

Exercise IV, Sublinear Algorithms for Big Data Analysis 2024-2025

These exercises are for your own benefit. Feel free to collaborate and share your answers with other students, and solve as many problems as you can. Problems marked (*) are more difficult, but also more rewarding. These problems have been taken from various sources on the Internet, too numerous to cite individually.

1 Recall that the COUNTSKETCH algorithm discussed in class, given $x \in \mathbb{R}^n$ and a hash table with B columns and $O(\log n)$ rows, provides an estimate $y \in \mathbb{R}^n$ such that

$$\|x - y\|_\infty \leq O(1/\sqrt{B})\|x_{(k+1, \dots, n)}\|_2$$

with probability at least $1 - 1/n$.

1a (30 pts) Prove that the vector \tilde{x} of top k coefficients of y satisfies

$$\|x - \tilde{x}\|_2 \leq (1 + O(\epsilon))\|x_{(k+1, \dots, n)}\|_2$$

if $B \geq k/\epsilon^2$.

Solution. Let S denote the top k coefficients of y . We have

$$\|x - y_S\|_2^2 = \|x_{[k] \setminus S}\|_2^2 + \|(x - y)_S\|_2^2 + \|x_{[n] \setminus ([k] \cup S)}\|_2^2 \quad (1)$$

For every $i \in [k] \setminus S$ and $j \in S \setminus [k]$ we have $|y_i| \leq |y_j|$, so

$$x_i \leq x_j + \frac{1}{\sqrt{B}}\|x_T\|_2.$$

Note that $|[k] \setminus S| = |S \setminus [k]|$, and let $\pi : [k] \setminus S \rightarrow S \setminus [k]$ denote an arbitrary bijection, so that for each $i \in [k] \setminus S$

$$x_i \leq x_{\pi(i)} + \frac{1}{\sqrt{B}}\|x_T\|_2.$$

Summing over $i \in [k] \setminus S$, we get

$$\begin{aligned} \|x_{[k] \setminus S}\|_2^2 &= \sum_{i \in [k] \setminus S} x_i^2 \\ &\leq \sum_{i \in [k] \setminus S} (x_{\pi(i)} + \frac{1}{\sqrt{B}}\|x_T\|_2)^2 \\ &\leq \sum_{i \in [k] \setminus S} \left(x_{\pi(i)}^2 + 2|x_{\pi(i)}| \frac{1}{\sqrt{B}}\|x_T\|_2 + \frac{1}{B}\|x_T\|_2^2 \right) \\ &\leq \|x_{S \setminus [k]}\|_2^2 + 2\|x_{S \setminus [k]}\|_1 \frac{1}{\sqrt{B}}\|x_T\|_2 + \frac{k}{B}\|x_T\|_2^2 \\ &\leq \|x_{S \setminus [k]}\|_2^2 + 2\sqrt{k/B}\|x_T\|_2^2 + \frac{k}{B}\|x_T\|_2^2 \quad (\text{since } \|x_{S \setminus [k]}\|_1 \leq \sqrt{k}\|x_{S \setminus [k]}\|_2) \end{aligned} \quad (2)$$

We also have

$$\|(x - y)_S\|_2^2 \leq k \cdot \left(\frac{1}{\sqrt{B}}\|x_T\|_2 \right)^2. \quad (3)$$

Substituting (2) and (3) into (1), we get

$$\begin{aligned} \|x - y_S\|_2^2 &= \|x_{[k] \setminus S}\|_2^2 + \|(x - y)_S\|_2^2 + \|x_{[n] \setminus ([k] \cup S)}\|_2^2 \\ &= \left(\|x_{S \setminus [k]}\|_2^2 + 2\sqrt{k/B}\|x_T\|_2^2 + \frac{k}{B}\|x_T\|_2^2 \right) + k \cdot \left(\frac{1}{\sqrt{B}}\|x_T\|_2 \right)^2 + \|x_{[n] \setminus ([k] \cup S)}\|_2^2 \\ &= \|x_T\|_2^2 + 2\sqrt{k/B}\|x_T\|_2^2 + \frac{2k}{B}\|x_T\|_2^2 \\ &= (1 + 2\epsilon + 2\epsilon^2)\|x_T\|_2^2 \\ &\leq (1 + O(\epsilon))\|x_T\|_2^2. \end{aligned}$$

□

1b Prove that the vector \tilde{x} of top $2k$ coefficients of y satisfies

$$\|x - \tilde{x}\|_2 \leq (1 + O(\epsilon))\|x_{(k+1, \dots, n)}\|_2$$

if $B \geq k/\epsilon$.

Solution. Let S denote the top k coefficients of y . We have

$$\|x - y_S\|_2^2 = \|x_{[k] \setminus S}\|_2^2 + \|(x - y)_S\|_2^2 + \|x_{[n] \setminus ([k] \cup S)}\|_2^2 \quad (4)$$

For every $i \in [k] \setminus S$ and $j \in S \setminus [k]$ we have $|y_i| \leq |y_j|$, so

$$x_i \leq x_j + \frac{1}{\sqrt{B}}\|x_T\|_2.$$

Let $\Delta := |S \setminus [k]|$. Let $b := \min_{i \in S \setminus [k]} |x_i|$. Then

$$\begin{aligned} \|x_{[k] \setminus S}\|_2^2 - \|x_{S \setminus [k]}\|_2^2 &\leq \Delta \cdot \left(b + \frac{1}{\sqrt{B}}\|x_T\|_2 \right)^2 - (k + \Delta) \cdot b^2 \\ &\leq \Delta \cdot \left(b^2 + \frac{2}{\sqrt{B}}\|x_T\|_2 \cdot b + \frac{1}{B}\|x_T\|_2^2 \right) - (k + \Delta) \cdot b^2 \\ &\leq \Delta \cdot \left(\frac{2}{\sqrt{B}}\|x_T\|_2 \cdot b + \frac{1}{B}\|x_T\|_2^2 \right) - k \cdot b^2 \\ &\leq \frac{2\Delta}{\sqrt{B}}\|x_T\|_2 \cdot b - k \cdot b^2 + \frac{\Delta}{B}\|x_T\|_2^2 \end{aligned}$$

The last term is bounded as

$$\frac{\Delta}{B}\|x_T\|_2^2 \leq \frac{2k}{B}\|x_T\|_2^2 \leq 2\epsilon\|x_T\|_2^2,$$

so it suffices to upper bound the sum of the first two, namely

$$\frac{2\Delta}{\sqrt{B}}\|x_T\|_2 \cdot b - k \cdot b^2.$$

This is a quadratic function of b (recall that $b = \min_{i \in S \setminus [k]} |x_i|$ by definition). The maximum over b is achieved at the solution to (setting the derivative to zero)

$$0 = \frac{2\Delta}{\sqrt{B}}\|x_T\|_2 - 2kb,$$

i.e.

$$b = \frac{\Delta}{k\sqrt{B}}\|x_T\|_2.$$

Thus the maximum over Δ is

$$\begin{aligned} &\frac{2\Delta}{\sqrt{B}}\|x_T\|_2 \cdot \left(\frac{\Delta}{k\sqrt{B}}\|x_T\|_2 \right) - k \cdot \left(\frac{\Delta}{k\sqrt{B}}\|x_T\|_2 \right)^2 \\ &= 2k \left(\frac{\Delta}{k\sqrt{B}}\|x_T\|_2 \right)^2 - k \cdot \left(\frac{\Delta}{k\sqrt{B}}\|x_T\|_2 \right)^2 \\ &= k \left(\frac{\Delta}{k\sqrt{B}}\|x_T\|_2 \right)^2 \\ &\leq k \left(\frac{2k}{k\sqrt{B}}\|x_T\|_2 \right)^2 \\ &\leq \frac{4k}{B}\|x_T\|_2^2 \\ &\leq 4\epsilon\|x_T\|_2^2 \end{aligned}$$

To summarize, we showed that $\|x_{[k] \setminus S}\|_2^2 - \|x_{S \setminus [k]}\|_2^2 \leq 4\epsilon\|x_T\|_2^2$. We also have

$$\|(x - y)_S\|_2^2 \leq |S| \cdot \left(\frac{1}{\sqrt{B}} \|x_T\|_2 \right)^2 \leq (2k/B) \|x_T\|_2^2 \leq 2\epsilon \|x_T\|_2^2.$$

Putting this together with (4), we get

$$\|x - y_S\|_2^2 \leq (1 + 6\epsilon) \|x_T\|_2^2,$$

as required. \square

2 [Exact sparse recovery] Recall that the discrete Fourier transform for signals of length n is given by the matrix $F = (F_{jk}) = \exp(2\pi i j k / n)$. Show that every signal $x \in \mathbb{R}^n$ with at most s nonzero coordinates can be uniquely recovered from the first $2s$ rows of Fx , i.e. $(Fx)_i, i = 0, \dots, 2s - 1$. *Hint: your algorithm need not be stable to noise, nor efficient. You can assume infinite precision arithmetic.*