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Exercise V, Sublinear Algorithms for Big Data Analysis 2024-2025

These exercises are for your own benefit. Feel free to collaborate and share your answers
with other students, and solve as many problems as you can. Problems marked (*) are more
difficult, but also more rewarding. These problems have been taken from various sources on
the Internet, too numerous to cite individually.

1 Recall that in order to produce a list of heavy hitters in the previous lecture we used COUNTS-
KETCH to compute estimates for the number of times any element ¢ occurred in the stream, and
included those elements whose estimated count exceeded a certain fraction of the total Euclidean
norm of the frequency vector x in the list. Thus, we need a way to maintain an approximation
to the Euclidean norm of z. In this exercise you will show that the ¢ norm of a single row of
the matrix maintained by COUNTSKETCH is a good approximation to the norm.

Choose a pairwise independent hash function & : [n] — [m], and a four-wise independent hash
function o : [n] — {—1,+1}. Define an m x n matrix II by letting, for each j € [n] = {1,2,...,n}

- { o(j) if h(j)=i

0 0.W.

Note that this is the COUNTSKETCH matrix with m columns (B = m buckets) and a single row.
Prove that if m = Cy/€? for a sufficiently large absolute constant Co > 0, then

(1= o)l[ll3 < [Tx]3 < (1+ ¢T3

with probability at least 2/3 for every fixed z € R™.
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Solution. We first compute the mean:

r 2

E[[Iz|3] =E > | > Wiz,

=1 \jé€[n]

m
=E Z Z Z L1050 o

| i=1 j€[n] 5'€[n]

= i Z Z E [Hinij’] a:jxj/

We now compute the variance:
_ oy 2

E|Tz|)3] =E | { Y| ) My

=1 \j€ln]

| i=1 i’=1 a€[n] bE[n] a’€[n] b'€[n]

[m m
=E Z Z Z Z Z Z Wi Hip I Wy Ta o o Ty

m m
= ZZ Z Z Z Z E [IL; 1L Iy ] 20

1=1 i'=1 a€[n] b€[n] a’€[n] b/ €[n]
We consider the following cases:

1. i # 4. Then we must have a = b,a’ = b'. We get

XY Y Y B,
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(since II;,I1;1, = O for i #

i)
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2. i=1,a=>b,a =V,a+# da. Then we have

S Y B[]

=1 a€[n] a’€[n],a#a’

=) E [II2,117,] 2222,

1=1 a,a’€[n]:asa’

m
1 2.2
72 Loy

1=1 a,a’€[n]:a#a’

m

1 4
< —
_mH”CHz

3.i=1i,a=d,b="V,a#b. Similar to the above, gives no more than 1 ||z3.
4. i=14,a="V,d =b,a+#d. Similar to the above, gives no more than X ||z|[3.
5. i=1,a=b=d =b. We get

m

ZZE[H%M;‘:;iZw%Zxﬁ- (2)

=1 ae[n] =1 ae[n] CLE[TL]

Putting the above bounds together, we get
Var(|[Ilz([3) = E(||Hz[3) — (B(|[Lz]]3))?

SZ Z x2:c —i—Zx (byand)

a€[n] a’€[n],a#a’ a€ln]
3

+ = |z|/3 (by 2., 3., 4. above)
m

= l]12
3 4

= 2oy

By Chebyshev’s inequality we have

Var(||z]|3
ar2(|| 31”2) < (3/2m)||x|\2 < 3/(6 m) <1/3
2|z [ e2]z]3

Prob [[||[Iz|[3 — |z[3] > el|zI3] <

as long as m > 9/€2, as required.
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