
Exercise V, Sublinear Algorithms for Big Data Analysis 2024-2025
These exercises are for your own benefit. Feel free to collaborate and share your answers

with other students, and solve as many problems as you can. Problems marked (*) are more
difficult, but also more rewarding. These problems have been taken from various sources on
the Internet, too numerous to cite individually.

1 Recall that in order to produce a list of heavy hitters in the previous lecture we used CountS-
ketch to compute estimates for the number of times any element i occurred in the stream, and
included those elements whose estimated count exceeded a certain fraction of the total Euclidean
norm of the frequency vector x in the list. Thus, we need a way to maintain an approximation
to the Euclidean norm of x. In this exercise you will show that the `2 norm of a single row of
the matrix maintained by CountSketch is a good approximation to the norm.

Choose a pairwise independent hash function h : [n]→ [m], and a four-wise independent hash
function σ : [n]→ {−1,+1}. Define anm×n matrix Π by letting, for each j ∈ [n] = {1, 2, . . . , n}

Πij =

{
σ(j) if h(j)=i

0 o.w.

Note that this is the CountSketch matrix with m columns (B = m buckets) and a single row.
Prove that if m = C2/ε

2 for a sufficiently large absolute constant C2 > 0, then

(1− ε)||x||22 ≤ ||Πx||22 ≤ (1 + ε)||Πx||22

with probability at least 2/3 for every fixed x ∈ Rn.
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Solution. We first compute the mean:

E[||Πx||22] = E

 m∑
i=1

∑
j∈[n]

Πijxj

2
= E

 m∑
i=1

∑
j∈[n]

∑
j′∈[n]

ΠijΠij′xjxj′


=

m∑
i=1

∑
j∈[n]

∑
j′∈[n]

E
[
ΠijΠij′

]
xjxj′

=
m∑
i=1

∑
j∈[n]

E
[
Π2

ij

]
x2j

=

m∑
i=1

∑
j∈[n]

1

m
· x2j

= ||x||22

We now compute the variance:

E[||Πx||42] = E


 m∑

i=1

∑
j∈[n]

Πijxj

22


= E

 m∑
i=1

m∑
i′=1

∑
a∈[n]

∑
b∈[n]

∑
a′∈[n]

∑
b′∈[n]

ΠiaΠibΠi′a′Πi′b′xaxbxa′xb′


=

m∑
i=1

m∑
i′=1

∑
a∈[n]

∑
b∈[n]

∑
a′∈[n]

∑
b′∈[n]

E [ΠiaΠibΠi′a′Πi′b′ ]xaxbxa′xb′

We consider the following cases:

1. i 6= i′. Then we must have a = b, a′ = b′. We get

m∑
i=1

m∑
i′=1,i 6=i′

∑
a∈[n]

∑
a′∈[n]

E
[
Π2

iaΠ2
i′a′
]
x2ax

2
a′

=
m∑
i=1

m∑
i′=1,i 6=i′

∑
a∈[n]

∑
a′∈[n],a′ 6=a

E
[
Π2

iaΠ2
i′a′
]
x2ax

2
a′ (since ΠiaΠi′a = 0 for i 6= i′)

=
m(m− 1)

m2

∑
a∈[n]

∑
a′∈[n],a6=a′

x2ax
2
a′

≤
∑
a∈[n]

∑
a′∈[n],a 6=a′

x2ax
2
a′

(1)
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2. i = i′, a = b, a′ = b′, a 6= a′. Then we have

m∑
i=1

∑
a∈[n]

∑
a′∈[n],a6=a′

E
[
Π2

iaΠ2
ia′
]
x2ax

2
a′

=
m∑
i=1

∑
a,a′∈[n]:a6=a′

E
[
Π2

iaΠ2
ia′
]
x2ax

2
a′

=
1

m2

m∑
i=1

∑
a,a′∈[n]:a6=a′

x2ax
2
a′

≤ 1

m
||x||42

3. i = i′, a = a′, b = b′, a 6= b. Similar to the above, gives no more than 1
m ||x||

4
2.

4. i = i′, a = b′, a′ = b, a 6= a′. Similar to the above, gives no more than 1
m ||x||

4
2.

5. i = i′, a = b = a′ = b′. We get

m∑
i=1

∑
a∈[n]

E
[
Π4

ia

]
x4a =

1

m

m∑
i=1

∑
a∈[n]

x4a =
∑
a∈[n]

x4a. (2)

Putting the above bounds together, we get

Var(||Πx||22) = E(||Πx||42)− (E(||Πx||22))2

≤
∑
a∈[n]

∑
a′∈[n],a 6=a′

x2ax
2
a′ +

∑
a∈[n]

x4a (by (1) and (2))

+
3

m
||x||42 (by 2., 3., 4. above)

− ||x||42

=
3

m
||x||42

By Chebyshev’s inequality we have

Prob
[∣∣||Πx||22 − ||x||22∣∣ > ε||x||22

]
≤ Var(||Πx||22)

ε2||x||42
≤ (3/m)||x||42

ε2||x||42
≤ 3/(ε2m) < 1/3

as long as m > 9/ε2, as required.
�
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