

Problem set I

Collaboration on the homework problems is allowed and encouraged, but every student must write up their own solutions, and list collaborators on the first page of the assignment.

- 1 (25 pts) In exercise session I we showed that any deterministic algorithm that achieves a factor 1.1 approximation to the number of distinct elements in a data stream of n items must use $\Omega(n)$ space. In this problem you will prove a stronger space lower bound for *exact deterministic* algorithms and a comparable space lower bound for *exact randomized* algorithms.
 - 1a (10 pts) Prove that a deterministic algorithm that computes the number of distinct elements in any stream of $n + 1$ elements exactly must use at least n bits of space.

Solution. Since the algorithm is deterministic, we can think of it as a deterministic automata with states being different memory configurations. Suppose the algorithm uses m bits. We will show how we can represent any string $x \in \{0, 1\}^n$ using just m bits. This will prove that $m \geq n$ information theoretically.

For any given x , create the following stream $S = \{i | x_i = 1\}$ of size n . The memory of the algorithm is now used as a representation. To recover the actual string again, finish running the algorithm with all possible values for the $n + 1$ st input $\in [n]$. If $i \in S$, then the answer of the algorithm would be n , else it would be $n + 1$. Thus we can infer if $i \in S \forall i$ and hence we can reconstruct our original string x . \square

- 1b (15 pts) Prove that a randomized algorithm that for every stream of n numbers outputs the exact number of distinct elements with probability at least 99/100 must use $\Omega(n)$ space.

Hint: combine ideas from 1a and the lower bound shown in exercise session II.

Solution. Consider the family of sets F used in class such that $|F| \geq 2^{cn}$ and for all $S_i \in F$, $|S_i| = n/4$ and $|S_i \cap S_j| \leq n/8 \forall i \neq j$. For each set $S \in \mathcal{F}$ let $X_S = 0$ if ALG returns the correct answer on S and 1 otherwise. For every S and every $i \in [n]$ let $X_{S,i}$ equal 0 if ALG is correct on $S \cup \{i\}$ and 1 otherwise. For each S one has

$$\mathbf{E}[X_S] \geq 1/100$$

and

$$\mathbf{E}\left[\sum_{i \in [n]} X_{S,i}\right] \leq n/100.$$

We thus have by Markov's inequality for every $S \in \mathcal{F}$ that

$$\mathbf{E}[X_S + \mathbf{I}\left[\sum_{i \in [n]} X_{S,i} > n/50\right]] \leq 1/100 + 1/2.$$

Summing over all $S \in \mathcal{F}$ we get

$$\sum_{S \in \mathcal{F}} \mathbf{E}[X_S + \mathbf{I}\left[\sum_{i \in [n]} X_{S,i} > n/50\right]] \leq (1/100 + 1/2)|\mathcal{F}|.$$

Thus, by Markov's inequality there exists a setting of the random bits R of ALG and a subfamily $\mathcal{F}' \subseteq \mathcal{F}$ of size at least $0.01|\mathcal{F}|$ such that $\text{ALG}(R)$, on every $S \in \mathcal{F}'$ decodes S with at most $1/50$ fraction of mistakes. Since elements of \mathcal{F}' are at least $n/4$ apart in Hamming metric, unique decoding is possible. \square

2 (30 pts) In this problem you will design and analyze a sketching matrix Z based on the Hadamard transform that can be applied to a vector $x \in \mathbb{R}^n$ very fast, namely in $O(1/\epsilon^2 + n \log n)$ time, and approximately preserves the Euclidean norm of x with high probability.

Let D be an $n \times n$ diagonal matrix such that $D_{ij} = 0$ for $i \neq j$ and $D_{ii} \in \{-1, +1\}$ are independent uniformly random signs. Let $H \in \mathbb{R}^{n \times n}$ be the Hadamard transform matrix, i.e. a symmetric matrix with ± 1 entries that satisfies $H^T H = n \cdot I_n$. Finally, let P be an $m \times n$ matrix with each row containing a single 1 in a uniformly random position chosen independently of other rows, and all other entries equal to zero. Finally, the sketching matrix Z is defined as $Z := \frac{1}{\sqrt{m}} \cdot P \cdot H \cdot D$. Note that P and D are random, and H is a deterministic.

2a (2 pts) Show that Zx can be computed in time $O(m + n \log n)$ for every x (you can assume that you can generate a uniformly random number between 1 and n at unit cost).

Solution. For any vector x , the Hadamard transform can be computed very quickly in time $O(n \log n)$. To compute $PHDx$, we have to randomly change the sign of each x_i , then compute its Hadamard transform, and then sample a $O(\frac{1}{\epsilon^2})$ number of coordinates. This process takes $O(n \log n + \frac{1}{\epsilon^2})$ time. \square

2b (6 pts) For a fixed diagonal sign matrix D let $Y \in \mathbb{R}$ denote the value of a uniformly random coordinate of HDx . Show that $\mathbf{E}[Y^2] = \|x\|_2^2$.

Solution.

$$\mathbf{E}[Y^2] = \frac{1}{n} \sum_{i=1}^n [HDx]_i^2 = \frac{1}{n} \|HDx\|_2^2 = \frac{1}{n} (HDx)^\top HDx = \frac{1}{n} x^\top DH^2 Dx = \|x\|_2^2$$

□

2c (17 pts) Show that for fixed $x \in \mathbb{R}^n$ the random variable Y defined in **2b** satisfies

$$\mathbf{Var}(Y^2) \leq C_1 \|x\|_2^4.$$

for an absolute constant $C_1 > 0$ with probability at least $9/10$ over the choice of the diagonal sign matrix D .

Solution. Lets use d_i to represent the i th diagonal value in D and $h_{i,j}$ for the i,j value of H . $\mathbf{Var}(Y^2) = \mathbf{E}[Y^4] - \mathbf{E}[Y^2]^2 = \mathbf{E}[Y^4] - \|x\|_2^4$.

$$\begin{aligned} \mathbf{E}[Y^4] &= \mathbf{E} \frac{1}{n} \sum_{i=1}^n [HDx]_i^4 \\ &= \mathbf{E} \frac{1}{n} \sum_{i=1}^n \left(\sum_{j=1}^n h_{i,j} d_j x_j \right)^4 \\ &= \frac{1}{n} \left(\sum_{i=1}^n \sum_{j=1}^n h_{i,j}^4 d_j^4 x_j^4 + 3 \sum_{i=1}^n \sum_{j \neq k \in [n]} h_{i,j}^2 h_{i,j}^2 d_j^2 d_k^2 x_j^2 x_k^2 \right) \\ &= \sum_{j=1}^n x_j^4 + 3 \sum_{j \neq k \in [n]} x_j^2 x_k^2 \\ &\leq 3 \left(\sum_{j=1}^n x_j^2 \right)^2 = 3 \|x\|_2^4 \end{aligned}$$

□

2d (5 pts) Prove that if $m \geq C_2/\epsilon^2$ for an absolute constant $C_2 > 0$, then

$$\mathbf{Prob}_{P,D} [\left| \|Zx\|_2^2 - \|x\|_2^2 \right| > \epsilon \|x\|_2^2] < 1/5.$$

Solution. For the sake of simplicity, we will assume that $\|x\|_2 = 1$. Everything can be appropriately rescaled as needed. Also let $y = HDx$. Zx is simply a sampling of the vector y . An unbiased estimator of $\frac{1}{n}\|y\|_2^2$ is as follows - take a random co-ordinate of y , square it. Thus $\|Zx\|_2^2$ is the mean of m samples of Y^2 whose expectation is 1 and variance is bounded by c_1 . Thus we can use Chebyshev's inequality to say that the estimate is less than $1 + \epsilon$ with probability $9/10$ by taking $O(\frac{c_1}{\epsilon^2})$ samples. However we only bounded the variance with probability $9/10$. This can be fixed as below. Let an indicator variable G represent the good event that $Var[Y^2] \leq c_1$ occurring.

$$\begin{aligned}\Pr_{P,D}[\|Zx\|_2^2 > 1 + \epsilon] &= \Pr_{P,D}[\|Zx\|_2^2 > 1 + \epsilon | G = 1] \mathbf{E}[G] + \Pr_{P,D}[\|Zx\|_2^2 > 1 + \epsilon | G = 0] \Pr[G = 0] \\ &\leq \frac{9}{10} \Pr_{P,D}[\|Zx\|_2^2 > 1 + \epsilon | G] + \frac{1}{10} \\ &= \frac{9}{10} \frac{1}{10} + \frac{1}{10} < 1/5\end{aligned}$$

□

3 (20 pts) In this problem you will design and analyze a very fast sketching method for matrices, namely one that can be applied without forming the sketched matrix explicitly.

Let $n, B \geq 1, B \leq n$, be integers. Let $h_1, h_2 : [n] \rightarrow [B]$ be pairwise independent hash functions, let $s_1, s_2 : [n] \rightarrow \{-1, +1\}$ be pairwise independent sign functions. Here we let $[n] = \{0, 1, \dots, n-1\}$ and $[B] = \{0, 1, \dots, B-1\}$. For $(i, j) \in [n] \times [n]$ let $h(i, j) = h_1(i) + h_2(j) \pmod{B}$ and $s(i, j) = s_1(i)s_2(j)$.

For a matrix $A \in \mathbb{R}^{n \times n}$ define $\text{SKETCH}(A)$ as the vector $y \in \mathbb{R}^B$ such that for every $b \in [B]$

$$y_b = \sum_{\substack{(i', j') \in [n] \times [n] \\ h(i', j') = b}} s(i', j') \cdot A_{i', j'}.$$

3a (10 pts) For every $(i, j) \in [n] \times [n]$ let

$$\text{ESTIMATE}(i, j) = y_{h(i, j)} \cdot s(i, j).$$

Prove that

$$\Pr[|\text{ESTIMATE}(i, j) - A_{i, j}| > C\|A\|_F/\sqrt{B}] < 1/10,$$

where $\|A\|_F^2 = \sum_{(i', j') \in [n] \times [n]} A_{i', j'}^2$ and $C > 0$ is an absolute constant.

Solution. We have

$$\begin{aligned}
\mathbf{E}[(A_{i,j} - s(i,j)y_{h(i,j)})^2] &= \mathbf{E}\left[\left(\sum_{(i',j')} \mathbf{I}[h(i,j) = h(i',j')] \cdot s(i,j)s(i',j')A_{i',j'}\right)^2\right] \\
&= \sum_{(i',j')} \sum_{(i'',j'')} \Pr[h(i,j) = h(i',j') = h(i'',j'')] \cdot \mathbf{E}[s(i',j')s(i'',j'')] A_{i',j'} A_{i'',j''} \\
&= \frac{1}{B} \sum_{(i',j') \neq (i,j)} A_{i',j'}^2 \\
&\leq \frac{1}{B} \|A_F\|_2^2.
\end{aligned}$$

In the derivation above we used the fact $\mathbf{E}[s(i',j')s(i'',j'')] = 0$ unless $(i',j') = (i'',j'')$ and $\mathbf{E}[s(i',j')^2] = 1$ for all i',j' , as well as the fact that $\Pr[h(i,j) = h(i',j')] = 1/B$ for every $(i',j') \neq (i,j)$. The required bound now follows by Markov's inequality. \square

3b (0 pts; do not hand in) Convince yourself that this sketch can be used to obtain an ℓ_2 heavy-hitters primitive using the standard approach involving independent repetitions and a median estimator.

3c (10 pts) Let $x_1, \dots, x_r \in \mathbb{R}^n$ and let

$$A = \sum_{k=1}^r x_k x_k^T.$$

Show that, given x_1, \dots, x_r , the vector y can be computed in time $O(r(n + B \log B))$ assuming that the hash functions h_1, h_2 and sign functions can be evaluated in constant time. Note that when $r = o(n/\log n)$, this is faster than forming the matrix A explicitly.

Solution. Proof. Let $A = xx^T$ for some $x \in \mathbb{R}^n$, and let $y = \text{SKETCH}(A)$, so that for $b \in [B]$

$$y_b = \sum_{\substack{(i', j') \in [n] \times [n] \\ h(i', j') = b}} s(i', j') \cdot A_{i', j'} = \sum_{\substack{(i', j') \in [n] \times [n] \\ h_1(i') + h_2(j') = b}} s_1(i') s_2(j') \cdot x_{i'} x_{j'}$$

is the convolution of $y^1 \in \mathbb{R}^B$ defined by

$$y_b^1 = \sum_{\substack{i' \in [n] \\ h_1(i') = b}} s_1(i') \cdot x_{i'}$$

and $y^2 \in \mathbb{R}^B$ defined by

$$y_b^2 = \sum_{\substack{j' \in [n] \\ h_2(j') = b}} s_2(j') \cdot x_{j'}$$

This convolution can be computed in time $n + B \log B$ using the Fast Fourier Transform. Then the sketches $\text{SKETCH}(x_k x_k^T)$, $k = 1, \dots, r$, can be added up in time $O(rB) = O(rn)$, giving the result. \square

\square

\square

4 (25 pts) In this problem we will show that a matrix with independent Gaussian entries and an appropriately large number of rows is a subspace embedding.

Given any $\epsilon, \delta, k > 0$ suppose $S \in \mathbb{R}^{m \times n}$ is a random matrix where each entry is independently sampled from a Gaussian distribution with 0 mean and $1/m$ variance. Then when $m \geq C\epsilon^{-2} \log(k/\delta)$ for a sufficiently large constant $C > 0$, the following property holds (you do not need to prove it): for any finite set of vectors $V \subset \mathbb{R}^d$ of size $|V| = k$, $|\langle Sv, Sv' \rangle - \langle v, v' \rangle| \leq \epsilon \|v\|_2 \|v'\|_2$ simultaneously for all $v, v' \in V$ with probability $1 - \delta$ over the randomness in S .

You will show that if $m \geq C\epsilon^{-2}(d + \log(1/\delta))$ for a sufficiently large constant $C > 0$, the following holds for any $A \in \mathbb{R}^{n \times d}$ with probability $1 - \delta$ over the randomness in S : for any $x \in \mathbb{R}^d$, $\|SAx\|_2^2 \in [(1 - \epsilon)\|Ax\|_2^2, (1 + \epsilon)\|Ax\|_2^2]$. This establishes that S is an (ϵ, d, δ) -subspace embedding. You will show this in a few steps.

4a (7 pts) Let $\mathcal{S} = \{y \in \mathbb{R}^n : y = Ax \text{ for some } x \in \mathbb{R}^d \text{ and } \|y\|_2 = 1\}$. For any $\gamma > 0$, we say that $\mathcal{N} \subset \mathcal{S}$ is a γ -net of \mathcal{S} if for any $y \in \mathcal{S}$ there exists an $y' \in \mathcal{N}$ such that $\|y - y'\|_2 \leq \gamma$. Show that there exists a γ net \mathcal{N} of \mathcal{S} of size $|\mathcal{N}| \leq (1 + 1/\gamma)^{O(d)}$.

Solution. For $t = \text{rank}(A) \leq d$, we can equivalently express S as

$$\mathcal{S} = \{y \in \mathbb{R}^n \mid y = Ux \text{ for some } x \in \mathbb{R}^t \text{ and } \|y\|_2 = 1\},$$

where U has orthonormal columns and the same column space as A .

We first choose a $\gamma/2$ -net \mathcal{N}' of the unit sphere S^{t-1} , where the $\gamma/2$ -net has size $\left(1 + \frac{4}{\gamma}\right)^t$.

This can be done by choosing a maximal set \mathcal{N}' of points on S^{t-1} so that no two points are within distance $\gamma/2$ from each other. It follows that the balls of radius $\gamma/4$ centered at these points are disjoint, but on the other hand, they are all contained in the ball of radius $1 + \gamma/4$ centered at the origin. The volume of the latter ball is a factor $\left(\frac{1 + \gamma/4}{\gamma/4}\right)^t$ larger than the smaller balls, which implies that $|\mathcal{N}'| \leq (1 + 4/\gamma)^t = (1 + 1/\gamma)^{O(d)}$. Define $\mathcal{N} = \{y \in \mathbb{R}^n \mid y = Ux \text{ for some } x \in \mathcal{N}'\}$. Since the columns of U are orthonormal, if there were a point $Ux \in \mathcal{S}$ for which there were no point $y \in \mathcal{N}$ with $\|y - Ux\|_2 \leq \gamma$, then x would be a point in S^{t-1} for which there is no point $z \in \mathcal{N}'$ with $\|x - z\|_2 \leq \gamma$, a contradiction. \square

4b (8 pts) Now let \mathcal{N} be a $1/2$ -net of \mathcal{S} . Using this show that for any $y \in \mathcal{S}$, there exists an infinite sequence y_0, y_1, \dots such that each y_i is a scalar multiple of some point in \mathcal{N} , $\|y_i\|_2 \leq 1/2^i$ for all i and

$$y = \sum_{i=0}^{\infty} y_i.$$

Solution. The proof of this is as follows. We can write $y = y_0 + (y - y_0)$, where $y_0 \in \mathcal{N}$ and $\|y - y_0\| \leq \frac{1}{2}$ by the definition of \mathcal{N} . Now note that $y - y_0 = U(x - x_0)$ where $y = Ux$ and $y = Ux_0$, thus $\|x - x_0\|_2 = \|y - y_0\|_2 \leq 1/2$. This implies $y - y_0$ lies in a scaled version of \mathcal{S} where each element of \mathcal{S} is scaled by $\|x - x_0\|_2 = \|y - y_0\|_2$. Thus we can say there exists a y_1 in a scaled version of \mathcal{N} where each element in \mathcal{N} is scaled by $\|y - y_0\|_2$, such that $y - y_0 = y_1 + ((y - y_0) - y_1)$, and $\|y - y_0 - y_1\|_2 \leq \|y - y_0\|_2/2 \leq 1/4$. Note that $\|y_1\|_2 \leq 1/2$, and repeating this argument gives the proof of the claim. \square

4c (10 pts) Instantiate random matrix S consider it for the finite set V to be the $1/2$ -net $V = \mathcal{N}$, thus $S \in \mathbb{R}^{m \times n}$ for $m = O(\epsilon^{-2}(\log(|\mathcal{N}|/\delta)))$. Use the result of **4b** to show that $\|Sy\|_2^2 \in [1 - O(\epsilon), 1 + O(\epsilon)]$ for all $y \in \mathcal{S}$ with probability $1 - \delta$.

Solution. We have the following,

$$\begin{aligned}
\|Sy\|_2^2 &= \|S(y_0 + y_1 + y_2 + \dots)\|_2^2 \\
&= \sum_{0 \leq i < j < \infty} \|Sy_i\|_2^2 + 2\langle Sy_i, Sy_j \rangle \\
&= \left(\sum_{0 \leq i < j < \infty} \|y_i\|_2^2 + 2\langle y_i, y_j \rangle \right) \pm 2\varepsilon \left(\sum_{0 \leq i \leq j < \infty} \|y_i\|_2 \|y_j\|_2 \right) \\
&= \|y_0 + y_1 + \dots\|_2^2 \pm 2\epsilon \left(\left(\sum_{0 \leq i \leq \infty} \|y_i\|_2 \right) \left(\sum_{0 \leq j \leq \infty} \|y_j\|_2 \right) \right) \\
&= \|y\|_2^2 \pm 2\epsilon \left(\sum_{0 \leq i \leq \infty} 1/2^i \right)^2 \\
&= 1 \pm O(\varepsilon),
\end{aligned}$$

where the first equality follows from 4b, the second equality follows by expanding the square, the third equality follows from the guarantee of S for the set \mathcal{N} . \square