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ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Final Exam, Advanced Algorithms 2017-2018

e You are only allowed to have a handwritten A4 page written on both sides.

e Communication, calculators, cell phones, computers, etc... are not allowed.

e Your explanations should be clear enough and in sufficient detail that a fellow student
can understand them. In particular, do not only give pseudo-code without explanations.
A good guideline is that a description of an algorithm should be such that a fellow

student can easily implement the algorithm following the description.

e You are allowed to refer to material covered in the lecture notes including

theorems without reproving them.
e Problems are not necessarily ordered by difficulty.
e Do not touch until the start of the exam.
Good luck!

Name: N° Sciper:

Problem 1 | Problem 2 | Problem 3 | Problem 4 | Problem 5

/ 10 points | / 15 points | / 15 points | / 15 points | / 22 points

Problem 6

/ 23 points

Total / 100
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1 (10 pts) Submodular functions. Let N = {1,2,3,4,5,6,7,8} and consider the submodular
function f : 2V — R defined by

f(S) = min(|S|,5) for every S C N.
What is the value of f(0,1/4,1/2,1/4,3/4,1/2,3/2,1) where f denotes the Lovasz extension of f?

(In this problem you are asked to calculate f(0,1/4,1/2,1/4,3/4,1/2,3/4,1). Recall that you are
allowed to refer to material covered in the lecture notes.)

Solution: Recall the definition of the Lovaz extension

Egepoylf({i: 2 > 0})],

where ¢ is distributed uniformly in the inteval [0, 1]. We thus have

£(0,1/a,1/2,1/4,3/4,1/2,3/2,1) = Pr[f € [0,1/4]] - f({2,3,4,5,6,7,8})

+Prjf € (1/4,1/2]) - £({3,5,6,7,8})
+Pr0 € (1/2,3/4]] - f({5,7,8})
+Pr[o e (3/4,1]] - fF({8})

=Pr[f €[0,1/4]] -5
+Pr[f € (1/4,1/2]
+ Pr[0 € (1/2,3/4]
+Prjf € (3/4,1]] - 1

 545+3+1

4

)
-3

fu———

=3.5.
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2 (15 pts) LSH for Manhattan distance. Recall the Manhattan distance function that we saw
in class: for any d-dimensional Boolean vectors p, ¢ € {0, 1}d, the Manhattan distance is defined
by

dist(p,q) = ||p — qllr = Hi : pi # @i}

Design a locality sensitive hash (LSH) family H of functions h : {0,1}¢ — {0, 1,2,3} such that
for any p, q € {0,1}7,

. 2
Py hip) = (o)) = (1- L2

h~H

(In this problem you are asked to explain the hash family and show that it satisfies the above
property. Recall that you are allowed to refer to material covered in the lecture notes.)

Solution: There are two solutions (the first refers to material covered in class).
Solution 1: In class we designed LSH family #; of hash functions 4 : {0,1}¢ — {0,1} so

that

dist(p, q)>

2 bip) = ()] = (1- L

(1)

Now define, similar to the construction of ANNS data structure, a new hash family H defined
as follows:

e Select hy and hg uniformly at random from #;.

e Define h: {0,1}¢ — {0,1,2,3} by h(p) = = where z equals the number in {0, 1,2, 3} whose
binary representation is hi(p)h2(p), i.e., x = 2h1(p) + ha(p).

For any p, ¢ € {0,1}? we thus have

Zrlhp) =hg) =, Pr. [hi(p)=hi(g) Aha(p) = ha(9)]
= hlPeg_h [h1(p) = h1(q)] hQIEg{I[hQ (p) = ha(q)] (h1 and hg are selected independently)

. 2
(- faY g, )

Solution 2: Define H as follows:
e Select coordinates i, j € [d] independently uniformly at random.

e Define h := h;;j(p) = « where x equals the number in {0, 1,2, 3} whose binary representation
IS pipj, 1.e., x = 2p; + p;.
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We have that

Pr [h( ) = h(Q)] = Pr [pz =qN\p;= QJ]

heH ijeld
= i]é?{g} [pi = qi] - E[Z] pj = qj] (by independence of i and j)
2
=(P bi = q;
(ze[fz][ ! ]>

{4 pe = CM}!)

1—

(
( {4 pz 7# qz}|>
(

dist( p, ) 2
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3 (15 pts) Estimating cheese consumption of fondue lovers. Professor Ueli von Gruyeéres
worked hard last year to calculate the yearly cheese consumption of each individual in Switzer-
land. Specifically, let U be the set of all persons in Switzerland. For each person ¢ € U, Ueli
calculated the amount w; € R>q (in grams) of the yearly cheese consumption of person . How-
ever, to help Coop and Migros in their supply-chain management, he needs to calculate the total
cheese consumption of those persons that prefer fondue over raclette. That is, if we let F* C U
be those that prefer fondue over raclette, then Ueli wants to calculate

el

The issue is that Ueli does not know the set F' and he does not have the time or energy to ask
the preferences of all persons. He therefore designs two estimators that only ask a single person:

Estimator A;: Let W = ., w;. Sample person i with probability (i and output W if 4
prefers fondue and 0 otherwise.

Estimator Ay: Sample person ¢ with probability ‘—[1” and output |U| - w; if ¢ prefers fondue and
0 otherwise.

Let X7 and X5 be the random outputs of A; and As, respectively. Ueli has shown that A; and
Ay are unbiased estimators and he has also bounded their variances:

E[Xi| =E[Xo) = Wp,  Var[Xi] <W? and  Var[Xo] <UD wj.
€U

However, Ueli is now stuck because the variances are too high to give any good guarantees for
the two estimators. We are therefore going to help Ueli by designing a new estimator with good
guarantees while still asking the preferences of relatively few persons.

For a fixed small parameter ¢ > 0, your task is to design and analyze an estimator that
outputs a random value Y with the following guarantee:

Pr]]Y — Wp| > eW] < 1/3. 2)

Your estimator should ask at most 3/e? persons about their preferences.

(In this problem you are asked to (i) design an estimator that asks at most 3/€* persons about
their preferences and (ii) prove that it satisfies the guarantee (2). Recall that you are allowed to
refer to material covered in the lecture notes.)

Solution: We define our estimator as follows:
o Let t =3/é%
e Run ¢ independent copies of A1 to obtain estimates Z1, Zo, ..., Z;.
e Output Y = (Z1 + Zo+ ...+ Zy) /t.

Since A; only asks one person, we have that our estimator only asks 3/¢? persons (as required).
We now analyze the guarantee of our estimator. We have

E[Y]:E[(Zl—ing—i—...—i—Zt)/t}:%ZE[ZZ»]:WF,
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where the last equality follows from that A; is an unbiased estimator which was given to us in
the stament. As seen in the lecture notes, we also have

Var[Y] = Var[X;]/t

and so, by the problem statement, we know Var[Y] < W?2/t. We know apply Chebychev’s
inequality to analyze the guarantee of our estimator:

Var[Y] _ w2
e2W? — te2W?2

Pr[|Y — Wg| > W] < <1/3,

where the last inequality is due to the selection ¢ = 3/¢2.
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4 (15 pts) Online bin-packing. Recall the online bin-packing problem that we saw in Exercise
Set 10: We are given an unlimited number of bins, each of capacity 1. We get a sequence of
items one by one each having a size of at most 1, and are required to place them into bins as we
receive them. Our goal is to minimize the number of bins we use, subject to the constraint that
no bin should be filled to more than its capacity. An example is as follows:

[ ] arriving item of size 1/6

I I I I I I

1/4 I I I I I I

1/3 7 I I I I I I

I I I I I I

1/4 / I I I I I I

1/4 1/3 1/3 I I I I I I
used bins empty bins

Here, seven items have already arrived that we have packed in three bins. The newly arriving
item of size 1/6 can either be packed in the first bin, third bin, or in a new (previously unused)
bin. It cannot be packed in the second bin since 1/3 +1/3 +1/4+1/6 > 1. If it is packed in
the first or third bin, then we still use three bins, whereas if we pack it in a new bin, then we
use four bins.

In this problem you should, assuming that all items have size at most 0 < e < 1, design and
analyze an online algorithm for the online bin-packing problem that uses at most

1
T OPT + 1 bins, (3)
— €

where OPT denotes the minimum number of bins an optimal packing uses. In the above exam-

ple, e =1/3.

(In this problem you are asked to (i) design the online algorithm and (ii) prove that it satisfies
the guarantee . Recall that you are allowed to refer to material covered in the lecture notes.)

Solution: We consider the following greedy algorithm. At the arrival of an item of size s:
e If it fits, pack the item in an already used bin.
e Otherwise, pack the item in a new bin.
To analyze the algorithm and to prove the following observation is crucial:

Claim 1 Whenever a new bin is opened, every other bin is packed with items of total size at
least 1 — e.

Proof. We only open up a new bin if the arriving item of size s < € does not fit in an already
used bin. Since it does not fit in an already used bin, it implies that every such bin is packed
with items of total size at least 1 — €. O

Notice that the above claim implies that at any point of time, all but 1 bin have load at least
1 —e. If our algorithm has opened m + 1 bins, the total size of all items packed so far is thus at
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least (1 — e¢)m. However, OPT clearly needs (1 — €)m bins to pack these items (since each bin

can take items of size at most 1). Hence, m < % and
OPT
m+1< T +1,
—€

as required.
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5 (consisting of subproblems a-b, 22 pts) Finding large cuts.

5a (9 pts) Consider the following algorithm that takes as input an undirected graph G =
(V. E):

SIMPLECUT(G = (V, E)):
1. Let H be a 2-universal family of hash functions h : V' — {0,1}.

2. Select h € ‘H at random.
3. return the vertex set S = {v € V : h(v) = 0}.

Prove the following:
In expectation, the set S returned by SIMPLECUT cuts at least |E|/2 edges.

(In this problem you are asked to prove the above statement. Recall that you are allowed to
refer to material covered in the lecture notes.)

Solution: Let X, be the indicator random variable that edge e is cut. Then

> Xe] =Y E[X.].

eckE e€lR

E[# edges cut] = E

We complete the proof by showing that E[X.] > 1/2 for e = {u,v} € E. We have
E[X.] = Pre is cut] = Pr[h(u) # h(v)] =1 — Pr[h(u) = h(v)] > 1/2,

where the last inequality follows because h was selected at random from a 2-universal hash family
‘H, and thus Pr[h(u) = h(v)] < 1/2 for u # v.
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5b (13 pts) Design and analyze a polynomial-time algorithm for the following problem:

Input: a vertex set V.

{ee€ E:lensS;| =1} > |E|/2,

i.e., S; cuts at least half the edges in G = (V, E).

Output: vertex subsets S1,59,...,5¢, C V with the following property:
For every set of edges E C (‘2/), there is an i € {1,2,...,¢} such that

We remark that, since your algorithm should run in time polynomial in n = |V, it can
output at most polynomially (in n) many vertex sets. We also emphasize that the algorithm

does not take the edge set E as input.

(In this problem you are asked to (i) design the algorithm, (ii) show that it Tuns in time
polynomial in n, and (iii) prove that the output satisfies the property given in the problem
statement. Recall that you are allowed to refer to material covered in the lecture notes.)

Solution: The algorithm is as follows:

1. Construct a 2-universal hash family H of hash functions

3. For each i =1,... ¢, output the set S; = {v : h;(v) = 0}.

As seen in class, we can construct such a family in time polynomial in n, and H
will contain O(n?) hash functions. Specifically, H has a hash function for each
a,b € [p] with a # 0 where p is a prime satisfying |U| < p < 2|U]|.

2. Let hq, ha, ..., he be the hash functions of H where ¢ = |H|.

h:V —{0,1}.

As already noted, the algorithm runs in time polynomial in n and it outputs polynomially

many vertex subsets. We proceed to verify the property given in t
arbitrary edge set £ C (‘2/) By the previous subproblem,

FE
‘2| < Epey [# edges cut by {v: h(v) = 0}]

14

Z (# edges cut by {v : hi(v) = 0})
i=1

~|

(# edges cut by 5;) .

Il
~|
-

=1

We thus have that the average number of edges that the sets Sy, .59,

This implies that at least one of those sets cuts at least |E|/2 edges.
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6 (consisting of subproblems a-b, 23 pts) Finding a min s, t-cut using linear programming.
Consider an undirected graph G = (V, E) and let s # ¢t € V. In the minimum (unweighted)
s, t-cut problem, we wish to find a set S C V such that s € S, ¢t € S and the number of edges
crossing the cut is minimized.
We shall use a linear program to solve this problem. Let P be the set of all paths between s
and t in the graph G. The linear program has a variable gy, for each edge e € E and is defined
as follows:

minimize Z Ye
ecl

subject to Zye >1 VpeP,
ecp
Ye > 0 Vee E.

For example, consider the following graph where the numbers on the edges depict the ye-
values of a feasible solution to the linear program:

3/4 1/2

ol e

1/4 3/4

The values on the edges depict a feasible but not optimal solution to the linear program. That
it is feasible follows because each y. is non-negative and cepYe = 1 for all p € P. Indeed, for
the path s,b,a,t we have yr, ) + Y(p.ay + Yoy = 1/4+1/4+1/2 =1, and similar calculations
for each path p between s and ¢ show that > cepYe = 1. That the solution is not optimal follows

because its value is 2.5 whereas an optimal solution has value 2.

6a (10 pts) Let OPT denote the number of edges crossing a minimum s, t-cut and let OPTyp
denote the value of an optimal solution the linear program. Prove that OPTrp < OPT.

(In this problem you are asked to prove OPTyLp < OPT. Recall that you are allowed to
refer to material covered in the lecture notes.)

Solution:

Let S be a minimum s, t-cut; then the number of edges cut by S is OPT. We shall exhibit
a feasible solution y to the linear program such that value of y is OPT. This then implies that
OPTyp < OPT as the minimum value of a solution to the linear program is at most the value
of y. Define y as follows: for each e € E

_J1 ifeiscut by S,
Ve = 0 otherwise.
Notice that, by this definition, ) .y = OPT. We proceed to show that y is a feasible solution:
e for each e € E, we have y. > 0;

e for each p € P, we have Zeep Ye > 1 since any path from s to t must exit the set S. Indeed,
S contains s but it does not contain ¢, and these edges (that have one end point in S and
one end point outside of S) have y-value equal to 1.
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6b (13 pts) Prove that OPT < OPTpp, where OPT and OPTpp are defined as in 6a.

Hint: Round a feasible linear programming solution y. In the (randomized) rounding it
may be helpful to consider, for each vertex v € V', the length of the shortest path from s
to v in the graph where edge e € E has length y.. For example, in the graph and linear
programming solution depicted in the problem statement, we have that the length of the
shortest path from s to a equals 1/2.

(In this problem you are asked to prove OPT < OPTrp. Recall that you are allowed to
refer to material covered in the lecture notes.)

Solution: Let y be an optimal solution to the linear program of value OPTp. We shall give a
randomized rounding that outputs an s,t-cut that in expectation cuts OPTpp edges. Since any
cut must cut at least OPT edges, it then follows that OPTyp > OPT.

We now describe the rounding procedure. For each vertex v € V', define

x, = the length of the shortest path from s to v in the graph where edge e € F has length y..

Notice that s = 0 and z; > 1. That x; > 1 is due to the fact that for every path p € P from s
to t we have ) cep e = 1. Furthermore, the variables x satisfy the following key property:

Claim 2 For every edge {u,v} € E, we have yg, 3 > [Ty — Tu.

Proof. Name the vertices so that x, > x, and suppose toward contradiction that yg,.; <
Ty — Ty. Let p, be a shortest path from s to u that has length x,. And consider the path
pu+{u,v}. This is a path from s to v that has length .y + Yy}, Which is strictly smaller than
x, (contradicting the definition of x, to be the length of a shortest path). O

We can thus deduce that we have a feasible solution to the linear program:

minimize Z Ye
ecE
subject to Zy{u,v} > Xy — Ty, for every {u,v} € E
ecp
Zy{u,v} > Xy — Xy, forevery {u,v} € FE
eEcp
s =0,2¢ > 1,
Ty >0,V eV
Ye > 0Ve € E.

In class, we saw that the above linear program has cost equal to OPT which finishes the proof.
For completeness, we give the full argument. The rounding algorithm is as follows:

e Select 6 € [0, 1] uniformly at random.
e Output S ={veV:ax, <06}

Notice that S always contains s (since zs = 0) and never contains t (since z; > 1). We now
analyze the expected number of edges that are cut. Let X, be the random indicator variable for
the event that edge e is cut. Then

ZXe] = ZEQ[XG] = Z IZr[e is cut] .

ecE eclR eclR

Eg[# edges cut] = Ey
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We now analyze, for a fixed edge e = {u,v} € E, the probability that e is cut over the
uniformly at random choice 6 € [0, 1]. Assume without loss of generality that z, < z,. We then
have that e is cut if and only if 6 € [z, z,] which happens with probability at most =, — x, (we
say at most because x, could, in theory, be bigger than 1).

Now, by Claim [2| above, x, — z, < y.. So we have

OPT < Egy[# edges cut] < Z yYe = OPTLp,
eckE

as required.
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