
Final Exam, Advanced Algorithms 2016-2017

• You are only allowed to have a handwritten A4 page written on both sides.

• Communication, calculators, cell phones, computers, etc... are not allowed.

• Your explanations should be clear enough and in sufficient detail that a fellow student
can understand them. In particular, do not only give pseudo-code without explanations.
A good guideline is that a description of an algorithm should be such that a fellow
student can easily implement the algorithm following the description.

• You are allowed to refer to material covered in the course including theorems
without reproving them.

• Do not touch until the start of the exam.

Good luck!

Name: N◦ Sciper:

Problem 1 Problem 2 Problem 3 Problem 4 Problem 5

/ 20 points / 20 points / 20 points / 20 points / 20 points

Total / 100

Page 1 (of 8)

CS-450 Advanced Algorithms, Final Exam • Spring 2017
Ola Svensson

1 (consisting of subproblems a-b, 20 pts) Basic questions. This problem consists of two subprob-
lems that are each worth 10 points.

1a (10 pts) LSH for Jaccard similarity.

Recall the Jaccard index that we saw in Exercise Set 10: Suppose we have a universe U .
For non-empty sets A,B ⊆ U , the Jaccard index is defined as

J(A,B) =
|A ∩B|
|A ∪B|

.

Design a locality sensitive hash (LSH) family H of functions h : 2U → [0, 1] such that for
any non-empty sets A,B ⊆ U ,

Pr
h∼H

[h(A) 6= h(B)]

{
≤ 0.01 if J(A,B) ≥ 0.99,
≥ 0.1 if J(A,B) ≤ 0.9.

(In this problem you are asked to explain the hash family and argue that it satisfies the
above properties. Recall that you are allowed to refer to material covered in the course.)

Solution: Let us describe H by giving a procedure to sample an element h ∈ H:

• for each u ∈ U , sample hu uniformly at random from [0, 1].

• set h(A) = minu∈A hu for any non-empty A ⊆ U (i.e., MinHashing).

In Exercise Set 10, we showed that Pr[h(A) = h(B)] = J(A,B). So Pr[h(A) 6= h(B)] =
1− J(A,B) and the claimed bounds follow immediately.

Page 2 (of 8)

CS-450 Advanced Algorithms, Final Exam • Spring 2017
Ola Svensson

1b (10 pts) Randomized algorithms for min-cut. In class, we saw Karger’s beautiful
randomized algorithm for finding a min-cut in an undirected graph G = (V,E) with n = |V |
vertices. Each iteration of Karger’s algorithm can be implemented in time O(n2), and if
repeated Θ(n2 log n) times, Karger’s algorithm returns a min-cut with probability at least
1− 1/n. However, this leads to the often prohibitively large running time of O(n4 log n).

Karger and Stein made a crucial observation that allowed them to obtain a much faster
algorithm for min-cut: the Karger-Stein algorithm runs in time O(n2 log3 n) and finds a
min-cut with probability at least 1− 1/n.

Explain in a couple of sentences the main idea that allowed Karger and Stein to modify
Karger’s algorithm into the much faster Karger-Stein algorithm. In other words, what are
the main differences between the two algorithms?

Solution: The probability of contracting an edge in a fixed min-cut C is much lower in the
initial contractions (in Karger’s algorithm) than at the end. Thus it makes sense to repeat the
later contractions more times than the initial ones. This is the main idea of the Karger-Stein
algorithm.

Their implementation of this idea is to perform contractions so as to reduce the size of the
graph from n to n/

√
2 (they make n − n/

√
2 contractions). Then find a min-cut recursively

in the smaller graph by repeating the same algorithm twice on the smaller graph and choose
the smaller of the obtained cuts. (These recursive calls will also split and so on.) The running
time of this algorithm is roughly the same as one iteration of Karger’s algorithm but the success
probability is much higher.

Page 3 (of 8)

CS-450 Advanced Algorithms, Final Exam • Spring 2017
Ola Svensson

2 (20 pts) Set packing in the semi-streaming model.
Consider the problem of finding a maximum cardinality set packing in the semi-streaming

model. An instance of this problem consists of a known universe U of n elements and sets S ⊆ U
are streamed one-by-one. The goal is to select a family T of pairwise disjoint sets (i.e., S∩S′ = ∅
for any two distinct sets S, S′ ∈ T) of maximum cardinality while only using O(n · poly log n)
storage space.

Devise an algorithm in this setting that returns a set packing of cardinality at least 1/k times
that of a maximum cardinality set packing, assuming that each streamed set S has cardinality
at most k, i.e., |S| ≤ k.

(In this problem you are asked to (i) design the algorithm, (ii) show that it uses O(n·polylog n)
space, and (iii) prove that it returns a solution of cardinality at least 1/k times the cardinality of
a maximum cardinality set packing. Recall that you are allowed to refer to material covered in
the course.)

Solution:
We run the simple greedy algorithm:

1. Initially, let T = ∅.

2. For each streamed S: if S is disjoint from all sets in T , add S to T .

3. At the end, we simply return T as our solution.

We now analyze the greedy algorithm in terms of space and approximation guarantee.

Space: Since at all times T is a family of disjoint sets, we have
∑

S∈T |S| ≤ n. If we store each
selected set S as a list of its elements this will take space |S| log n for each set S ∈ T (the
log n is the space required to save the identifier of each element). Thus, as

∑
S∈T |S| ≤ n,

we require O(n log n) space in total.

Approximation ratio: Let O be an optimal set packing. The greedy algorithm returns a
maximal set packing so any O ∈ O intersects at least one set in T (maybe itself if it was
selected by greedy). Moreover, any set S can intersect at most k sets in O since |S| ≤ k.
Therefore,

|O| =
∑
O∈O

1 ≤
∑
O∈O

∑
S∈T :S∩O 6=∅

1 =
∑
S∈T

∑
O∈O:S∩O 6=∅

1 ≤
∑
S∈T

k = k|T | .

(This is very similar to Problem 4 in Exercise Set 10.)

Page 4 (of 8)

CS-450 Advanced Algorithms, Final Exam • Spring 2017
Ola Svensson

3 (20 pts) Amplifying success probability of an unbiased estimator.
Professor Ueli von Gruyères has worked intensely throughout his career to get a good estima-

tor of the yearly consumption of cheese in Switzerland. Recently, he had a true breakthrough.
He was able to design an incredibly efficient randomized algorithm A that outputs a random
value X satisfying

E[X] = c and Var[X] = c2 ,

where c is the (unknown) yearly consumption of cheese in Switzerland. In other words, A is an
unbiased estimator of c with variance c2.

Use Ueli von Gruyères’ algorithm A to design an algorithm that outputs a random value Y
with the following guarantee:

Pr[|Y − c| ≥ εc] ≤ δ where ε > 0 and δ > 0 are small constants. (1)

Your algorithm should increase the resource requirements (its running time and space usage) by
at most a factor O(1/ε2 · log(1/δ)) compared to the requirements of A.

(In this problem you are asked to (i) design the algorithm using A, (ii) show that it satisfies
the guarantee (1), and (iii) analyze how much the resource requirements increase compared to
that of simply running A. Recall that you are allowed to refer to material covered in the course.)

Solution: The idea of the algorithm is to first decrease the variance by taking the average of
t = 10/ε2 independent runs of A. We then do the median trick. Formally, consider the algorithm
B that runs t independent copies of A and then outputs the average of the t estimates obtained
from the independent runs of A. Let B be the random output of this algorithm. As seen in class,
we have E[B] = c (it is still an unbiased estimator) and Var[B] = c2/t. Now by Chebychev’s
Inequality we have

Pr[|B − c| ≥ εc] ≤ Var[B]

ε2c2
=

1

tε2
= 1/10 (since we selected t = 10/ε2) .

So algorithm B returns a 1± ε approximation with probability at least 9/10. We now want
to decrease the probability 1/10 of failing all the way down to δ. To do this we use the median
trick. Let C be the algorithm that runs u = 10 ln(1/δ) independent copies of B and outputs the
median of the obtained copies. Let Y be the random output of C. We now analyze the failure
probability of C, i.e., we wish to show Pr[|Y − c| ≥ εc] ≤ δ. To do so define Zi ∈ {0, 1} to be
the indicator random variable that takes value 1 if the i:th run of B outputs a value Bi such
that |Bi − c| ≥ εc. Note that Pr[|Bi − c| ≥ εc] ≤ 1/10 and so Pr[Zi = 1] ≤ 1/10. So if we let
Z = Z1 +Z2 + · · ·+Zu, then Z is a sum of independent variables where E[Z] ≤ u/10. Moreover
since Y is the median of the independent runs of B,

Pr[|Y − c| ≥ εc] ≤ Pr[Z ≥ u/2] .

We shall now analyze Pr[Z ≥ u/2] using the Chernoff Bounds. Indeed, since Z is a sum of
independent random variables taking values in {0, 1} we have

Pr[Z ≥ u/2] ≤ Pr[Z > 3 · E[Z]] ≤ e− ln(1/δ) = δ .

We have thus proved that C satisfies the right guarantees. Let us know analyze its resource
requirements. C runs O(log(1/δ) copies of B and each copy of B runs O(1/ε2) copies A. Thus the
total resource requirements increase by at most a factor O(log(1/δ)1/ε2) as required (calculating
the mean and median can be done in linear time so it does not affect the asymptotic running
time).

Page 5 (of 8)

CS-450 Advanced Algorithms, Final Exam • Spring 2017
Ola Svensson

4 (20 pts) Min-weight perfect matching via determinants. Consider the following algorithm
that takes as input a complete n-by-n bipartite graph G = (U ∪ V,E) with positive integer
edge-weights w : E → Z>0:

MinWeightPerfectMatching(G,w):

1. for each edge e ∈ E (i.e., each pair (u, v) since the graph is complete)

2. select independently and uniformly at random p(e) ∈ {1, . . . , n2}.
3. Define a bi-adjacency matrix A with n rows (one for each u ∈ U) and

n columns (one for each v ∈ V) as follows:

Au,v = 2n
100w(u,v) · p(u, v) .

4. return largest positive integer i such that 2i·n
100 divides det(A) (if no

such i exists, we return 0).

Prove that the above algorithm returns the value of a min-weight perfect matching with
probability at least 1−1/n. Recall that you are allowed to refer to material covered in the course.

Hint: Let Mi denote the set of perfect matchings M whose weight
∑

e∈M w(e) equals i. Use
that one can write det(A) as follows:

det(A) =

∞∑
i=0

2i·n
100
fi(p) where fi(p) =

∑
M∈Mi

sign(M)
∏
e∈M

p(e) .

Here sign(M) ∈ {±1} is the sign of the permutation corresponding to M .

Solution: Let i∗ be the weight of a minimum-weight perfect matching (and soMi∗ contains all
perfect matchings of minimum weight). We first prove that

Pr[fi∗(p) = 0] ≤ 1/n , (2)

where the probability is over the random selection of p(e)’s in Step 2 of the algorithm. First
note that if we think of fi∗(x) as a polynomial in the variables x(e) for each edge e ∈ E (that
are replaced by the values p(e)), then we have that fi∗(x) is not identical to zero sinceMi∗ 6= ∅
and the monomial

∏
e∈M x(e) corresponding to a matching M ∈Mi∗ appears only once (with a

non-zero coefficient) in fi∗(p). The probability bound (2) now follows from the Schwartz-Zippel
lemma that we saw in class since each p(e) is selected from a set of n2 values at random and the
degree of fi∗ is n.

We now prove that the algorithm always outputs the correct answer if fi∗(p) 6= 0 (and hence
with probability at least 1 − 1/n over the selection of p(e)’s). First note that 2i

∗n100 divides
det(A), since for i < i∗ we have fi(x) = 0 (in particular, fi(p) = 0) because i∗ is the value of a
min-weight perfect matching and soMi = ∅, and all fi(p) (for all i) are integers, therefore

det(A) =

∞∑
i=0

2i·n
100
fi(p) =

∞∑
i=i∗

2i·n
100
fi(p)

is divisible by 2i
∗·n100 . We have thus proved that the algorithm outputs an integer that is at

least i∗. We now show that if fi∗(p) 6= 0, then 2(i
∗+1)n100 does not divide det(A) and thus the

algorithm must output the correct value.

Page 6 (of 8)

CS-450 Advanced Algorithms, Final Exam • Spring 2017
Ola Svensson

To do so, we bound the absolute value of fi∗(p). We have

|fi∗(p)| =

∣∣∣∣∣∣
∑

M∈Mi

sign(M)
∏
e∈M

p(e)

∣∣∣∣∣∣ ≤
∑

M∈Mi∗

∏
e∈M

p(e) ≤ |Mi∗ |
∏
e∈M

n2 ≤ n! · (n2)n ≤ n3n < 2n
100
.

Therefore∣∣∣2i∗·n100
fi∗(p)

∣∣∣ < 2i
∗·n100

2n
100

= 2(i
∗+1)·n100

but 2i
∗·n100

fi∗(p) 6= 0, and so 2(i
∗+1)n100 does not divide 2i

∗·n100
fi∗(p), whereas it does divide

2i·n
100
fi(p) for all i > i∗. Therefore it does not divide det(A).

Page 7 (of 8)

CS-450 Advanced Algorithms, Final Exam • Spring 2017
Ola Svensson

5 (20 pts) Assigning vertex potentials. Design and analyze a polynomial time algorithm for
the following problem:

INPUT: An undirected graph G = (V,E).

OUTPUT: A non-negative vertex potential p(v) ≥ 0 for each vertex v ∈ V such that∑
v∈S

p(v) ≤ |E(S, S̄)| for every ∅ 6= S (V and
∑

v∈V p(v) is maximized.

(Recall that E(S, S̄) denotes the set of edges that cross the cut defined by S, i.e., E(S, S̄) = {e ∈ E :

|e ∩ S| = |e ∩ S̄| = 1}.)

Hint: formulate the problem as a large linear program (LP) and then show that the LP can be
solved in polynomial time.

(In this problem you are asked to (i) design the algorithm, (ii) show that it returns a correct
solution and that it runs in polynomial time. Recall that you are allowed to refer to material
covered in the course.)

This year we didn’t cover the Elliposid method which is necessary for solving the above
problem. By using the Ellipsoid method, the above reduces to the following: Given p, give an
efficient algorithm that either verifies that p is feasible or outputs a violated constraint.

Solution: Consider the following linear program with a variable p(v) for each vertex v ∈ V :

max
∑
v∈V

p(v)

subject to
∑
v∈S

p(v) ≤ |E(S, S̄)| for all ∅ ⊂ S ⊂ V

p(v) ≥ 0 for all v ∈ V

We show that this linear program can be solved in polynomial time using the Ellipsoid method
by designing a polynomial time separation oracle. That is we need to design a polynomial
time algorithm that given p∗ ∈ RV certifies that p∗ is a feasible solution or outputs a violated
constraints.

The non-negativity constraints are trivial to check in time O(|V |) (i.e., polynomial time) so
let us worry about the other constraints. These constraints can be rewritten as f(S) ≥ 0 for all
∅ ⊂ S ⊂ V , where

f(S) = |E(S, S̄)| −
∑
v∈S

p∗(v) for ∅ ⊆ S ⊆ V .

Note that f is a submodular function since it is a sum of two submodular functions: the cut
function (which is submodular as seen in class) and a linear function (trivially submodular).
Hence there is a violated constraint if and only if

min
∅⊆S⊂V

f(S) < 0 .

This is an instance of the submodular function minimization problem with the exception that we
do not allow S = V for a solution. Therefore we solve n instances of submodular minimization
on the smaller ground sets V \ {v1}, V \ {v2}, . . . , V \ {vn} where V = {v1, . . . , vn}. Since
submodular function minimization is polynomial time solvable (and we can clearly evaluate our
submodular function in polynomial time), we can solve the separation problem in polynomial
time.

Page 8 (of 8)

CS-450 Advanced Algorithms, Final Exam • Spring 2017
Ola Svensson

