
Exercise VII, Sublinear Algorithms for Big Data Analysis
2024-2025

These exercises are for your own benefit. Feel free to collaborate and share your answers
with other students, and solve as many problems as you can. Problems marked (*) are more
difficult, but also more rewarding. These problems have been taken from various sources on
the Internet, too numerous to cite individually.

1 Design an algorithm for testing whether a graph G = (V,E), |V | = n, given as a stream of edge
updates (insertions and deletions) is bipartite. Your algorithm should use n logO(1) n space and
succeed with probability at least 1− 1/n.

Page 1 (of 3)

CS-448 Sublinear Algorithms for Big Data Analysis • Spring 2025
Michael Kapralov

Solution. We design a streaming algorithm to determine if a graph G = (V,E), with |V | = n,
given as a stream of edge updates, is bipartite, using n logO(1) n space and succeeding with
probability at least 1 − 1/n. Given G = (V,E), define G′ = (V ′, E′) as follows: V ′ = {v+, v− |
v ∈ V }, where each vertex v ∈ V is split into v+ and v−, so |V ′| = 2n. For each edge (u, v) ∈ E,
add edges (u−, v+) and (u+, v−) to E′.

Our main claim will be that G is bipartite if and only if G′ has exactly two connected
components. First we argue that G bipartite =⇒ G′ has 2 components: Suppose G is bipartite
with partition V = A ∪ B, A ∩ B = ∅, and all edges in E between A and B. In G′: For v ∈ A,
v+ and v− are not directly connected. For an edge (u, v) with u ∈ A, v ∈ B: (u−, v+) ∈ E′
connects u− to v+ and (u+, v−) ∈ E′ connects u+ to v−. Define:

C1 = {v+ | v ∈ A} ∪ {v− | v ∈ B},
C2 = {v− | v ∈ A} ∪ {v+ | v ∈ B}.

C1 is connected: For u ∈ A, v ∈ B, the path from u to v in G connects u− ∈ C1 to v+ ∈ C1.
Similarly C2 is connected. No edges between C1 and C2: E′ contains only (u−, v+) or (u+, v−),
staying within C1 or C2. Thus, G′ has exactly two components: C1 and C2.

Now we show that if G′ has 2 components =⇒ G is bipartite: Suppose G′ has two compo-
nents, D1 and D2. For each v ∈ V , v+ and v− are in different components (no direct edge in
G′). Define A = {v ∈ V | v+ ∈ D1}, B = {v ∈ V | v+ ∈ D2}. Then:

• If v ∈ A, v+ ∈ D1, v− ∈ D2.

• If v ∈ B, v+ ∈ D2, v− ∈ D1.

For (u, v) ∈ E:

• (u−, v+) ∈ E′: If u ∈ A, u− ∈ D2, v+ ∈ D1, so v ∈ B.

• (u+, v−) ∈ E′ is consistent.

• Thus, (u, v) is between A and B.

No edges within A or B, so G is bipartite with partition A and B.
Now in the case G is not bipartite, then it has an odd cycle. Let the odd cycle in G be

v1, v2, . . . , v2k+1, v1: In G′: v−1 → v+2 → v−2 → v+3 → · · · → v−2k+1 → v+1 . This connects v
−
1 to v+1 ,

merging components. All v+i and v−i become connected since there will be a path from each of
them to some vertex on the cycle, reducing G′ to one component. Thus If G is not bipartite, G′

has 1 components.
Thus we can use a connectivity algorithm to test whether the graph G′ has two components

or not. The algorithm correctly tests bipartiteness using O(n logO(1) n) space and probability
≥ 1− 1/n, as required. �

Page 2 (of 3)

CS-448 Sublinear Algorithms for Big Data Analysis • Spring 2025
Michael Kapralov

2 Suppose that that a graph G = (V,E), |V | = n, is given as a stream of edges, followed by an
assignment of potentials x ∈ RV to vertices of G. Design an algorithm that, given a precision
parameter ε ∈ (0, 1/2), reads the stream of edges followed by the vector of potentials x, and
outputs a (1± ε)-approximation to ∑

{u,v}∈E

(xu − xv)2

using 1
ε2
n logO(1) n space and succeeds with probability at least 1− 1/n.

Solution. Deferred to a later exercise set. �

Page 3 (of 3)

CS-448 Sublinear Algorithms for Big Data Analysis • Spring 2025
Michael Kapralov

