. Let pu be a shortest path from s to u that has length xu. And consider the path
pu+ {u, v}. This is a path from s to v that has length xu+ y{u,v}, which is strictly smaller than
xv (contradicting the definition of xv to be the length of a shortest path). �

We can thus deduce that we have a feasible solution to the linear program:

minimize
∑
e∈E

ye

subject to
∑
e∈p

y{u,v} ≥ xu − xv, for every {u, v} ∈ E∑
e∈p

y{u,v} ≥ xv − xu, for every {u, v} ∈ E

xs = 0, xt ≥ 1,
xv ≥ 0,∀v ∈ V
ye ≥ 0∀e ∈ E.

In class, we saw that the above linear program has cost equal to OPT which finishes the proof.
For completeness, we give the full argument. The rounding algorithm is as follows:

• Select θ ∈ [0, 1] uniformly at random.

• Output S = {v ∈ V : xv < θ}.

Notice that S always contains s (since xs = 0) and never contains t (since xt ≥ 1). We now
analyze the expected number of edges that are cut. Let Xe be the random indicator variable for
the event that edge e is cut. Then

Eθ[# edges cut] = Eθ

[∑
e∈E

Xe

]
=
∑
e∈E

Eθ[Xe] =
∑
e∈E

Pr
θ
[e is cut] .
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We now analyze, for a fixed edge e = {u, v} ∈ E, the probability that e is cut over the
uniformly at random choice θ ∈ [0, 1]. Assume without loss of generality that xu < xv. We then
have that e is cut if and only if θ ∈ [xu, xv] which happens with probability at most xv − xu (we
say at most because xv could, in theory, be bigger than 1).

Now, by Claim 2 above, xv − xu ≤ ye. So we have

OPT ≤ Eθ[# edges cut] ≤
∑
e∈E

ye = OPTLP ,

as required.
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