
Problem set I
Collaboration on the homework problems is allowed and encouraged, but every student

must write up their own solutions, and list collaborators on the first page of the assignment.

1 (25 pts) In exercise session I we showed that any deterministic algorithm that achieves a factor
1.1 approximation to the number of distinct elements in a data stream of n items must use
Ω(n) space. In this problem you will prove a stronger space lower bound for exact deterministic
algorithms and a comparable space lower bound for exact randomized algorithms.

1a (10 pts) Prove that a deterministic algorithm that computes the number of distinct elements
in any stream of n+ 1 elements exactly must use at least n bits of space.

Solution. Since the algorithm is deterministic, we can think of it as a deterministic automata
with states being different memory configurations. Suppose the algorithm uses m bits. We will
show how we can represent any string x ∈ {0, 1}n using just m bits. This will prove that m ≥ n
information theoretically.

For any given x, create the following stream S = {i|xi = 1} of size n. The memory of the
algorithm is now used as a representation. To recover the actual string again, finish running the
algorithm with all possible values for the n + 1st input ∈ [n]. If i ∈ S, then the answer of the
algorithm would be n, else it would be n + 1. Thus we can infer if i ∈ S∀i and hence we can
reconstruct our original string x. □

1b (15 pts) Prove that a randomized algorithm that for every stream of n numbers outputs the
exact number of distinct elements with probability at least 99/100 must use Ω(n) space.
Hint: combine ideas from 1a and the lower bound shown in exercise session II.
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Solution. Consider the family of sets F used in class such that |F | ≥ 2cn and for all Si ∈ F ,
|Si| = n/4 and |Si ∩ Sj | ≤ n/8∀i ̸= j. For each set S ∈ F let XS = 0 if ALG returns the correct
answer on S and 1 otherwise. For every S and every i ∈ [n] let XS,i equal 0 if ALG is correct on
S ∪ {i} and 1 otherwise. For each S one has

E[XS ] ≥ 1/100

and
E[
∑
i∈[n]

XS,i] ≤ n/100.

We thus have by Markov’s inequality for every S ∈ F that

E[XS + I[
∑
i∈[n]

XS,i] > n/50]] ≤ 1/100 + 1/2.

Summing over all S ∈ F we get∑
S∈F

E[XS + I[
∑
i∈[n]

XS,i] > n/50]] ≤ (1/100 + 1/2)|F|.

Thus, by Markov’s inequality there exists a setting of the random bits R of ALG and a subfamily
F ′ ⊆ F of size at least 0.01|F| such that ALG(R), on every S ∈ F ′ decodes S with at most 1/50
fraction of mistakes. Since elements of F ′ are at least n/4 apart in Hamming metric, unique
decoding is possible. □

2 (30 pts) In this problem you will design and analyze a sketching matrix Z based on the Hadamard
transform that can be applied to a vector x ∈ Rn very fast, namely in O(1/ϵ2 + n log n) time,
and approximately preserves the Euclidean norm of x with high probability.

Let D be an n × n diagonal matrix such that Dij = 0 for i ̸= j and Dii ∈ {−1,+1} are
independent uniformly random signs. Let H ∈ Rn×n be the Hadamard transform matrix, i.e.
a symmetric matrix with ±1 entries that satisfies HTH = n · In. Finally, let P be an m × n
matrix with each row containing a single 1 in a uniformly random position chosen independently
of other rows, and all other entries equal to zero. Finally, the sketching matrix Z is defined as
Z := 1√

m
· P ·H ·D. Note that P and D are random, and H is a deterministic.

2a (2 pts) Show that Zx can be computed in time O(m+n log n) for every x (you can assume
that you can generate a uniformly random number between 1 and n at unit cost).

Solution. For any vector x, the Hadamard transform can be coputed very quickly in time
O(n log n). To compute PHDx, we have to randomly change the sign of each xi, then compute
its Hadamard transform, and then sample a O( 1

ϵ2
) number of co-ordinates. This process takes

O(n log n+ 1
ϵ2
) time. □

2b (6 pts) For a fixed diagonal sign matrix D let Y ∈ R denote the value of a uniformly
random coordinate of HDx. Show that E[Y 2] = ||x||22.
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Solution.

E[Y 2] =
1

n

n∑
i=1

[HDx]2i =
1

n
||HDx||22 =

1

n
(HDx)⊤HDx =

1

n
x⊤DH2Dx = ||x||22

□

2c (17 pts) Show that for fixed x ∈ Rn the random variable Y defined in 2b satisfies

Var(Y 2) ≤ C1||x||42.

for an absolute constant C1 > 0 with probability at least 9/10 over the choice of the
diagonal sign matrix D.

Solution. Lets use di to represent the ith diagonal value in D and hi,j for the i, j value of H.
Var(Y 2) = E[Y 4]−E[Y 2]2 = E[Y 4]− ||x||42.

E[Y 4] = E
1

n

n∑
i=1

[HDx]4i

= E
1

n

n∑
i=1

(
n∑

i=1

hi,jdjxj

)4

=
1

n

 n∑
i=1

n∑
j=1

h4i,jd
4
jx

4
j + 3

n∑
i=1

n∑
j ̸=k∈[n]

h2i,jh
2
i,jd

2
jd

2
kx

2
jx

2
k


=

n∑
j=1

x4j + 3

n∑
j ̸=k∈[n]

x2jx
2
k

≤ 3

 n∑
j=1

x2j

2

= 3||x||42

□

2d (5 pts) Prove that if m ≥ C2/ϵ
2 for an absolute constant C2 > 0, then

ProbP,D

[∣∣||Zx||22 − ||x||22
∣∣ > ϵ||x||22

]
< 1/5.
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Solution. For the sake of simplicity, we will assume that ||x||2 = 1. Everything can be appro-
riately rescaled as needed. Also let y = HDx. Zx is simply a sampling of the vector y. An
unbiased estimator of 1

n ||y||
2
2 is as follows - take a random co-ordinate of y, square it. Thus ||Zx||22

is the mean of m samples of Y 2 whose expectaion is 1 and variance is bounded by c1. Thus we
can use Chebyschev’s inequality to say that the estimate is less than 1+ ϵ with probability 9/10
by taking O( c1

ϵ2
) samples. However we only bounded the variance with probabilty 9/10. This

can be fixed as below. Let an indicator variable G represent the good event that V ar[Y 2] ≤ c1
occuring.

Pr
P,D

[||Zx||22 > 1 + ϵ] = Pr
P,D

[||Zx||22 > 1 + ϵ|G = 1]E[G] + Pr
P,D

[||Zx||22 > 1 + ϵ|G = 0]Pr[G = 0]

≤ 9

10
Pr
P,D

[||Zx||22 > 1 + ϵ|G] +
1

10

=
9

10

1

10
+

1

10
< 1/5

□

3 (20 pts) In this problem you will design and analyze a very fast sketching method for matrices,
namely one that can be applied without forming the sketched matrix explicitly.

Let n,B ≥ 1, B ≤ n, be integers. Let h1, h2 : [n] → [B] be pairwise independent hash
functions, let s1, s2 : [n] → {−1,+1} be pairwise independent sign functions. Here we let
[n] = {0, 1, . . . , n− 1} and [B] = {0, 1, . . . , B− 1}. For (i, j) ∈ [n]× [n] let h(i, j) = h1(i)+h2(j)
(mod B) and s(i, j) = s1(i)s2(j).

For a matrix A ∈ Rn×n define Sketch(A) as the vector y ∈ RB such that for every b ∈ [B]

yb =
∑

(i′,j′)∈[n]×[n]
h(i′,j′)=b

s(i′, j′) ·Ai′,j′ .

3a ( 10 pts) For every (i, j) ∈ [n]× [n] let

Estimate(i, j) = yh(i,j) · s(i, j).

Prove that
Pr[|Estimate(i, j)−Ai,j | > C∥A∥F /

√
B] < 1/10,

where ∥A∥2F =
∑

(i′,j′)∈[n]×[n]A
2
i′,j′ and C > 0 is an absolute constant.
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Solution. We have

E[(Ai,j − s(i, j)yh(i,j))
2] = E

∑
(i′,j′)

I[h(i, j) = h(i′, j′)] · s(i, j)s(i′, j′)Ai′,j′

2
=
∑
(i′,j′)

∑
(i′′,j′′)

Pr[h(i, j) = h(i′, j′) = h(i′′, j′′)] ·E
[
s(i′, j′)s(i′′, j′′)

]
Ai′,j′Ai′′,j′′

=
1

B

∑
(i′,j′ )̸=(i,j)

A2
i′,j′

≤ 1

B
∥AF ∥22.

In the derivation above we used the fact E [s(i′, j′)s(i′′, j′′)] = 0 unless (i′, j′) = (i′′, j′′) and
E
[
s(i′, j′)2

]
= 1 for all i′, j′, as well as the fact that Pr[h(i, j) = h(i′, j′)] = 1/B for every

(i′, j′) ̸= (i, j). The required bound now follows by Markov’s inequality. □

3b (0 pts; do not hand in) Convince yourself that this sketch can be used to obtain an ℓ2
heavy-hitters primitive using the standard approach involving independent repetitions and
a median estimator.

3c ( 10 pts) Let x1, . . . , xr ∈ Rn and let

A =
r∑

k=1

xkx
T
k .

Show that, given x1, . . . , xr, the vector y can be computed in time O(r(n + B logB))
assuming that the hash functions h1, h2 and sign functions can be evaluated in constant
time. Note that when r = o(n/ log n), this is faster than forming the matrix A explicitly.
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Solution. Proof. Let A = xxT for some x ∈ Rn, and let y = Sketch(A), so that for b ∈ [B]

yb =
∑

(i′,j′)∈[n]×[n]
h(i′,j′)=b

s(i′, j′) ·Ai′,j′ =
∑

(i′,j′)∈[n]×[n]
h1(i′)+h2(j′)=b

s1(i
′)s2(j

′) · xi′xj′

is the convolution of y1 ∈ RB defined by

y1b =
∑
i′∈[n]

h1(i′)=b

s1(i
′) · xi′

and y2 ∈ RB defined by
y2b =

∑
j′∈[n]

h2(j′)=b

s2(j
′) · xj′ .

This convolution can be computed in time n+B logB using the Fast Fourier Transform. Then
the sketches Sketch(xkxTk ), k = 1, . . . , r, can be added up in time O(rB) = O(rn), giving the
result. □

□

4 ( 25 pts) In this problem we will show that a matrix with independent Gaussian entries and an
appropriately large number of rows is a subspace embedding.

Given any ϵ, δ, k > 0 suppose S ∈ Rm×n is a random matrix where each entry is inde-
pendently sampled from a Gaussian distribution with 0 mean and 1/m variance. Then when
m ≥ Cϵ−2 log(k/δ) for a sufficiently large constant C > 0, the following property holds (you do
not need to prove it): for any finite set of vectors V ⊂ Rd of size |V | = k, |⟨Sv, Sv′⟩ − ⟨v, v′⟩| ≤
ϵ∥v∥2∥v′∥2 simultaneously for all v, v′ ∈ V with probability 1− δ over the randomness in S.

You will show that if m ≥ Cϵ−2(d + log(1/δ)) for a sufficiently large constant C > 0, the
following holds for any A ∈ Rn×d with probability 1 − δ over the randomness in S: for any
x ∈ Rd, ∥SAx∥22 ∈ [(1 − ϵ)∥Ax∥22, (1 + ϵ)∥Ax∥22]. This establishes that S is an (ϵ, d, δ)-subspace
embedding. You will show this in a few steps.

4a ( 7 pts) Let S = {y ∈ Rn : y = Ax for some x ∈ Rd and ∥y∥2 = 1}. For any γ > 0, we say
that N ⊂ S is a γ-net of S if for any y ∈ S there exists an y′ ∈ N such that ∥y− y′∥2 ≤ γ.
Show that there exists a γ net N of S of size |N | ≤ (1 + 1/γ)O(d).
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Solution. For t = rank(A) ≤ d, we can equivalently express S as

S =
{
y ∈ Rn | y = Ux for some x ∈ Rt and ∥y∥2 = 1

}
,

where U has orthonormal columns and the same column space as A.

We first choose a γ/2-net N ′ of the unit sphere St−1, where the γ/2-net has size
(
1 + 4

γ

)t
.

This can be done by choosing a maximal set N ′ of points on St−1 so that no two points are
within distance γ/2 from each other. It follows that the balls of radius γ/4 centered at these points
are disjoint, but on the other hand, they are all contained in the ball of radius 1+γ/4 centered at

the origin. The volume of the latter ball is a factor
(
1+γ/4
γ/4

)t
larger than the smaller balls, which

implies that |N ′| ≤ (1 + 4/γ)t = (1+1/γ)O(d). Define N = {y ∈ Rn | y = Ux for some x ∈ N ′}.
Since the columns of U are orthonormal, if there were a point Ux ∈ S for which there were no
point y ∈ N with ∥y − Ux∥2 ≤ γ, then x would be a point in St−1 for which there is no point
z ∈ N ′ with ∥x− z∥2 ≤ γ, a contradiction. □

4b ( 8 pts) Now let N be a 1/2-net of S. Using this show that for any y ∈ S, there exists
an infinite sequence y0, y1, . . . such that each yi is a scalar multiple of some point in N ,
∥yi∥2 ≤ 1/2i for all i and

y =
∞∑
i=0

yi.

Solution. The proof of this is as follows. We can write y = y0 + (y − y0), where y0 ∈ N and
∥y − y0∥ ≤ 1

2 by the definition of N . Now note that y − y0 = U(x − x0) where y = Ux and
y = Ux0, thus ∥x−x0∥2 = ∥y−y0∥2 ≤ 1/2. This implies y−y0 lies in a scaled version of S where
each element of S is scaled by ∥x−x0∥2 = ∥y−y0∥2. Thus we can say there exists a y1 in a scaled
version of N where each element in N is scaled by ∥y−y0∥2, such thaty−y0 = y1+((y−y0)−y1),
and ∥y − y0 − y1∥2 ≤ ∥y − y0∥2/2 ≤ 1/4. Note that ∥y1∥2 ≤ 1/2, and repeating this argument
gives the proof of the claim. □

4c ( 10 pts) Instantiate random matrix S consider it for the finite set V to be the 1/2-net
V = N , thus S ∈ Rm×n for m = O(ϵ−2(log(|N |/δ))). Use the result of 4b to show that
∥Sy∥22 ∈ [1−O(ϵ), 1 +O(ϵ)] for all y ∈ S with probability 1− δ.
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Solution. We have the following,

∥Sy∥22 = ∥S (y0 + y1 + y2 + · · · )∥22
=

∑
0≤i<j<∞

∥Syi∥22 + 2⟨Syi, Syj⟩

=

 ∑
0≤i<j<∞

∥yi∥22 + 2⟨yi, yj⟩

± 2ε

 ∑
0≤i≤j<∞

∥yi∥2∥yj∥2


= ∥y0 + y1 + . . . ∥22 ± 2ϵ

 ∑
0≤i≤∞

∥yi∥2

 ∑
0≤j≤∞

∥yi∥2


= ∥y∥22 ± 2ϵ

 ∑
0≤i≤∞

1/2i

2

= 1±O(ε),

where the first equality follows from 4b, the second equality follows by expanding the square,
the third equality follows from the guarantee of S for the set N . □
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